/* * Copyright (C) 2011-2017 Red Hat, Inc. All rights reserved. * * This file is part of LVM2. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU Lesser General Public License v.2.1. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "lib.h" #include "segtype.h" #include "display.h" #include "text_export.h" #include "config.h" #include "str_list.h" #include "targets.h" #include "lvm-string.h" #include "activate.h" #include "metadata.h" #include "lv_alloc.h" static int _raid_target_present(struct cmd_context *cmd, const struct lv_segment *seg __attribute__((unused)), unsigned *attributes); static void _raid_display(const struct lv_segment *seg) { unsigned s; for (s = 0; s < seg->area_count; ++s) { log_print(" Raid Data LV%2d", s); display_stripe(seg, s, " "); } if (seg->meta_areas) for (s = 0; s < seg->area_count; ++s) if (seg_metalv(seg, s)) log_print(" Raid Metadata LV%2d\t%s", s, seg_metalv(seg, s)->name); log_print(" "); } static int _raid_text_import_area_count(const struct dm_config_node *sn, uint32_t *area_count) { uint32_t stripe_count = 0, device_count = 0; int stripe_count_found, device_count_found; device_count_found = dm_config_get_uint32(sn, "device_count", &device_count); stripe_count_found = dm_config_get_uint32(sn, "stripe_count", &stripe_count); if (!device_count_found && !stripe_count_found) { log_error("Couldn't read 'device_count' or 'stripe_count' for " "segment '%s'.", dm_config_parent_name(sn)); return 0; } if (device_count_found && stripe_count_found) { log_error("Only one of 'device_count' and 'stripe_count' allowed for " "segment '%s'.", dm_config_parent_name(sn)); return 0; } *area_count = stripe_count + device_count; return 1; } static int _raid_text_import_areas(struct lv_segment *seg, const struct dm_config_node *sn, const struct dm_config_value *cv) { unsigned int s; struct logical_volume *lv; const char *seg_name = dm_config_parent_name(sn); if (!seg->area_count) { log_error("No areas found for segment %s", seg_name); return 0; } for (s = 0; cv && s < seg->area_count; s++, cv = cv->next) { if (cv->type != DM_CFG_STRING) { log_error("Bad volume name in areas array for segment %s.", seg_name); return 0; } /* Metadata device comes first. */ if (!(lv = find_lv(seg->lv->vg, cv->v.str))) { log_error("Couldn't find volume '%s' for segment '%s'.", cv->v.str ? : "NULL", seg_name); return 0; } if (strstr(lv->name, "_rmeta_")) { if (!set_lv_segment_area_lv(seg, s, lv, 0, RAID_META)) return_0; cv = cv->next; } if (!cv) { log_error("Missing data device in areas array for segment %s.", seg_name); return 0; } /* Data device comes second */ if (!(lv = find_lv(seg->lv->vg, cv->v.str))) { log_error("Couldn't find volume '%s' for segment '%s'.", cv->v.str ? : "NULL", seg_name); return 0; } if (!set_lv_segment_area_lv(seg, s, lv, 0, RAID_IMAGE)) return_0; } /* * Check we read the correct number of RAID data/meta pairs. */ if (cv || (s < seg->area_count)) { log_error("Incorrect number of areas in area array " "for segment '%s'.", seg_name); return 0; } return 1; } static int _raid_text_import(struct lv_segment *seg, const struct dm_config_node *sn, struct dm_hash_table *pv_hash) { const struct dm_config_value *cv; const struct { const char *name; uint32_t *var; } raid_attr_import[] = { { "region_size", &seg->region_size }, { "stripe_size", &seg->stripe_size }, { "data_copies", &seg->data_copies }, { "writebehind", &seg->writebehind }, { "min_recovery_rate", &seg->min_recovery_rate }, { "max_recovery_rate", &seg->max_recovery_rate }, { "data_offset", &seg->data_offset }, }, *aip = raid_attr_import; unsigned i; for (i = 0; i < DM_ARRAY_SIZE(raid_attr_import); i++, aip++) { if (dm_config_has_node(sn, aip->name)) { if (!dm_config_get_uint32(sn, aip->name, aip->var)) { if (!strcmp(aip->name, "data_copies") || !strcmp(aip->name, "data_offset")) { *aip->var = 0; continue; } log_error("Couldn't read '%s' for segment %s of logical volume %s.", aip->name, dm_config_parent_name(sn), seg->lv->name); return 0; } if (!strcmp(aip->name, "data_offset") && !