/* * Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved. * Copyright (C) 2004-2007 Red Hat, Inc. All rights reserved. * * This file is part of LVM2. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU Lesser General Public License v.2.1. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "lib.h" #include "disk-rep.h" #include "xlate.h" #include "filter.h" #include "lvmcache.h" #include #define xx16(v) disk->v = xlate16(disk->v) #define xx32(v) disk->v = xlate32(disk->v) #define xx64(v) disk->v = xlate64(disk->v) /* * Functions to perform the endian conversion * between disk and core. The same code works * both ways of course. */ static void _xlate_pvd(struct pv_disk *disk) { xx16(version); xx32(pv_on_disk.base); xx32(pv_on_disk.size); xx32(vg_on_disk.base); xx32(vg_on_disk.size); xx32(pv_uuidlist_on_disk.base); xx32(pv_uuidlist_on_disk.size); xx32(lv_on_disk.base); xx32(lv_on_disk.size); xx32(pe_on_disk.base); xx32(pe_on_disk.size); xx32(pv_major); xx32(pv_number); xx32(pv_status); xx32(pv_allocatable); xx32(pv_size); xx32(lv_cur); xx32(pe_size); xx32(pe_total); xx32(pe_allocated); xx32(pe_start); } static void _xlate_lvd(struct lv_disk *disk) { xx32(lv_access); xx32(lv_status); xx32(lv_open); xx32(lv_dev); xx32(lv_number); xx32(lv_mirror_copies); xx32(lv_recovery); xx32(lv_schedule); xx32(lv_size); xx32(lv_snapshot_minor); xx16(lv_chunk_size); xx16(dummy); xx32(lv_allocated_le); xx32(lv_stripes); xx32(lv_stripesize); xx32(lv_badblock); xx32(lv_allocation); xx32(lv_io_timeout); xx32(lv_read_ahead); } static void _xlate_vgd(struct vg_disk *disk) { xx32(vg_number); xx32(vg_access); xx32(vg_status); xx32(lv_max); xx32(lv_cur); xx32(lv_open); xx32(pv_max); xx32(pv_cur); xx32(pv_act); xx32(dummy); xx32(vgda); xx32(pe_size); xx32(pe_total); xx32(pe_allocated); xx32(pvg_total); } static void _xlate_extents(struct pe_disk *extents, uint32_t count) { unsigned i; for (i = 0; i < count; i++) { extents[i].lv_num = xlate16(extents[i].lv_num); extents[i].le_num = xlate16(extents[i].le_num); } } /* * Handle both minor metadata formats. */ static int _munge_formats(struct pv_disk *pvd) { uint32_t pe_start; unsigned b, e; switch (pvd->version) { case 1: pvd->pe_start = ((pvd->pe_on_disk.base + pvd->pe_on_disk.size) >> SECTOR_SHIFT); break; case 2: pvd->version = 1; pe_start = pvd->pe_start << SECTOR_SHIFT; pvd->pe_on_disk.size = pe_start - pvd->pe_on_disk.base; break; default: return 0; } /* UUID too long? */ if (pvd->pv_uuid[ID_LEN]) { /* Retain ID_LEN chars from end */ for (e = ID_LEN; e < sizeof(pvd->pv_uuid); e++) { if (!pvd->pv_uuid[e]) { e--; break; } } for (b = 0; b < ID_LEN; b++) { pvd->pv_uuid[b] = pvd->pv_uuid[++e - ID_LEN]; /* FIXME Remove all invalid chars */ if (pvd->pv_uuid[b] == '/') pvd->pv_uuid[b] = '#'; } memset(&pvd->pv_uuid[ID_LEN], 0, sizeof(pvd->pv_uuid) - ID_LEN); } /* If UUID is missing, create one */ if (pvd->pv_uuid[0] == '\0') { uuid_from_num((char *)pvd->pv_uuid, pvd->pv_number); pvd->pv_uuid[ID_LEN] = '\0'; } return 1; } /* * If exported, remove "PV_EXP" from end of VG name */ static void _munge_exported_vg(struct pv_disk *pvd) { int l; size_t s; /* Return if PV not in a VG */ if ((!*pvd->vg_name)) return; /* FIXME also check vgd->status & VG_EXPORTED? */ l = strlen((char *)pvd->vg_name); s = sizeof(EXPORTED_TAG); if (!strncmp((char *)pvd->vg_name + l - s + 1, EXPORTED_TAG, s)) { pvd->vg_name[l - s + 1] = '\0'; pvd->pv_status |= VG_EXPORTED; } } int munge_pvd(struct device *dev, struct pv_disk *pvd) { _xlate_pvd(pvd); if (pvd->id[0] != 'H' || pvd->id[1] != 'M') { log_very_verbose("%s does not have a valid LVM1 PV identifier", dev_name(dev)); return 0; } if (!