IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
We've got cached DM list before grabbing lock, so there
is some chance, that DM table has changed and we would
need to refresh this info.
TODO: benchmark, whether it would even make sense to refresh cache
and keep it content instead of using individual ioctl() for tree build.
Function that is working with DM target is located within
lib/activate directory.
This function is able to use cached dm_device_list when possible
to quickly resolve checks for device's UUID.
Function can fully replace get_dm_uuid_from_sysfs() and instead
of syscalls for open/read/close get the UUID with single ioctl.
When there is cached dm devs list, we can get many UUID from
a single syscall.
Thin-pool and cache-pool targets got already quite stable so let's try
to remove checking of pools when using lvremove or vgremove commands.
This skips checking pools when they are going to be removed, but it
also when removing thin volume that was the only user of a thin-pool.
In this case thin-pool will be still there and could be activated
again with another thin volume and thin_check will be executed
in this moment. In this case it can delay discovery of metadata damage.
Shuffle code to parsing VDO message also for lvs segment status
so it can report correctly data usage for VDO LVs.
For this change move code and also change its API to use just mempool.
Fixes usage with upstream 6.9 vdo target driver.
When using message API for parsing VDO stats info, 0 was wrongly
used for fallback for trying the old sysfs API.
Switch to use ULLONG_MAX for values that could not have been obtained
through the message call.
Fixes lvdisplay info for freshly created VDO volume with 0 used data
blocks.
Make a seperate function to decode which ID should be user
for cvol meta or data volume - also avoids duplication of code.
As a result it's now also easier to see how the lvid is build.
When using cached LV with cachevols (so not with cachepool),
the loaded table could have been using more then one mapping line
for sub devices - resulting into data corruption in some cases
when i.e. taking snapshot of such cached LV with and instead of
single line - 2 lines were generated into DM table as the code
skipped protection again repeated addition.
vg-fast_cvol-cdata: 0 16384 linear 253:2 16384
vg-fast_cvol-cdata: 16384 16384 linear 253:2 16384
New code is also refactoring to use _add_new_cvol_subdev_to_dtree
(similar _add_cvol_subdev.. ) and also the addition of subdev has
been moved after check for already processed node.
Also the cachevol sub devices are now added with the insertion
of cachevol with cached LV.
Improve support for building DM tree when there is a chain
of external origins used for LV.
For this we cannot use track_external_lv_deps as this works
only for LV with just one external origin in its device tree.
Instead add directly 'dev' to the instead of add whole LV.
This avoid possibly recurive endless loop, however we may eventally
have some problems with undiscovered/missing devices in DM tree.
Over the time the code for preloading detached LVs got unnecessarily
complicate. But actually we need to preload only LVs that
were previously non-toplevel (invisible) LVs and became visible
toplevel LVs in the precommitted metadata.
If there would be needed some other rule, it would likely be a bug in
conversion code forgetting to set visibility flag on detached LV.
This reduces number of unnecessary repeated DM tree preloading.
External origins for thin volumes can be also used at the same time
as old(thick) snapshot origins. However in this case it's possible
the LV is only active as being 'external' origin, but old snapshot LVs
are not active. For this case before handling these
LVs for un/monitoring check the active state of origin LV.
This should prevent warnings of monitoring failures.
Instead of parsing the whole /proc/kallsyms use faster variant
of using modprobe tool logic.
lvm2 here wants to know whether the particular DM cache policy is
present in the kernel - however since the cache policy does not have
any kernel module parameters and it can be built-in to a kernel
there is no /sys/modules directory in such case and we would need to call
modprobe everytime we want detect such case.
The old solution tried to look for particular kernel symbol
(and like not the right way, as smq_exit might be actually ommitted).
New version checks MODULES_PATH/`uname -r`/modules.builtin for
whether is present cache policy module instead of CPU expensive parsing
of kallsyms.
Commit cac4a9743acb826d785c0e51e9a752d8959ced80 moved setting
if layer structed to the function front, but the old code
was still left in original place.
Replace the use of internal /dev/mapper names with the use of
public LV names /dev/vg/lv for use with repair tools.
For this make the activation of _pmspare LV to be handled as
a component activation with public name.
Metadata is already atomatically activated this way (as readonly).
So if there is any 'error' happening, we leave public LVs in
system.
Instead of using size of 'empty header' in vdopool use fixed size 4K
for a 'wrappeing' vdo-pool device.
This fixes the issue when user tried to activate vdo-pool after
a conversion from vdo managed device with 'vgchange -ay' - where
this command activated all LVs with 'vdo-pool' wrapping device as well,
but this converted pool uses 0-length header.
This 4k size should usually prevent other tools like 'blkid' recognize
such device as anything - so it shouldn't cause any problems with
duplicate indentification of devices.
Coverity is complaining about unchecked strcpy here, which is
irelevant as we preallocate buffer to fit in copied string,
however we could actually reuse these size and use just memcpy().
So lets make some simple conversions.
Introduce struct vdo_pool_size_config usable to calculate necessary
memory size for active VDO volume.
Function lv_vdo_pool_size_config() is able to read out this
configuration out of runtime DM table line.