/* * Copyright (C) 2003-2004 Sistina Software, Inc. All rights reserved. * Copyright (C) 2004 Red Hat, Inc. All rights reserved. * * This file is part of LVM2. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU General Public License v.2. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "lib.h" #include "metadata.h" #include "toolcontext.h" #include "segtype.h" #include "display.h" #include "activate.h" /* * Replace any LV segments on given PV with temporary mirror. * Returns list of LVs changed. */ int insert_pvmove_mirrors(struct cmd_context *cmd, struct logical_volume *lv_mirr, struct list *source_pvl, struct logical_volume *lv, struct list *allocatable_pvs, struct list *lvs_changed) { struct list *segh; struct lv_segment *seg; struct lv_list *lvl; struct pv_list *pvl; int lv_used = 0; uint32_t s, start_le, extent_count = 0u; struct segment_type *segtype; struct pe_range *per; uint32_t pe_start, pe_end, per_end, stripe_multiplier; /* Only 1 PV may feature in source_pvl */ pvl = list_item(source_pvl->n, struct pv_list); if (!(segtype = get_segtype_from_string(lv->vg->cmd, "mirror"))) { stack; return 0; } if (activation() && segtype->ops->target_present && !segtype->ops->target_present()) { log_error("%s: Required device-mapper target(s) not " "detected in your kernel", segtype->name); return 0; } /* Split LV segments to match PE ranges */ list_iterate(segh, &lv->segments) { seg = list_item(segh, struct lv_segment); for (s = 0; s < seg->area_count; s++) { if (seg->area[s].type != AREA_PV || seg->area[s].u.pv.pv->dev != pvl->pv->dev) continue; /* Do these PEs need moving? */ list_iterate_items(per, pvl->pe_ranges) { pe_start = seg->area[s].u.pv.pe; pe_end = pe_start + seg->area_len - 1; per_end = per->start + per->count - 1; /* No overlap? */ if ((pe_end < per->start) || (pe_start > per_end)) continue; if (seg->segtype->flags & SEG_AREAS_STRIPED) stripe_multiplier = seg->area_count; else stripe_multiplier = 1; if ((per->start != pe_start && per->start > pe_start) && !lv_split_segment(lv, seg->le + (per->start - pe_start) * stripe_multiplier)) { stack; return 0; } if ((per_end != pe_end && per_end < pe_end) && !lv_split_segment(lv, seg->le + (per_end - pe_start + 1) * stripe_multiplier)) { stack; return 0; } } } } /* Work through all segments on the supplied PV */ list_iterate(segh, &lv->segments) { seg = list_item(segh, struct lv_segment); for (s = 0; s < seg->area_count; s++) { if (seg->area[s].type != AREA_PV || seg->area[s].u.pv.pv->dev != pvl->pv->dev) continue; pe_start = seg->area[s].u.pv.pe; /* Do these PEs need moving? */ list_iterate_items(per, pvl->pe_ranges) { per_end = per->start + per->count - 1; if ((pe_start < per->start) || (pe_start > per_end)) continue; log_debug("Matched PE range %u-%u against " "%s %u len %u", per->start, per_end, dev_name(seg->area[s].u.pv.pv->dev), seg->area[s].u.pv.pe, seg->area_len); /* First time, add LV to list of LVs affected */ if (!lv_used) { if (!(lvl = pool_alloc(cmd->mem, sizeof(*lvl)))) { log_error("lv_list alloc failed"); return 0; } lvl->lv = lv; list_add(lvs_changed, &lvl->list); lv_used = 1; } log_very_verbose("Moving %s:%u-%u of %s/%s", dev_name(pvl->pv->dev), seg->area[s].u.pv.pe, seg->area[s].u.pv.pe + seg->area_len - 1, lv->vg->name, lv->name); start_le = lv_mirr->le_count; if (!lv_extend(lv->vg->fid, lv_mirr, segtype, 1, seg->area_len, 0u, seg->area_len, seg->area[s].u.pv.pv, seg->area[s].u.pv.pe, PVMOVE, allocatable_pvs, lv->alloc)) { log_error("Unable to allocate " "temporary LV for pvmove."); return 0; } seg->area[s].type = AREA_LV; seg->area[s].u.lv.lv = lv_mirr; seg->area[s].u.lv.le = start_le; extent_count += seg->area_len; lv->status |= LOCKED; break; } } } log_verbose("Moving %u extents of logical volume %s/%s", extent_count, lv->vg->name, lv->name); return 1; } /* Remove a temporary mirror */ int remove_pvmove_mirrors(struct volume_group *vg, struct logical_volume *lv_mirr) { struct list *lvh, *segh; struct logical_volume *lv1; struct lv_segment *seg, *mir_seg; uint32_t s, c; /* Loop through all LVs except the temporary mirror */ list_iterate(lvh, &vg->lvs) { lv1 = list_item(lvh, struct lv_list)->lv; if (lv1 == lv_mirr) continue; /* Find all segments that point at the temporary mirror */ list_iterate(segh, &lv1->segments) { seg = list_item(segh, struct lv_segment); for (s = 0; s < seg->area_count; s++) { if (seg->area[s].type != AREA_LV || seg->area[s].u.lv.lv != lv_mirr) continue; /* Find the mirror segment pointed at */ if (!