// Copyright (C) 2018 Red Hat, Inc. All rights reserved. // // This file is part of LVM2. // // This copyrighted material is made available to anyone wishing to use, // modify, copy, or redistribute it subject to the terms and conditions // of the GNU Lesser General Public License v.2.1. // // You should have received a copy of the GNU Lesser General Public License // along with this program; if not, write to the Free Software Foundation, // Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA #include "radix-tree.h" #include "dm-logging.h" #include "log.h" #include "base/memory/container_of.h" #include "base/memory/zalloc.h" #include #include #include //---------------------------------------------------------------- enum node_type { UNSET = 0, VALUE, VALUE_CHAIN, PREFIX_CHAIN, NODE4, NODE16, NODE48, NODE256 }; struct value { enum node_type type; union radix_value value; }; // This is used for entries that have a key which is a prefix of another key. struct value_chain { union radix_value value; struct value child; }; struct prefix_chain { struct value child; unsigned len; uint8_t prefix[0]; }; struct node4 { uint32_t nr_entries; uint8_t keys[4]; struct value values[4]; }; struct node16 { uint32_t nr_entries; uint8_t keys[16]; struct value values[16]; }; struct node48 { uint32_t nr_entries; uint8_t keys[256]; struct value values[48]; }; struct node256 { struct value values[256]; }; struct radix_tree { unsigned nr_entries; struct value root; }; //---------------------------------------------------------------- struct radix_tree *radix_tree_create(void) { struct radix_tree *rt = malloc(sizeof(*rt)); if (rt) { rt->nr_entries = 0; rt->root.type = UNSET; } return rt; } static void _free_node(struct value v, radix_value_dtr dtr, void *context) { unsigned i; struct value_chain *vc; struct prefix_chain *pc; struct node4 *n4; struct node16 *n16; struct node48 *n48; struct node256 *n256; switch (v.type) { case UNSET: break; case VALUE: if (dtr) dtr(context, v.value); break; case VALUE_CHAIN: vc = v.value.ptr; if (dtr) dtr(context, vc->value); _free_node(vc->child, dtr, context); free(vc); break; case PREFIX_CHAIN: pc = v.value.ptr; _free_node(pc->child, dtr, context); free(pc); break; case NODE4: n4 = (struct node4 *) v.value.ptr; for (i = 0; i < n4->nr_entries; i++) _free_node(n4->values[i], dtr, context); free(n4); break; case NODE16: n16 = (struct node16 *) v.value.ptr; for (i = 0; i < n16->nr_entries; i++) _free_node(n16->values[i], dtr, context); free(n16); break; case NODE48: n48 = (struct node48 *) v.value.ptr; for (i = 0; i < n48->nr_entries; i++) _free_node(n48->values[i], dtr, context); free(n48); break; case NODE256: n256 = (struct node256 *) v.value.ptr; for (i = 0; i < 256; i++) _free_node(n256->values[i], dtr, context); free(n256); break; } } void radix_tree_destroy(struct radix_tree *rt, radix_value_dtr dtr, void *context) { _free_node(rt->root, dtr, context); free(rt); } static bool _insert(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv); static bool _insert_unset(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv) { unsigned len = ke - kb; if (!len) { // value v->type = VALUE; v->value = rv; } else { // prefix -> value struct prefix_chain *pc = zalloc(sizeof(*pc) + len); if (!pc) return false; pc->child.type = VALUE; pc->child.value = rv; pc->len = len; memcpy(pc->prefix, kb, len); v->type = PREFIX_CHAIN; v->value.ptr = pc; } return true; } static bool _insert_value(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv) { unsigned len = ke - kb; if (!len) // overwrite v->value = rv; else { // value_chain -> value struct value_chain *vc = zalloc(sizeof(*vc)); if (!vc) return false; vc->value = v->value; if (!