IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
A number of places are working on a specific dev when they
call lvmcache_info_from_pvid() to look up an info struct
based on a pvid. In those cases, pass the dev being used
to lvmcache_info_from_pvid(). When a dev is specified,
lvmcache_info_from_pvid() will verify that the cached
info it's using matches the dev being processed before
returning the info. Calling code will not mistakenly
get info for the wrong dev when duplicate devs exist.
This confusion was happening when scanning labels when
duplicate devs existed. label_read for the first dev
would add an info struct to lvmcache for that dev/pvid.
label_read for the second dev would see the pvid in
lvmcache from first dev, and mistakenly conclude that
the label_read from the second dev can be skipped
because it's already been done. By verifying that the
dev for the cached pvid matches the dev being read,
this mismatch is avoided and the label is actually read
from the second duplicate.
pvmove began processing tags unintentionally from commit,
6d7dc87cb pvmove: use toollib
pvmove works on a single PV, but tags can match multiple PVs.
If we allowed tags, but processed only the first matching PV,
then the resulting PV would be unpredictable.
Also, the current processing code does not allow us to simply
report an error and do nothing if more than one PV matches the tag,
because the command starts processing PVs as they are found,
so it's too late to do nothing if a second PV matches.
In the same way that process_each_vg() can be passed
a single VG name to process, also allow process_each_lv()
to be passed a single VG name and LV name to process.
This refactors the code for autoactivation. Previously,
as each PV was found, it would be sent to lvmetad, and
the VG would be autoactivated using a non-standard VG
processing function (the "activation_handler") called via
a function pointer from within the lvmetad notification path.
Now, any scanning that the command needs to do (scanning
only the named device args, or scanning all devices when
there are no args), is done first, before any activation
is attempted. During the scans, the VG names are saved.
After scanning is complete, process_each_vg is used to do
autoactivation of the saved VG names. This makes pvscan
activation much more similar to activation done with
vgchange or lvchange.
The separate autoactivate phase also means that if lvmetad
is disabled (either before or during the scan), the command
can continue with the activation step by simply not using
lvmetad and reverting to disk scanning to do the
activation.
Add support for active cache LV.
Handle --cachemode args validation during command line processing.
Rework some lvm2 internal to use lvm2 defined CACHE_MODE enums
indepently on libdm defines and use enum around the code instead
of passing and comparing strings.
Previously, duplicate PVs were processed as a side effect
of processing the "chosen" PV in lvmcache. The duplicate
PV would be hacked into lvmcache temporarily in place of
the chosen PV.
In the old way, we had to always process the "chosen" PV
device, even if a duplicate of it was named on the command
line. This meant we were processing a different device than
was asked for. This could be worked around by naming
multiple duplicate devs on the command line in which case
they were swapped in and out of lvmcache for processing.
Now, the duplicate devs are processed directly in their
own processing loop. This means we can remove the old
hacks related to processing dups as a side effect of
processing the chosen device. We can now simply process
the device that was named on the command line.
When the same PVID exists on two or more devices, one device
is preferred and used in the VG, and the others are duplicates
and are not used in the VG. The preferred device exists in
lvmcache as usual. The duplicates exist in a specical list
of unused duplicate devices.
The duplicate devs have the "d" attribute and the "duplicate"
reporting field displays "duplicate" for them.
'pvs' warns about duplicates, but the formal output only
includes the single preferred PV.
'pvs -a' has the same warnings, and the duplicate devs are
included in the output.
'pvs <path>' has the same warnings, and displays the named
device, whether it is preferred or a duplicate.
Wait to compare and choose alternate duplicate devices until
after all devices are scanned. During scanning, the first
duplicate dev is kept in lvmcache, and others are kept in a
new list (_found_duplicate_devs).
After all devices are scanned, compare all the duplicates
available for a given PVID and decide which is best.
If the dev used in lvmcache is changed, drop the old dev
from lvmcache entirely and rescan the replacement dev.
