IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Starting with dm-raid target version 1.9.0 shrinking of mapped devices is supported.
Check for support being present in lvresize and lvreduce.
Related: rhbz1394048
Quering non-thin-pool segment for discard property may lead
to intenal error if the segment had set 'out-of-range' value,
so only thin-pool is allowed, for other it returns NULL.
If SubLVs to be removed still exist after an image removing
conversion (i.e. "lvconvert --yes --force --stripes N "
with N < total stripes) any request to convert to a different
striped/raid* level has to be rejected until after those freed
SubLVs got removed by running the aforementioned lvconvert again.
Add tests to check conversion to striped/raid* gets rejected.
Enhance a test comment.
Related: rhbz1191935
Related: rhbz1366296
Repairing missing devices does not work reliably
with lvmetad, so disable lvmetad before repair.
A standard lvmetad refresh (pvscan --cache) will
enable lvmetad again.
Sending %d as format argument in lvmetad_vg_remove_pending() will cause
segfaults in config_make_nodes_v() when va_arg() casts to int64_t. Also, it is
clearly advertised in the lvm source code that using plain %d is prohibited, so
let's switch to FMTd64.
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Commit f4b30b0dae was about displaying visible LV size
when reshape space is allocated. Take parity devices
into account when displaying the user visible LV size.
Better support for lvdisplay.
By default info about running (in kernel) cache status is printed.
To get 'segtype' info, user runs: 'lvdisplay -m', example:
--- Logical volume ---
LV Path /dev/vg/lvol0
LV Name lvol0
VG Name vg
LV UUID Y4uWuN-TBGk-duer-aPWl-yBWn-iFFR-RU1gg1
LV Write Access read/write
LV Creation host, time linux, 2017-03-01 20:52:39 +0100
LV Cache pool name lvol2
LV Cache origin name lvol0_corig
LV Status available
# open 0
LV Size 12,00 MiB
Cache used blocks 10,42%
Cache metadata blocks 0,49%
Cache dirty blocks 0,00%
Cache read hits/misses 112 / 34
Cache wrt hits/misses 133 / 0
Cache demotions 0
Cache promotions 20
Current LE 3
Segments 1
Allocation inherit
Read ahead sectors auto
- currently set to 256
Block device 253:0
--- Segments ---
Logical extents 0 to 2:
Type cache
Chunk size 64,00 KiB
Metadata format 1
Mode writethrough
Policy smq
Setting migration_threshold=100000
Report CMFmt column with cache metadata format version.
Report KMFmt column with 'kernel cache metadata format version' for device.
(a value reported from status).
(Update 'CacheMode' to name 'Cache' as primary segtype).
Only cache-pool segtype may store cache_metadata_format.
Only supported values are 0,1,2
Format 2 requires LV status uses LV_METADATA_FORMAT.
Format 0 (unselected) or 1 shall not set this 'incompatible' status.
Cache pool read/writes metadata_format within its segment type..
For CachePoolLV unselected metadata format is NOT stored in metadata.
For CacheLV when metadata format is not present/selected in lvm2 metadata,
it's automatically assumed to be the version 1 (backward compatible).
To ensure older lvm2 will not 'miss-read' metadata with new version 2,
such LV is marked with METADATA_FORMAT status flag (segment is
specifying metadata format). So when cache uses metadata format 2,
it will become inaccesible on older system without such support.
(kernel dm cache < 1.10, lvm2 < 2.02.169).
Add new profilable configation setting to let user select
which metadata format of a created cache pool he wish to use.
By default the 'best' available format is autodetected at runtime,
but user may enforce format 1 or 2 ATM.
Code also detects availability for metadata2 supporting cache target.
In case of troubles user may easily Disable usage of this feature
by placing 'metadata2' into global/cache_disabled_features list.
As now we can properly recognize all paramerters for pool creation,
we may drop PASS_ARG_ defines and rely on '_UNSELECTED' or 0 entries
as being those without user given args.
When setting are not given on command line - 'update' function
fill them from profiles or configuration. For this 'profile' arg
was needed to be passed around and since 'VG' itself is not needed,
it's been all replaced with 'cmd, profile, extents_size' args.
Since cache chunk might be huge and there is no technical need
to enforce rounding and there is actually more 'real' VG space
used then necessary - keep rounding on 'chunk' bounrary only
for thin volumes - where it's the space used anyway.
NB: we support conversion of any-size 'existing' LV into cached LV.
Fix missing reset of '*settings' pointer when no args were given.
Handle cache_chunk settings like all other settings, so it is properly
updated only with non-zero settings and the existing cache-pool
chunk_size is not being reconfigured.
User can specify metadata profile which stores important cache
geometry data for easy configuration.
Fix missing support for getting chunk_size, cache_mode, cache_policy
for a cache/cache pools volumes from configuration or metadata profile.
To more easily recognize unselected state from select '0' state
add new 'THIN_ZERO_UNSELECTED' enum.
Same applies to THIN_DISCARDS_UNSELECTED.
For those we no longer need to use PASS_ARG_ZERO or PASS_ARG_DISCARDS.
Basically code moving operation to have a single place resolving
thin_pool_chunk_size_policy.
Supported are generic & performance profiles.
Function is now shared between thin manipulation code and configuration
_CFG logic to obtain defaults and handle correct reporting upward coding
stack.
In addition to the already supported conversion between 2-legged
raid1 and raid5, raid1 and raid4 can be also converted into each
other with 2 legs (raid4/5 are limited to map a 2-legged raid1).
This patch supports the missing raid4 conversion in the sequence
linear -> 2-legged raid1 -> raid4/5, then restripe to more than one
data stripes for performance and resilience reasons and optionally
convert to striped/raid0.
The other conversion sequence is also possible by converting N-way
striped/raid0 to raid4/5, then restripe to 2 legs followed by a
conversion to raid1 and optionally to linear (loosing all resilience).
On conversion from striped to raid0, data LVs are created
and all segments and their respective areas of the striped
LV are moved across to new segments allocated for the raid0
image LVs. This can cause non-canonical segments to be added
to the image LVs.
Add a call to lv_merge_segments() once all segments have been
added to an image LV to compensate for that. This avoids
unsafe table loads on activation.
Fix comments.
Splitting off an image LV of a 2-legged
raid1 LV causes loss of resilience.
Ask user to avoid uninformed loss of all resilience.
Don't ask for N > 2 legged raid1 LVs.
Adjust tests.
Splitting off an image LV of a 2-legged raid1 LV tracking changes
causes loosing partial resilience for any newly written data set.
Full resilience will be provided again after the split off image LV
got merged back in and the new data set got fully synchronized.
Reason being that the data is only stored on the remaining single
writable image during the split.
Ask user to avoid uninformed loss of such partial resilience.
Don't ask for N > 2 legged raid1 LVs.
In case N images fail (N <= parity chunks) _and_
a "vgreduce --removemissing --force VG" was applied
a following repair of the RaidLV fails:
Unable to remove N images: Only 0 devices given.
Failed to remove the specified images from tb/r.
Failed to replace faulty devices in tb/r.
Fix as of this commit results in correct repair:
Faulty devices in tb/r successfully replaced.