(mir_seg = find_seg_by_le(lv_mirr, seg->area[s]. u.lv.le))) { /* FIXME Error message */ log_error("No segment found with LE"); return 0; } /* Check the segment params are compatible */ /* FIXME Improve error mesg & remove restrcn */ if ((!(mir_seg->segtype->flags & SEG_AREAS_MIRRORED)) || !(mir_seg->status & PVMOVE) || mir_seg->le != seg->area[s].u.lv.le || mir_seg->area_count != 2 || mir_seg->area_len != seg->area_len) { log_error("Incompatible segments"); return 0; } /* Replace original segment with newly-mirrored * area (or original if reverting) */ if (mir_seg->extents_copied == mir_seg->area_len) c = 1; else c = 0; seg->area[s].type = AREA_PV; seg->area[s].u.pv.pv = mir_seg->area[c].u.pv.pv; seg->area[s].u.pv.pe = mir_seg->area[c].u.pv.pe; /* Replace mirror with old area */ if (! (mir_seg->segtype = get_segtype_from_string(vg->cmd, "striped"))) { log_error("Missing striped segtype"); return 0; } mir_seg->area_count = 1; /* FIXME Assumes only one pvmove at a time! */ lv1->status &= ~LOCKED; } } if (!lv_merge_segments(lv1)) stack; } return 1; } const char *get_pvmove_pvname_from_lv_mirr(struct logical_volume *lv_mirr) { struct list *segh; struct lv_segment *seg; list_iterate(segh, &lv_mirr->segments) { seg = list_item(segh, struct lv_segment); if (!(seg->segtype->flags & SEG_AREAS_MIRRORED)) continue; if (seg->area[0].type != AREA_PV) continue; return dev_name(seg->area[0].u.pv.pv->dev); } return NULL; } const char *get_pvmove_pvname_from_lv(struct logical_volume *lv) { struct list *segh; struct lv_segment *seg; uint32_t s; list_iterate(segh, &lv->segments) { seg = list_item(segh, struct lv_segment); for (s = 0; s < seg->area_count; s++) { if (seg->area[s].type != AREA_LV) continue; return get_pvmove_pvname_from_lv_mirr(seg->area[s].u.lv.lv); } } return NULL; } struct logical_volume *find_pvmove_lv(struct volume_group *vg, struct device *dev, uint32_t lv_type) { struct list *lvh, *segh; struct logical_volume *lv; struct lv_segment *seg; /* Loop through all LVs */ list_iterate(lvh, &vg->lvs) { lv = list_item(lvh, struct lv_list)->lv; if (!(lv->status & lv_type)) continue; /* Check segment origins point to pvname */ list_iterate(segh, &lv->segments) { seg = list_item(segh, struct lv_segment); if (seg->area[0].type != AREA_PV) continue; if (seg->area[0].u.pv.pv->dev != dev) continue; return lv; } } return NULL; } struct logical_volume *find_pvmove_lv_from_pvname(struct cmd_context *cmd, struct volume_group *vg, const char *name, uint32_t lv_type) { struct physical_volume *pv; if (!(pv = find_pv_by_name(cmd, name))) { stack; return NULL; } return find_pvmove_lv(vg, pv->dev, lv_type); } struct list *lvs_using_lv(struct cmd_context *cmd, struct volume_group *vg, struct logical_volume *lv) { struct list *lvh, *segh, *lvs; struct logical_volume *lv1; struct lv_list *lvl; struct lv_segment *seg; uint32_t s; if (!(lvs = pool_alloc(cmd->mem, sizeof(*lvs)))) { log_error("lvs list alloc failed"); return NULL; } list_init(lvs); /* Loop through all LVs except the one supplied */ list_iterate(lvh, &vg->lvs) { lv1 = list_item(lvh, struct lv_list)->lv; if (lv1 == lv) continue; /* Find whether any segment points at the supplied LV */ list_iterate(segh, &lv1->segments) { seg = list_item(segh, struct lv_segment); for (s = 0; s < seg->area_count; s++) { if (seg->area[s].type != AREA_LV || seg->area[s].u.lv.lv != lv) continue; if (!(lvl = pool_alloc(cmd->mem, sizeof(*lvl)))) { log_error("lv_list alloc failed"); return NULL; } lvl->lv = lv1; list_add(lvs, &lvl->list); goto next_lv; } } next_lv: ; } return lvs; } float copy_percent(struct logical_volume *lv_mirr) { uint32_t numerator = 0u, denominator = 0u; struct list *segh; struct lv_segment *seg; list_iterate(segh, &lv_mirr->segments) { seg = list_item(segh, struct lv_segment); denominator += seg->area_len; if (seg->segtype->flags & SEG_AREAS_MIRRORED) numerator += seg->extents_copied; else numerator += seg->area_len; } return denominator ? (float) numerator *100 / denominator : 100.0; }