Previously the VG metadata from the old dev was kept in
lvmcache and only the dev was replaced.
A new config setting devices/allow_changes_with_duplicate_pvs
can be set to 0 which disallows modifying a VG or activating
LVs in it when the VG contains PVs with duplicate devices.
Set to 1 is the old behavior which allowed the VG to be
changed.
The logic for which of two devs is preferred has changed.
The primary goal is to choose a device that is currently
in use if the other isn't, e.g. by an active LV.
. prefer dev with fs mounted if the other doesn't, else
. prefer dev that is dm if the other isn't, else
. prefer dev in subsystem if the other isn't
If neither device is preferred by these rules, then don't
change devices in lvmcache, leaving the one that was found
first.
The previous logic for preferring a device was:
. prefer dev in subsystem if the other isn't, else
. prefer dev without holders if the other has holders, else
. prefer dev that is dm if the other isn't
Rather than doing repeated translations from name to
device when comparing args to existing PVs, do one
translation of the arg names and saving the device,
before checking existing PVs.
process_each_pv was doing:
1. lvmcache_seed_infos_from_lvmetad()
sends pv_list request to lvmetad.
2. get_vgnameids()
sends vg_list request to lvmetad.
3. _get_all_devices()
first calls lvmcache_seed_infos_from_lvmetad(),
which is a no-op if it's already been called.
Because get_vgnameids() does not use the information
from lvmcache_seed_infos_from_lvmetad(), it does not
need to be called prior to get_all_devices where
it is actually needed.
Commit 971ab733b7 ("thin: activation of
merging thin snapshot") also added an incorrect deactivation attempt
for non-thin LVs: find_snapshot(lv)->lv is not designed to be
activated and any attempt to deactivate it is incorrect.
With the recent conversion of pvcreate/pvremove to the
common toollib processing function, skipping in-use PVs
in _process_pvs_in_vg prevented them from being protected
as intended by the in-use flag.
The processing code for pvcreate/pvremove checks for the
in-use state itself and prevents using an in-use PV.
If a PV is skipped, it looks like an unused device and
is not protected from being used in pvcreate/pvremove.
When a command modifies a PV or VG, or changes the
activation state of an LV, it will send a dbus
notification when the command is finished. This
can be enabled/disabled with a config setting.
When processing LVs in a VG and when the -H|--history switch is used,
make process_each_lv_in_vg to iterate over historical volumes too.
For each historical LV, we use dummy struct logical_volume instance with
the "this_glv" reference set to a wrapper over proper struct
historical_logical_volume representation. This makes it possible to process
historical LVs just like normal live LVs (though a dummy one without any
segments and all the other fields zeroed and blank) and it also allows
for using all historical LV related information via lv->this_glv->historical
reference.
One can use a simple call to lv_is_historical to make a difference between
live and historical LV in all the code that is called by process_each_* fns.
This patch adds "include_historical_lvs" field to struct cmd_context to
make it possible for the command to switch between original funcionality
where no historical LVs are processed and functionality where historical
LVs are taken into account (and reported or processed further). The switch
between these modes is done using the '-H|--history' switch on command
line.
The include_historical_lvs state is then passed to process_each_* fns
using the "include_historical_lvs" field within struct processing_handle.
"pvcreate_each_params" was a temporary name used
to transition from the old "pvcreate_params".
Remove the old pvcreate_params struct and rename the
new pvcreate_each_params struct to pvcreate_params.
Rename various pvcreate_each_params terms to simply
pvcreate_params.
This is common code for handling PV create/remove
that can be shared by pvcreate/vgcreate/vgextend/pvremove.
This does not change any commands to use the new code.
- Pull out the hidden equivalent of process_each_pv
into an actual top level process_each_pv.
- Pull the prompts to the top level, and do not
run any prompts while locks are held.