_insert(&vc->child, kb, ke, rv)) { free(vc); return false; } v->type = VALUE_CHAIN; v->value.ptr = vc; } return true; } static bool _insert_value_chain(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv) { struct value_chain *vc = v->value.ptr; return _insert(&vc->child, kb, ke, rv); } static unsigned min(unsigned lhs, unsigned rhs) { if (lhs <= rhs) return lhs; else return rhs; } static bool _insert_prefix_chain(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv) { struct prefix_chain *pc = v->value.ptr; if (*kb == pc->prefix[0]) { // There's a common prefix let's split the chain into two and // recurse. struct prefix_chain *pc2; unsigned i, len = min(pc->len, ke - kb); for (i = 0; i < len; i++) if (kb[i] != pc->prefix[i]) break; pc2 = zalloc(sizeof(*pc2) + pc->len - i); pc2->len = pc->len - i; memmove(pc2->prefix, pc->prefix + i, pc2->len); pc2->child = pc->child; // FIXME: this trashes pc so we can't back out pc->child.type = PREFIX_CHAIN; pc->child.value.ptr = pc2; pc->len = i; if (!_insert(&pc->child, kb + i, ke, rv)) { free(pc2); return false; } } else { // Stick an n4 in front. struct node4 *n4 = zalloc(sizeof(*n4)); if (!n4) return false; n4->keys[0] = *kb; if (!_insert(n4->values, kb + 1, ke, rv)) { free(n4); return false; } if (pc->len) { n4->keys[1] = pc->prefix[0]; if (pc->len == 1) { n4->values[1] = pc->child; free(pc); } else { memmove(pc->prefix, pc->prefix + 1, pc->len - 1); pc->len--; n4->values[1] = *v; } n4->nr_entries = 2; } else n4->nr_entries = 1; v->type = NODE4; v->value.ptr = n4; } return true; } static bool _insert_node4(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv) { struct node4 *n4 = v->value.ptr; if (n4->nr_entries == 4) { struct node16 *n16 = zalloc(sizeof(*n16)); if (!n16) return false; n16->nr_entries = 5; memcpy(n16->keys, n4->keys, sizeof(n4->keys)); memcpy(n16->values, n4->values, sizeof(n4->values)); n16->keys[4] = *kb; if (!_insert(n16->values + 4, kb + 1, ke, rv)) { free(n16); return false; } free(n4); v->type = NODE16; v->value.ptr = n16; } else { n4 = v->value.ptr; if (!_insert(n4->values + n4->nr_entries, kb + 1, ke, rv)) return false; n4->keys[n4->nr_entries] = *kb; n4->nr_entries++; } return true; } static bool _insert_node16(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv) { struct node16 *n16 = v->value.ptr; if (n16->nr_entries == 16) { unsigned i; struct node48 *n48 = zalloc(sizeof(*n48)); if (!n48) return false; n48->nr_entries = 17; memset(n48->keys, 48, sizeof(n48->keys)); for (i = 0; i < 16; i++) { n48->keys[n16->keys[i]] = i; n48->values[i] = n16->values[i]; } n48->keys[*kb] = 16; if (!_insert(n48->values + 16, kb + 1, ke, rv)) { free(n48); return false; } free(n16); v->type = NODE48; v->value.ptr = n48; } else { if (!_insert(n16->values + n16->nr_entries, kb + 1, ke, rv)) return false; n16->keys[n16->nr_entries] = *kb; n16->nr_entries++; } return true; } static bool _insert_node48(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv) { struct node48 *n48 = v->value.ptr; if (n48->nr_entries == 48) { unsigned i; struct node256 *n256 = zalloc(sizeof(*n256)); if (!n256) return false; for (i = 0; i < 256; i++) { if (n48->keys[i] >= 48) continue; n256->values[i] = n48->values[n48->keys[i]]; } if (!_insert(n256->values + *kb, kb + 1, ke, rv)) { free(n256); return false; } free(n48); v->type = NODE256; v->value.ptr = n256; } else { if (!