_munge_formats(pvd)) { log_very_verbose("format1: Unknown metadata version %d " "found on %s", pvd->version, dev_name(dev)); return 0; } /* If VG is exported, set VG name back to the real name */ _munge_exported_vg(pvd); return 1; } static int _read_pvd(struct device *dev, struct pv_disk *pvd) { if (!dev_read(dev, UINT64_C(0), sizeof(*pvd), pvd)) { log_very_verbose("Failed to read PV data from %s", dev_name(dev)); return 0; } return munge_pvd(dev, pvd); } static int _read_lvd(struct device *dev, uint64_t pos, struct lv_disk *disk) { if (!dev_read(dev, pos, sizeof(*disk), disk)) return_0; _xlate_lvd(disk); return 1; } int read_vgd(struct device *dev, struct vg_disk *vgd, struct pv_disk *pvd) { uint64_t pos = pvd->vg_on_disk.base; if (!dev_read(dev, pos, sizeof(*vgd), vgd)) return_0; _xlate_vgd(vgd); if ((vgd->lv_max > MAX_LV) || (vgd->pv_max > MAX_PV)) return_0; /* If UUID is missing, create one */ if (vgd->vg_uuid[0] == '\0') uuid_from_num((char *)vgd->vg_uuid, vgd->vg_number); return 1; } static int _read_uuids(struct disk_list *data) { unsigned num_read = 0; struct uuid_list *ul; char buffer[NAME_LEN] __attribute((aligned(8))); uint64_t pos = data->pvd.pv_uuidlist_on_disk.base; uint64_t end = pos + data->pvd.pv_uuidlist_on_disk.size; while (pos < end && num_read < data->vgd.pv_cur) { if (!dev_read(data->dev, pos, sizeof(buffer), buffer)) return_0; if (!(ul = dm_pool_alloc(data->mem, sizeof(*ul)))) return_0; memcpy(ul->uuid, buffer, NAME_LEN); ul->uuid[NAME_LEN - 1] = '\0'; dm_list_add(&data->uuids, &ul->list); pos += NAME_LEN; num_read++; } return 1; } static int _check_lvd(struct lv_disk *lvd) { return !(lvd->lv_name[0] == '\0'); } static int _read_lvs(struct disk_list *data) { unsigned int i, lvs_read = 0; uint64_t pos; struct lvd_list *ll; struct vg_disk *vgd = &data->vgd; for (i = 0; (i < vgd->lv_max) && (lvs_read < vgd->lv_cur); i++) { pos = data->pvd.lv_on_disk.base + (i * sizeof(struct lv_disk)); ll = dm_pool_alloc(data->mem, sizeof(*ll)); if (!ll) return_0; if (!_read_lvd(data->dev, pos, &ll->lvd)) return_0; if (!_check_lvd(&ll->lvd)) continue; lvs_read++; dm_list_add(&data->lvds, &ll->list); } return 1; } static int _read_extents(struct disk_list *data) { size_t len = sizeof(struct pe_disk) * data->pvd.pe_total; struct pe_disk *extents = dm_pool_alloc(data->mem, len); uint64_t pos = data->pvd.pe_on_disk.base; if (!extents) return_0; if (!dev_read(data->dev, pos, len, extents)) return_0; _xlate_extents(extents, data->pvd.pe_total); data->extents = extents; return 1; } static void __update_lvmcache(const struct format_type *fmt, struct disk_list *dl, struct device *dev, const char *vgid, unsigned exported) { struct lvmcache_info *info; const char *vgname = *((char *)dl->pvd.vg_name) ? (char *)dl->pvd.vg_name : fmt->orphan_vg_name; if (!(info = lvmcache_add(fmt->labeller, (char *)dl->pvd.pv_uuid, dev, vgname, vgid, exported ? EXPORTED_VG : 0))) { stack; return; } info->device_size = xlate32(dl->pvd.pv_size) << SECTOR_SHIFT; dm_list_init(&info->mdas); info->status &= ~CACHE_INVALID; } static struct disk_list *__read_disk(const struct format_type *fmt, struct device *dev, struct dm_pool *mem, const char *vg_name) { struct disk_list *dl = dm_pool_zalloc(mem, sizeof(*dl)); const char *name = dev_name(dev); if (!dl) return_NULL; dl->dev = dev; dl->mem = mem; dm_list_init(&dl->uuids); dm_list_init(&dl->lvds); if (!_read_pvd(dev, &dl->pvd)) goto_bad; /* * is it an orphan ? */ if (!*dl->pvd.vg_name) { log_very_verbose("%s is not a member of any format1 VG", name); __update_lvmcache(fmt, dl, dev, fmt->orphan_vg_name, 0); return (vg_name) ? NULL : dl; } if (!read_vgd(dl->dev, &dl->vgd, &dl->pvd)) { log_error("Failed to read VG data from PV (%s)", name); __update_lvmcache(fmt, dl, dev, fmt->orphan_vg_name, 0); goto bad; } if (vg_name && strcmp(vg_name, (char *)dl->pvd.vg_name)) { log_very_verbose("%s is not a member of the VG %s", name, vg_name); __update_lvmcache(fmt, dl, dev, fmt->orphan_vg_name, 0); goto bad; } __update_lvmcache(fmt, dl, dev, (char *)dl->vgd.vg_uuid, dl->vgd.vg_status & VG_EXPORTED); if (!