The orphan lock is reacquired after any prompts are
done, and the devices being created are checked for
any change made while the lock was not held.
Previously, pvcreate_vol() was the shared function for
creating a PV for pvcreate, vgcreate, vgextend.
Now, it will be toollib function pvcreate_each_device().
pvcreate_vol() was called effectively as a helper, from
within vgcreate and vgextend code paths.
pvcreate_each_device() will be called at the same level
as other process_each functions.
One of the main problems with pvcreate_vol() is that
it included a hidden equivalent of process_each_pv for
each device being created:
pvcreate_vol() -> _pvcreate_check() ->
find_pv_by_name() -> get_pvs() ->
get_pvs_internal() -> _get_pvs() -> get_vgids() ->
/* equivalent to process_each_pv */
dm_list_iterate_items(vgids)
vg = vg_read_internal()
dm_list_iterate_items(&vg->pvs)
pvcreate_each_device() reorganizes the code so that
each-VG-each-PV loop is done once, and uses the standard
process_each_pv function at the top level of the function.
If we know that a PV belongs to some VG and we're missing metadata
(because we have only those PV(s) from VG present in the system that
don't have metadata areas), we should skip such PV when processing
under system ID.
This is because we know that the PV belongs to some VG, but we
really can't decide whether it matches system ID unless the VG
metadata is present again.
If we know that the PV is orphan, meaning there's at least one MDA on
that PV which does not reference any VG and at the same time there's
PV_EXT_USED flag set, we're certainly in an inconsistent state and we
need to fix this.
For example, such situation can happen during vgremove/vgreduce if we
removed/reduced the VG, but we haven't written PV headers yet because
vgremove stopped abruptly for whatever reason just before writing new
PV headers with updated state, including PV extension flags (and so the
PV_EXT_USED flag).
However, in case the PV has no MDAs at all, we can't double-check
whether the PV_EXT_USED is correct or not - if that PV is marked
as used, it's either:
- really used (but other disks with MDAs are missing)
- or the error state as described above is hit
User needs to overwrite the PV header directly if it's really clear
the PV having no MDAs does not belong to any VG and at the same time
it's still marked as being in use (pvcreate -ff <dev_name> will fix this).
For example - /dev/sda here has 1 MDA, orphan and is incorrectly marked
with PV_EXT_USED flag:
$ pvs --binary -o+pv_in_use
WARNING: Found inconsistent standalone Physical Volumes.
WARNING: Repairing flag incorrectly marking Physical Volume /dev/sda as used.
PV VG Fmt Attr PSize PFree InUse
/dev/sda lvm2 --- 128.00m 128.00m 0
This is a hotfix for a bug introduced in
6d7dc87cb3.
The bug description: First we allocate memory for
processing handle (at an address 1) then we
allocate some memory on the same pool for later use
in pvmove_poll function inside the process_each_pv
function (at an address 2). After we jump out of
process_each_pv we called destroy_processing_handle.
As a result of destroying the handle memory pool could
deallocate all memory at address 1 or higher. The
pvmove_poll function tried to copy a memory allocated
at address 2 that could be returned to the system.
If it was so it led to segfault.
We need to rethink proper fix but in the same time
cmd->mem pool is recreated per each lvm command so
this should not cause problems even when we run
multiple commands in lvm shell.