_insert(n48->values + n48->nr_entries, kb + 1, ke, rv)) return false; n48->keys[*kb] = n48->nr_entries; n48->nr_entries++; } return true; } static bool _insert_node256(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv) { struct node256 *n256 = v->value.ptr; if (!_insert(n256->values + *kb, kb + 1, ke, rv)) { n256->values[*kb].type = UNSET; return false; } return true; } // FIXME: the tree should not be touched if insert fails (eg, OOM) static bool _insert(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv) { if (kb == ke) { if (v->type == UNSET) { v->type = VALUE; v->value = rv; } else if (v->type == VALUE) { v->value = rv; } else { struct value_chain *vc = zalloc(sizeof(*vc)); if (!vc) return false; vc->value = rv; vc->child = *v; v->type = VALUE_CHAIN; v->value.ptr = vc; } return true; } switch (v->type) { case UNSET: return _insert_unset(v, kb, ke, rv); case VALUE: return _insert_value(v, kb, ke, rv); case VALUE_CHAIN: return _insert_value_chain(v, kb, ke, rv); case PREFIX_CHAIN: return _insert_prefix_chain(v, kb, ke, rv); case NODE4: return _insert_node4(v, kb, ke, rv); case NODE16: return _insert_node16(v, kb, ke, rv); case NODE48: return _insert_node48(v, kb, ke, rv); case NODE256: return _insert_node256(v, kb, ke, rv); } // can't get here return false; } struct lookup_result { struct value *v; uint8_t *kb; }; static struct lookup_result _lookup_prefix(struct value *v, uint8_t *kb, uint8_t *ke) { unsigned i; struct value_chain *vc; struct prefix_chain *pc; struct node4 *n4; struct node16 *n16; struct node48 *n48; struct node256 *n256; if (kb == ke) return (struct lookup_result) {.v = v, .kb = kb}; switch (v->type) { case UNSET: case VALUE: break; case VALUE_CHAIN: vc = v->value.ptr; return _lookup_prefix(&vc->child, kb, ke); case PREFIX_CHAIN: pc = v->value.ptr; if (ke - kb < pc->len) return (struct lookup_result) {.v = v, .kb = kb}; for (i = 0; i < pc->len; i++) if (kb[i] != pc->prefix[i]) return (struct lookup_result) {.v = v, .kb = kb}; return _lookup_prefix(&pc->child, kb + pc->len, ke); case NODE4: n4 = v->value.ptr; for (i = 0; i < n4->nr_entries; i++) if (n4->keys[i] == *kb) return _lookup_prefix(n4->values + i, kb + 1, ke); break; case NODE16: // FIXME: use binary search or simd? n16 = v->value.ptr; for (i = 0; i < n16->nr_entries; i++) if (n16->keys[i] == *kb) return _lookup_prefix(n16->values + i, kb + 1, ke); break; case NODE48: n48 = v->value.ptr; i = n48->keys[*kb]; if (i < 48) return _lookup_prefix(n48->values + i, kb + 1, ke); break; case NODE256: n256 = v->value.ptr; return _lookup_prefix(n256->values + *kb, kb + 1, ke); } return (struct lookup_result) {.v = v, .kb = kb}; } bool radix_tree_insert(struct radix_tree *rt, uint8_t *kb, uint8_t *ke, union radix_value rv) { struct lookup_result lr = _lookup_prefix(&rt->root, kb, ke); if (_insert(lr.v, lr.kb, ke, rv)) { rt->nr_entries++; return true; } return false; } void radix_tree_delete(struct radix_tree *rt, uint8_t *key_begin, uint8_t *key_end) { assert(0); } bool radix_tree_lookup(struct radix_tree *rt, uint8_t *kb, uint8_t *ke, union radix_value *result) { struct value_chain *vc; struct lookup_result lr = _lookup_prefix(&rt->root, kb, ke); if (lr.kb == ke) { switch (lr.v->type) { case VALUE: *result = lr.v->value; return true; case VALUE_CHAIN: vc = lr.v->value.ptr; *result = vc->value; return true; default: return false; } } return false; } //----------------------------------------------------------------