*aip->var) *aip->var = 1; } } if (!dm_config_get_list(sn, seg_is_raid0(seg) ? "raid0_lvs" : "raids", &cv)) { log_error("Couldn't find RAID array for " "segment %s of logical volume %s.", dm_config_parent_name(sn), seg->lv->name); return 0; } if (!_raid_text_import_areas(seg, sn, cv)) { log_error("Failed to import RAID component pairs."); return 0; } if (seg->data_copies < 2) seg->data_copies = lv_raid_data_copies(seg->segtype, seg->area_count); if (seg_is_any_raid0(seg)) seg->area_len /= seg->area_count; return 1; } static int _raid_text_export_raid0(const struct lv_segment *seg, struct formatter *f) { outf(f, "stripe_count = %u", seg->area_count); if (seg->stripe_size) outf(f, "stripe_size = %" PRIu32, seg->stripe_size); return out_areas(f, seg, seg_is_raid0(seg) ? "raid0_lv" : "raid"); } static int _raid_text_export_raid(const struct lv_segment *seg, struct formatter *f) { int raid0 = seg_is_any_raid0(seg); if (raid0) outfc(f, (seg->area_count == 1) ? "# linear" : NULL, "stripe_count = %u", seg->area_count); else { outf(f, "device_count = %u", seg->area_count); if (seg_is_any_raid10(seg) && seg->data_copies > 0) outf(f, "data_copies = %" PRIu32, seg->data_copies); if (seg->region_size) outf(f, "region_size = %" PRIu32, seg->region_size); } if (seg->stripe_size) outf(f, "stripe_size = %" PRIu32, seg->stripe_size); if (!raid0) { if (seg_is_raid1(seg) && seg->writebehind) outf(f, "writebehind = %" PRIu32, seg->writebehind); if (seg->min_recovery_rate) outf(f, "min_recovery_rate = %" PRIu32, seg->min_recovery_rate); if (seg->max_recovery_rate) outf(f, "max_recovery_rate = %" PRIu32, seg->max_recovery_rate); if (seg->data_offset) outf(f, "data_offset = %" PRIu32, seg->data_offset == 1 ? 0 : seg->data_offset); } return out_areas(f, seg, "raid"); } static int _raid_text_export(const struct lv_segment *seg, struct formatter *f) { if (seg_is_any_raid0(seg)) return _raid_text_export_raid0(seg, f); return _raid_text_export_raid(seg, f); } static int _raid_add_target_line(struct dev_manager *dm __attribute__((unused)), struct dm_pool *mem __attribute__((unused)), struct cmd_context *cmd __attribute__((unused)), void **target_state __attribute__((unused)), struct lv_segment *seg, const struct lv_activate_opts *laopts __attribute__((unused)), struct dm_tree_node *node, uint64_t len, uint32_t *pvmove_mirror_count __attribute__((unused))) { int delta_disks = 0, delta_disks_minus = 0, delta_disks_plus = 0, data_offset = 0; uint32_t s; uint64_t flags = 0; uint64_t rebuilds[RAID_BITMAP_SIZE] = { 0 }; uint64_t writemostly[RAID_BITMAP_SIZE] = { 0 }; struct dm_tree_node_raid_params_v2 params = { 0 }; unsigned attrs; if (seg_is_raid4(seg)) { if (!_raid_target_present(cmd, NULL, &attrs) || !