A valgrind snapshot of the corruption:
Invalid read of size 1
at 0x4C29F92: strlen (mc_replace_strmem.c:403)
by 0x5495F2E: dm_pool_strdup (pool.c:51)
by 0x1592A7: _create_id (pvmove.c:774)
by 0x159409: pvmove_poll (pvmove.c:796)
by 0x1599E3: pvmove (pvmove.c:931)
by 0x15105B: lvm_run_command (lvmcmdline.c:1655)
by 0x1523C3: lvm2_main (lvmcmdline.c:2121)
by 0x1754F3: main (lvm.c:22)
Address 0xf15df8a is 138 bytes inside a block of size 8,192 free'd
at 0x4C28430: free (vg_replace_malloc.c:446)
by 0x5494E73: dm_free_wrapper (dbg_malloc.c:357)
by 0x5495DE2: _free_chunk (pool-fast.c:318)
by 0x549561C: dm_pool_free (pool-fast.c:151)
by 0x164451: destroy_processing_handle (toollib.c:1837)
by 0x1598C1: pvmove (pvmove.c:903)
by 0x15105B: lvm_run_command (lvmcmdline.c:1655)
by 0x1523C3: lvm2_main (lvmcmdline.c:2121)
by 0x1754F3: main (lvm.c:22)
Fix regression caused by c9f021de0b.
This commit actually transfered real-action (e.g. device removal)
into the next loop which has however missed to check for break.
So add check for break also there.
When creating a list in 'context of command' - use proper mempool.
vg->vgmem is mempool related to VG metadata - and can be eventually
locked read-only when VG struct is shared.
The extent size must fits all blocks in 4294967295 sectors
(in 512b units) this is 1/2 KiB less then 2TiB.
So while previous statement 'suggested' 2TiB is still acceptable value,
make it clear it's not.
As now we support any multiples of 128KB as extent size -
values like 2047G will still 'flow-in' otherwise the largest power-of-2
supported value is 1TiB.
With 1TiB user needs 8388608 extents for 8EiB device.
(FYI such device is already unusable with todays glibc-2.22.90-27)
4GiB extent size is currently the smallest extent size which allows
a user to create 8EiB devices (with 2GiB it's less then 8EiB).
TODO: lvm2 may possibly print amount of 'lost/unused space' on a PV,
since using such ridiculously sized extent size may result in huge
space being left unaccessible.
Add a comment in _process_pvs_in_vg() to document the
place where there have been problems with processing
PVs twice.
For a while we had a hacky workaround here where we'd
skip processing a PV if its device wasn't found in
all_devices (and !is_missing_pv since we want to
process PVs with missing devices.). That workaround
was removed in commit 5cd4d46f because it was no
longer needed.
The workaround had originally been needed to prevent
a device from being processed twice when the PV had
no MDAs -- it would be processed once in its real VG
and then the workaround would prevent it from being
processed a second time in the orphan VG.
Wrongly appearing as an orphan likely happened because
lvmcache would consider the no-MDA PV an orphan unless
the real VG holding that PV was also in lvmcache.
This issue is also mentioned in pvchange where holding
the global lock allows VGs to remain in lvmcache so
PVs with 0 mdas are not considered orphans.
The workaround in _process_pvs_in_vg() was originally
intended for reporting commands, not for pvchange.
But, it was accidentally helping pvchange also because
the method described by the pvchange global lock
comment had been subverted by commit 80f4b4b8.
Commit 80f4b4b8 was found to be unnecessary, and was
reverted in commit e710bac0. This restored the
intended global lock lvmcache effect to pvchange, and
it no longer relied on the workaround in toollib.
The problem addressed by this workaround no longer
seems to exist, so remove it. PVs with no mdas
no longer appear in both their actual VG and in
the orphan VG.
Use process_each_vg() to lock and read the old VG,
and then call the main vgrename code.
When real VG names are used (not a UUID in place of the
old name), the command still pre-locks the new name
(when strcmp wants it locked first), before calling
process_each_vg on the old name.
In the case where the old name is replaced with a UUID,
process_each_vg now translates that UUID into the real
VG name, which it locks and reads. In this case, we
cannot do pre-locking to maintain lock ordering because
the old name is unknown. So, in this case the strcmp
based lock ordering is suppressed and the old name is
always locked first. This opens a remote chance for
lock ordering conflict between racing vgrenames between
two names where one or both commands use the UUID.
Also always clear the internal lvmcache after rescanning, and
reinstate a test for --trustcache so that 'pvs --trustcache'
(for example) avoids rescanning.