_read_uuids(dl)) { log_error("Failed to read PV uuid list from %s", name); goto bad; } if (!_read_lvs(dl)) { log_error("Failed to read LV's from %s", name); goto bad; } if (!_read_extents(dl)) { log_error("Failed to read extents from %s", name); goto bad; } log_very_verbose("Found %s in %sVG %s", name, (dl->vgd.vg_status & VG_EXPORTED) ? "exported " : "", dl->pvd.vg_name); return dl; bad: dm_pool_free(dl->mem, dl); return NULL; } struct disk_list *read_disk(const struct format_type *fmt, struct device *dev, struct dm_pool *mem, const char *vg_name) { struct disk_list *dl; if (!dev_open(dev)) return_NULL; dl = __read_disk(fmt, dev, mem, vg_name); if (!dev_close(dev)) stack; return dl; } static void _add_pv_to_list(struct dm_list *head, struct disk_list *data) { struct pv_disk *pvd; struct disk_list *diskl; dm_list_iterate_items(diskl, head) { pvd = &diskl->pvd; if (!strncmp((char *)data->pvd.pv_uuid, (char *)pvd->pv_uuid, sizeof(pvd->pv_uuid))) { if (MAJOR(data->dev->dev) != md_major()) { log_very_verbose("Ignoring duplicate PV %s on " "%s", pvd->pv_uuid, dev_name(data->dev)); return; } log_very_verbose("Duplicate PV %s - using md %s", pvd->pv_uuid, dev_name(data->dev)); dm_list_del(&diskl->list); break; } } dm_list_add(head, &data->list); } /* * Build a list of pv_d's structures, allocated from mem. * We keep track of the first object allocated from the pool * so we can free off all the memory if something goes wrong. */ int read_pvs_in_vg(const struct format_type *fmt, const char *vg_name, struct dev_filter *filter, struct dm_pool *mem, struct dm_list *head) { struct dev_iter *iter; struct device *dev; struct disk_list *data = NULL; struct lvmcache_vginfo *vginfo; struct lvmcache_info *info; /* Fast path if we already saw this VG and cached the list of PVs */ if (vg_name && (vginfo = vginfo_from_vgname(vg_name, NULL)) && vginfo->infos.n) { dm_list_iterate_items(info, &vginfo->infos) { dev = info->dev; if (dev && !(data = read_disk(fmt, dev, mem, vg_name))) break; _add_pv_to_list(head, data); } /* Did we find the whole VG? */ if (!vg_name || is_orphan_vg(vg_name) || (data && *data->pvd.vg_name && dm_list_size(head) == data->vgd.pv_cur)) return 1; /* Failed */ dm_list_init(head); /* vgcache_del(vg_name); */ } if (!(iter = dev_iter_create(filter, 1))) { log_error("read_pvs_in_vg: dev_iter_create failed"); return 0; } /* Otherwise do a complete scan */ for (dev = dev_iter_get(iter); dev; dev = dev_iter_get(iter)) { if ((data = read_disk(fmt, dev, mem, vg_name))) { _add_pv_to_list(head, data); } } dev_iter_destroy(iter); if (dm_list_empty(head)) return 0; return 1; } static int _write_vgd(struct disk_list *data) { struct vg_disk *vgd = &data->vgd; uint64_t pos = data->pvd.vg_on_disk.base; log_debug("Writing %s VG metadata to %s at %" PRIu64 " len %" PRIsize_t, data->pvd.vg_name, dev_name(data->dev), pos, sizeof(*vgd)); _xlate_vgd(vgd); if (!dev_write(data->dev, pos, sizeof(*vgd), vgd)) return_0; _xlate_vgd(vgd); return 1; } static int _write_uuids(struct disk_list *data) { struct uuid_list *ul; uint64_t pos = data->pvd.pv_uuidlist_on_disk.base; uint64_t end = pos + data->pvd.pv_uuidlist_on_disk.size; dm_list_iterate_items(ul, &data->uuids) { if (pos >= end) { log_error("Too many uuids to fit on %s", dev_name(data->dev)); return 0; } log_debug("Writing %s uuidlist to %s at %" PRIu64 " len %d", data->pvd.vg_name, dev_name(data->dev), pos, NAME_LEN); if (!dev_write(data->dev, pos, NAME_LEN, ul->uuid)) return_0; pos += NAME_LEN; } return 1; } static int _write_lvd(struct device *dev, uint64_t