(attrs & RAID_FEATURE_RAID4)) { log_error("RAID target does not support RAID4 for LV %s.", display_lvname(seg->lv)); return 0; } } if (!seg->area_count) { log_error(INTERNAL_ERROR "_raid_add_target_line called " "with no areas for %s.", seg->lv->name); return 0; } /* * 253 device restriction imposed by kernel due to MD and dm-raid bitfield limitation in superblock. * It is not strictly a userspace limitation. */ if (seg->area_count > DEFAULT_RAID_MAX_IMAGES) { log_error("Unable to handle more than %u devices in a " "single RAID array", DEFAULT_RAID_MAX_IMAGES); return 0; } if (!seg_is_any_raid0(seg)) { if (!seg->region_size) { log_error("Missing region size for raid segment in %s.", seg_lv(seg, 0)->name); return 0; } for (s = 0; s < seg->area_count; s++) { uint64_t status = seg_lv(seg, s)->status; if (status & LV_REBUILD) rebuilds[s/64] |= 1ULL << (s%64); if (status & LV_RESHAPE_DELTA_DISKS_PLUS) { delta_disks++; delta_disks_plus++; } else if (status & LV_RESHAPE_DELTA_DISKS_MINUS) { delta_disks--; delta_disks_minus++; } if (delta_disks_plus && delta_disks_minus) { log_error(INTERNAL_ERROR "Invalid request for delta disks minus and delta disks plus!"); return 0; } if (status & LV_WRITEMOSTLY) writemostly[s/64] |= 1ULL << (s%64); } data_offset = seg->data_offset; if (mirror_in_sync()) flags = DM_NOSYNC; } params.raid_type = lvseg_name(seg); if (seg->segtype->parity_devs) { /* RAID 4/5/6 */ params.mirrors = 1; params.stripes = seg->area_count - seg->segtype->parity_devs; } else if (seg_is_any_raid0(seg)) { params.mirrors = 1; params.stripes = seg->area_count; } else if (seg_is_any_raid10(seg)) { params.data_copies = seg->data_copies; params.stripes = seg->area_count; } else { /* RAID 1 */ params.mirrors = seg->data_copies; params.stripes = 1; params.writebehind = seg->writebehind; memcpy(params.writemostly, writemostly, sizeof(params.writemostly)); } /* RAID 0 doesn't have a bitmap, thus no region_size, rebuilds etc. */ if (!seg_is_any_raid0(seg)) { params.region_size = seg->region_size; memcpy(params.rebuilds, rebuilds, sizeof(params.rebuilds)); params.min_recovery_rate = seg->min_recovery_rate; params.max_recovery_rate = seg->max_recovery_rate; params.delta_disks = delta_disks; params.data_offset = data_offset; } params.stripe_size = seg->stripe_size; params.flags = flags; if (!dm_tree_node_add_raid_target_with_params_v2(node, len, ¶ms)) return_0; return add_areas_line(dm, seg, node, 0u, seg->area_count); } static int _raid_target_status_compatible(const char *type) { return (strstr(type, "raid") != NULL); } static void _raid_destroy(struct segment_type *segtype) { dm_free((void *) segtype->dso); dm_free(segtype); } #ifdef DEVMAPPER_SUPPORT static int _raid_target_percent(void **target_state, dm_percent_t *percent, struct dm_pool *mem, struct cmd_context *cmd, struct lv_segment *seg, char *params, uint64_t *total_numerator, uint64_t *total_denominator) { struct dm_status_raid *sr; if (!dm_get_status_raid(mem, params, &sr)) return_0; *total_numerator += sr->insync_regions; *total_denominator += sr->total_regions; if (seg) seg->extents_copied = (uint64_t) seg->area_len * dm_make_percent(sr->insync_regions , sr->total_regions) / DM_PERCENT_100; *percent = dm_make_percent(sr->insync_regions, sr->total_regions); dm_pool_free(mem, sr); return 1; } static int _raid_transient_status(struct dm_pool *mem, struct lv_segment *seg, char *params) { int failed = 0, r = 0; unsigned i; struct lvinfo info; struct logical_volume *lv; struct dm_status_raid *sr; log_debug("Raid transient status %s.", params); if (!dm_get_status_raid(mem, params, &sr)) return_0; if (sr->dev_count != seg->area_count) { log_error("Active raid has a wrong number of raid images!"); log_error("Metadata says %u, kernel says %u.", seg->area_count, sr->dev_count); goto out; } if (seg->meta_areas) for (i = 0; i < seg->area_count; ++i) { lv = seg_metalv(seg, i); if (!lv_info(lv->vg->cmd, lv, 0, &info, 0, 0)) { log_error("Check for existence of raid meta %s failed.", display_lvname(lv)); goto out; } } for (i = 0; i < seg->area_count; ++i) { lv = seg_lv(seg, i); if (!lv_info(lv->vg->cmd, lv, 0, &info, 0, 0)) { log_error("Check for existence of raid image %s failed.", display_lvname(lv)); goto out; } if (sr->dev_health[i] == 'D') { lv->status |= PARTIAL_LV; ++failed; } } /* Update PARTIAL_LV flags across the VG */ if (failed) vg_mark_partial_lvs(lv->vg, 0); r = 1; out: dm_pool_free(mem, sr); return r; } /* Define raid feature based on the tuple(major, minor, patchlevel) of raid target */ struct raid_feature { uint32_t maj; uint32_t min; uint32_t patchlevel; unsigned raid_feature; const char *feature; }; /* Return true if tuple(@maj, @min, @patchlevel) is greater/equal to @*feature members */ static int _check_feature(const struct raid_feature *feature, uint32_t maj, uint32_t min, uint32_t patchlevel) { return (maj > feature->maj) || (maj == feature->maj && min >= feature->min) || (maj == feature->maj && min == feature->min && patchlevel >= feature->patchlevel); } static int _raid_target_present(struct cmd_context *cmd, const struct lv_segment *seg __attribute__((unused)), unsigned *attributes) { /* List of features with their kernel target version */ const struct raid_feature _features[] = { { 1, 3, 0, RAID_FEATURE_RAID10, SEG_TYPE_NAME_RAID10 }, { 1, 7, 0, RAID_FEATURE_RAID0, SEG_TYPE_NAME_RAID0 }, { 1, 9, 0, RAID_FEATURE_SHRINK, "shrinking" }, { 1, 9, 0, RAID_FEATURE_NEW_DEVICES_ACCEPT_REBUILD, "rebuild+emptymeta" }, { 1, 12, 0, RAID_FEATURE_RESHAPE, "reshaping" }, }; static int _raid_checked = 0; static int _raid_present = 0; static unsigned _raid_attrs = 0; uint32_t maj, min, patchlevel; unsigned i; if (!activation()) return 0; if (!_raid_checked) { _raid_checked = 1; if (!(_raid_present = target_present(cmd, TARGET_NAME_RAID, 1))) return 0; if (!target_version("raid", &maj, &min, &patchlevel)) return_0; for (i = 0; i < DM_ARRAY_SIZE(_features); ++i) if (_check_feature(_features + i, maj, min, patchlevel)) _raid_attrs |= _features[i].raid_feature; else log_very_verbose("Target raid does not support %s.", _features[i].feature); /* * Seperate check for proper raid4 mapping supported * * If we get more of these range checks, avoid them * altogether by enhancing 'struct raid_feature' * and _check_feature() to handle them. */ if (!(maj == 1 && (min == 8 || (min == 9 && patchlevel == 0)))) _raid_attrs |= RAID_FEATURE_RAID4; else log_very_verbose("Target raid does not support %s.", SEG_TYPE_NAME_RAID4); } if (attributes) *attributes = _raid_attrs; return _raid_present; } static int _raid_modules_needed(struct dm_pool *mem, const struct lv_segment *seg __attribute__((unused)), struct dm_list *modules) { if (!str_list_add(mem, modules, MODULE_NAME_RAID)) { log_error("raid module string list allocation failed"); return 0; } return 1; } # ifdef DMEVENTD static int _raid_target_monitored(struct lv_segment *seg, int *pending, int *monitored) { return target_registered_with_dmeventd(seg->lv->vg->cmd, seg->segtype->dso, seg->lv, pending, monitored); } static int _raid_set_events(struct lv_segment *seg, int evmask, int set) { return target_register_events(seg->lv->vg->cmd, seg->segtype->dso, seg->lv, evmask, set, 0); } static int _raid_target_monitor_events(struct lv_segment *seg, int events) { return _raid_set_events(seg, events, 1); } static int _raid_target_unmonitor_events(struct lv_segment *seg, int events) { return _raid_set_events(seg, events, 0); } # endif /* DMEVENTD */ #endif /* DEVMAPPER_SUPPORT */ static struct segtype_handler _raid_ops = { .display = _raid_display, .text_import_area_count = _raid_text_import_area_count, .text_import = _raid_text_import, .text_export = _raid_text_export, .add_target_line = _raid_add_target_line, .target_status_compatible = _raid_target_status_compatible, #ifdef DEVMAPPER_SUPPORT .target_percent = _raid_target_percent, .target_present = _raid_target_present, .check_transient_status = _raid_transient_status, .modules_needed = _raid_modules_needed, # ifdef DMEVENTD .target_monitored = _raid_target_monitored, .target_monitor_events = _raid_target_monitor_events, .target_unmonitor_events = _raid_target_unmonitor_events, # endif /* DMEVENTD */ #endif .destroy = _raid_destroy, }; static const struct raid_type { const char name[12]; unsigned parity; uint64_t extra_flags; } _raid_types[] = { { SEG_TYPE_NAME_RAID0, 0, SEG_RAID0 | SEG_AREAS_STRIPED }, { SEG_TYPE_NAME_RAID0_META, 0, SEG_RAID0_META | SEG_AREAS_STRIPED }, { SEG_TYPE_NAME_RAID1, 0, SEG_RAID1 | SEG_AREAS_MIRRORED }, { SEG_TYPE_NAME_RAID10, 0, SEG_RAID10 | SEG_AREAS_MIRRORED }, { SEG_TYPE_NAME_RAID10_NEAR,0, SEG_RAID10_NEAR | SEG_AREAS_MIRRORED }, { SEG_TYPE_NAME_RAID4, 1, SEG_RAID4 }, { SEG_TYPE_NAME_RAID5, 1, SEG_RAID5 }, { SEG_TYPE_NAME_RAID5_N, 1, SEG_RAID5_N }, { SEG_TYPE_NAME_RAID5_LA, 1, SEG_RAID5_LA }, { SEG_TYPE_NAME_RAID5_LS, 1, SEG_RAID5_LS }, { SEG_TYPE_NAME_RAID5_RA, 1, SEG_RAID5_RA }, { SEG_TYPE_NAME_RAID5_RS, 1, SEG_RAID5_RS }, { SEG_TYPE_NAME_RAID6, 2, SEG_RAID6 }, { SEG_TYPE_NAME_RAID6_N_6, 2, SEG_RAID6_N_6 }, { SEG_TYPE_NAME_RAID6_NC, 2, SEG_RAID6_NC }, { SEG_TYPE_NAME_RAID6_NR, 2, SEG_RAID6_NR }, { SEG_TYPE_NAME_RAID6_ZR, 2, SEG_RAID6_ZR }, { SEG_TYPE_NAME_RAID6_LS_6, 2, SEG_RAID6_LS_6 }, { SEG_TYPE_NAME_RAID6_RS_6, 2, SEG_RAID6_RS_6 }, { SEG_TYPE_NAME_RAID6_LA_6, 2, SEG_RAID6_LA_6 }, { SEG_TYPE_NAME_RAID6_RA_6, 2, SEG_RAID6_RA_6 } }; static struct segment_type *_init_raid_segtype(struct cmd_context *cmd, const struct raid_type *rt, const char *dso, uint64_t monitored) { struct segment_type *segtype = dm_zalloc(sizeof(*segtype)); if (!segtype) { log_error("Failed to allocate memory for %s segtype", rt->name); return NULL; } segtype->ops = &_raid_ops; segtype->name = rt->name; segtype->flags = SEG_RAID | SEG_ONLY_EXCLUSIVE | rt->extra_flags; /* Never monitor raid0 or raid0_meta LVs */ if (!segtype_is_any_raid0(segtype) && dso && (dso = dm_strdup(dso))) { segtype->dso = dso; segtype->flags |= monitored; } segtype->parity_devs = rt->parity; log_very_verbose("Initialised segtype: %s", segtype->name); return segtype; } #ifdef RAID_INTERNAL /* Shared */ int init_raid_segtypes(struct cmd_context *cmd, struct segtype_library *seglib) #else int init_multiple_segtypes(struct cmd_context *cmd, struct segtype_library *seglib); int init_multiple_segtypes(struct cmd_context *cmd, struct segtype_library *seglib) #endif { struct segment_type *segtype; char *dso = NULL; unsigned i; uint64_t monitored = 0; int r = 1; #ifdef DEVMAPPER_SUPPORT # ifdef DMEVENTD dso = get_monitor_dso_path(cmd, dmeventd_raid_library_CFG); if (dso) monitored = SEG_MONITORED; # endif #endif for (i = 0; i < DM_ARRAY_SIZE(_raid_types); ++i) if ((segtype = _init_raid_segtype(cmd, &_raid_types[i], dso, monitored)) && !lvm_register_segtype(seglib, segtype)) { /* segtype is already destroyed */ stack; r = 0; break; } dm_free(dso); return r; }