IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
For shared VG or LV locking, IDM locking scheme needs to use the PV
list assocated with VG or LV for sending SCSI commands, thus it requires
to use some places to generate PV list.
In reviewing the flow for LVM commands, the best place to generate PV
list is in the locking lib. So this is why this patch parses PV list as
shown. It iterates over all the PV nodes one by one, and compare with
the VG name or LV prefix string. If any PV matches, then the PV is
added into the PV list. Finally the PV list is sent to lvmlockd daemon.
Here as mentioned, it compares LV prefix string with the format
"lv_name_", the reason is it needs to find out all relevant PVs, e.g.
for the thin pool, it has LVs for metadata, pool, error, and raw LV, so
we can use the prefix string to find out all PVs belonging to the thin
pool.
For the global lock, it's not covered in this patch. To avoid the egg
and chicken issue, we need to prepare the global lock ahead before any
locking can be used. So the global lock's PV list is established in
lvmlockd daemon by iterating all drives with partition labeled with
"propeller".
Signed-off-by: Leo Yan <leo.yan@linaro.org>
We can consider the drive firmware a server to handle the locking
request from nodes, this essentially is a client-server model.
DLM uses the kernel as a central place to manage locks, so it also
complies with client-server model for locking operations. This is
why IDM and DLM are similar with each other for their wrappers.
This patch largely works by generalizing the DLM code paths and then
providing degeneralized functions as wrappers for both IDM and DLM.
Signed-off-by: Leo Yan <leo.yan@linaro.org>
error reading dev and no pvid on dev were both
returning 0. make it easier for callers to
know which, if they care.
return 1 if the device could be read, regardless
of whether a pvid was found or not.
set has_pvid=1 if a pvid is found and 0 if no
pvid is found.
This case happens when i.e. we convert LV to another type,
when we change existing LV into a different type - so change
to debug level and avoid confusing users with message about
Device path not match.
We may eventually enhnace caching code to drop cached info
after taking lock and reading VG.
With commit 0b18c25d93 there
was introduced 'zalloc()' for allocation of outdates pvs,
but no matching 'free()' is present.
Switch to use cmd mempool instead of adding free() code into
several places.
The autoactivation property can be specified in lvcreate
or vgcreate for new LVs/VGs, and the property can be changed
by lvchange or vgchange for existing LVs/VGs.
--setautoactivation y|n
enables|disables autoactivation of a VG or LV.
Autoactivation is enabled by default, which is consistent with
past behavior. The disabled state is stored as a new flag
in the VG metadata, and the absence of the flag allows
autoactivation.
If autoactivation is disabled for the VG, then no LVs in the VG
will be autoactivated (the LV autoactivation property will have
no effect.) When autoactivation is enabled for the VG, then
autoactivation can be controlled on individual LVs.
The state of this property can be reported for LVs/VGs using
the "-o autoactivation" option in lvs/vgs commands, which will
report "enabled", or "" for the disabled state.
Previous versions of lvm do not recognize this property. Since
autoactivation is enabled by default, the disabled setting will
have no effect in older lvm versions. If the VG is modified by
older lvm versions, the disabled state will also be dropped from
the metadata.
The autoactivation property is an alternative to using the lvm.conf
auto_activation_volume_list, which is still applied to to VGs/LVs
in addition to the new property.
If VG or LV autoactivation is disabled either in metadata or in
auto_activation_volume_list, it will not be autoactivated.
An autoactivation command will silently skip activating an LV
when the autoactivation property is disabled.
To determine the effective autoactivation behavior for a specific
LV, multiple settings would need to be checked:
the VG autoactivation property, the LV autoactivation property,
the auto_activation_volume_list. The "activation skip" property
would also be relevant, since it applies to both normal and auto
activation.
If we are signaled with SIGTERM it should be at least as good
as with SIGINT - as the command should stop ASAP.
So when lvm2 command allows signal handling we also
enable SIGTERM handling. If there are some other signals
we should handle equally - we could just extend array.
Not all libc (like musl, uclibc dietlibc) libraries support full symbol
version resolution in runtime like glibc.
Add support to not generate symbol versions when compiling against them.
Additionally libdevmapper.so was broken when compiled against
uclibc. Runtime linker loader caused calling dm_task_get_info_base()
function recursively, leading to segmentation fault.
Introduce --with-symvers=STYLE option, which allows to choose
between gnu and disabled symbol versioning. By default gnu symbol
versioning is used.
__GNUC__ check is replaced now with GNU_SYMVER.
Additionally ld version script is included only in
case of gnu option, which slightly reduces output size.
Providing --without-symvers to configure script when building against
uclibc library fixes segmentation fault error described above, due to
lack of several versions of the same symbol in libdevmapper.so
library.
Based on:
https://patchwork.kernel.org/project/dm-devel/patch/20180831144817.31207-1-m.niestroj@grinn-global.com/
Suggested-by: Marcin Niestroj <m.niestroj@grinn-global.com>
Function is not having the best name since it does check
no just raid LVs to be in sync.
Restore the mirror percentage checking - although without retries,
since only raid target is currently known to need it - for other
types it would be ATM a bug to get inconsistent result.
Whiel waiting for raid to return consistent status,
use interruptible sleep - so command can break quickly.
Use lv_raid_status() to get percentage easily from status.
Enabled extension/mixing of stripes/linears, error and zero
segtype LVs with stripes/linear, error and zero segtypes.
It is not very useful in practice, as the user cannot store any real
data on error or zero segtypes, but it may get some uses in
some scenarios where i.e. some portion of the device should not be
readable. Mixing of types happens on 'extent_size' level:
lvcreate -L1 -n lv vg
lvextend --type error -L+1 vg/lv
lvextend --type zero -L+1 vg/lv
lvextend --type linear -L+1 vg/lv
lvextend --type striped -L+1 vg/lv
lvs -o+segtype,seg_size vg
Note: when the type is not specified, the last segment type is
automatically selected.
It's also a small 'can of worms' since we can't tell LVs if
the LV is linear/error/zero or their mixtures. So the meaning behind
them may need some updates.
We already have this types of LV created i.e by:
vgreduce --removemissing --force
where missing LV segments have been replaced by either
error or zero segtype (lvm.conf).
TODO: it might be worth adding a message while such device is activated.
Add some extra code to handle differently sized thin-pool
from thin-pool data volume.
ATM this can't really happen, but once we start to use multiple
commits while resizing stacked LV, we may actually get into
the position, where data LV has been already resized,
but thin-pool stayed with old size.
But for now - report difference as internal error.
Devices made only from 'error' target cannot be used,
but if the device is also combined from 'zero' target
the same rule can be applied as such device cannot be used.
Just like with other segtype use this function to get whole
raid status info available per a single ioctl call.
Also it nicely simplifies read of percentage info about
in_sync portion of raid volume.
TODO: drop use of other calls then lv_raid_status call,
since all such calls could already use status - so it just
adds unnecessary duplication.
Reduce ioctl count and avoid separate info check,
when we can get the same info from status ioctl.
When devmanager calls return 0, then the exists value 0
means the reason of failure is missing device in table.
In such case we avoid stack trace.
Swap the flush parameter for the vdo status function
to match thin pool status.