pos, struct lv_disk *disk) { log_debug("Writing %s LV %s metadata to %s at %" PRIu64 " len %" PRIsize_t, disk->vg_name, disk->lv_name, dev_name(dev), pos, sizeof(*disk)); _xlate_lvd(disk); if (!dev_write(dev, pos, sizeof(*disk), disk)) return_0; _xlate_lvd(disk); return 1; } static int _write_lvs(struct disk_list *data) { struct lvd_list *ll; uint64_t pos, offset; pos = data->pvd.lv_on_disk.base; if (!dev_set(data->dev, pos, data->pvd.lv_on_disk.size, 0)) { log_error("Couldn't zero lv area on device '%s'", dev_name(data->dev)); return 0; } dm_list_iterate_items(ll, &data->lvds) { offset = sizeof(struct lv_disk) * ll->lvd.lv_number; if (offset + sizeof(struct lv_disk) > data->pvd.lv_on_disk.size) { log_error("lv_number %d too large", ll->lvd.lv_number); return 0; } if (!_write_lvd(data->dev, pos + offset, &ll->lvd)) return_0; } return 1; } static int _write_extents(struct disk_list *data) { size_t len = sizeof(struct pe_disk) * data->pvd.pe_total; struct pe_disk *extents = data->extents; uint64_t pos = data->pvd.pe_on_disk.base; log_debug("Writing %s extents metadata to %s at %" PRIu64 " len %" PRIsize_t, data->pvd.vg_name, dev_name(data->dev), pos, len); _xlate_extents(extents, data->pvd.pe_total); if (!dev_write(data->dev, pos, len, extents)) return_0; _xlate_extents(extents, data->pvd.pe_total); return 1; } static int _write_pvd(struct disk_list *data) { char *buf; uint64_t pos = data->pvd.pv_on_disk.base; size_t size = data->pvd.pv_on_disk.size; if (size < sizeof(struct pv_disk)) { log_error("Invalid PV structure size."); return 0; } /* Make sure that the gap between the PV structure and the next one is zeroed in order to make non LVM tools happy (idea from AED) */ buf = dm_malloc(size); if (!buf) { log_err("Couldn't allocate temporary PV buffer."); return 0; } memset(buf, 0, size); memcpy(buf, &data->pvd, sizeof(struct pv_disk)); log_debug("Writing %s PV metadata to %s at %" PRIu64 " len %" PRIsize_t, data->pvd.vg_name, dev_name(data->dev), pos, size); _xlate_pvd((struct pv_disk *) buf); if (!dev_write(data->dev, pos, size, buf)) { dm_free(buf); return_0; } dm_free(buf); return 1; } /* * assumes the device has been opened. */ static int __write_all_pvd(const struct format_type *fmt __attribute((unused)), struct disk_list *data) { const char *pv_name = dev_name(data->dev); if (!_write_pvd(data)) { log_error("Failed to write PV structure onto %s", pv_name); return 0; } /* vgcache_add(data->pvd.vg_name, data->vgd.vg_uuid, data->dev, fmt); */ /* * Stop here for orphan pv's. */ if (data->pvd.vg_name[0] == '\0') { /* if (!test_mode()) vgcache_add(data->pvd.vg_name, NULL, data->dev, fmt); */ return 1; } /* if (!test_mode()) vgcache_add(data->pvd.vg_name, data->vgd.vg_uuid, data->dev, fmt); */ if (!_write_vgd(data)) { log_error("Failed to write VG data to %s", pv_name); return 0; } if (!_write_uuids(data)) { log_error("Failed to write PV uuid list to %s", pv_name); return 0; } if (!_write_lvs(data)) { log_error("Failed to write LV's to %s", pv_name); return 0; } if (!_write_extents(data)) { log_error("Failed to write extents to %s", pv_name); return 0; } return 1; } /* * opens the device and hands to the above fn. */ static int _write_all_pvd(const struct format_type *fmt, struct disk_list *data) { int r; if (!dev_open(data->dev)) return_0; r = __write_all_pvd(fmt, data); if (!dev_close(data->dev)) stack; return r; } /* * Writes all the given pv's to disk. Does very * little sanity checking, so make sure correct * data is passed to here. */ int write_disks(const struct format_type *fmt, struct dm_list *pvs) { struct disk_list *dl; dm_list_iterate_items(dl, pvs) { if (!(_write_all_pvd(fmt, dl))) return_0; log_very_verbose("Successfully wrote data to %s", dev_name(dl->dev)); } return 1; }