/* * Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved. * Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. * * This file is part of LVM2. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU Lesser General Public License v.2.1. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "tools.h" #include #include #include const char *command_name(struct cmd_context *cmd) { return cmd->command->name; } static void _sigchld_handler(int sig __attribute__((unused))) { while (wait4(-1, NULL, WNOHANG | WUNTRACED, NULL) > 0) ; } /* * returns: * -1 if the fork failed * 0 if the parent * 1 if the child */ int become_daemon(struct cmd_context *cmd, int skip_lvm) { static const char devnull[] = "/dev/null"; int null_fd; pid_t pid; struct sigaction act = { {_sigchld_handler}, .sa_flags = SA_NOCLDSTOP, }; log_verbose("Forking background process: %s", cmd->cmd_line); sigaction(SIGCHLD, &act, NULL); if (!skip_lvm) sync_local_dev_names(cmd); /* Flush ops and reset dm cookie */ if ((pid = fork()) == -1) { log_error("fork failed: %s", strerror(errno)); return -1; } /* Parent */ if (pid > 0) return 0; /* Child */ if (setsid() == -1) log_error("Background process failed to setsid: %s", strerror(errno)); /* Set this to avoid discarding output from background process */ // #define DEBUG_CHILD #ifndef DEBUG_CHILD if ((null_fd = open(devnull, O_RDWR)) == -1) { log_sys_error("open", devnull); _exit(ECMD_FAILED); } if ((dup2(null_fd, STDIN_FILENO) < 0) || /* reopen stdin */ (dup2(null_fd, STDOUT_FILENO) < 0) || /* reopen stdout */ (dup2(null_fd, STDERR_FILENO) < 0)) { /* reopen stderr */ log_sys_error("dup2", "redirect"); (void) close(null_fd); _exit(ECMD_FAILED); } if (null_fd > STDERR_FILENO) (void) close(null_fd); init_verbose(VERBOSE_BASE_LEVEL); #endif /* DEBUG_CHILD */ strncpy(*cmd->argv, "(lvm2)", strlen(*cmd->argv)); if (!skip_lvm) { reset_locking(); if (!lvmcache_init()) /* FIXME Clean up properly here */ _exit(ECMD_FAILED); } dev_close_all(); return 1; } /* * Strip dev_dir if present */ const char *skip_dev_dir(struct cmd_context *cmd, const char *vg_name, unsigned *dev_dir_found) { const char *dmdir = dm_dir(); size_t dmdir_len = strlen(dmdir), vglv_sz; char *vgname, *lvname, *layer, *vglv; /* FIXME Do this properly */ if (*vg_name == '/') { while (*vg_name == '/') vg_name++; vg_name--; } /* Reformat string if /dev/mapper found */ if (!strncmp(vg_name, dmdir, dmdir_len) && vg_name[dmdir_len] == '/') { if (dev_dir_found) *dev_dir_found = 1; vg_name += dmdir_len; while (*vg_name == '/') vg_name++; if (!dm_split_lvm_name(cmd->mem, vg_name, &vgname, &lvname, &layer) || *layer) { log_error("skip_dev_dir: Couldn't split up device name %s", vg_name); return vg_name; } vglv_sz = strlen(vgname) + strlen(lvname) + 2; if (!(vglv = dm_pool_alloc(cmd->mem, vglv_sz)) || dm_snprintf(vglv, vglv_sz, "%s%s%s", vgname, *lvname ? "/" : "", lvname) < 0) { log_error("vg/lv string alloc failed"); return vg_name; } return vglv; } if (!strncmp(vg_name, cmd->dev_dir, strlen(cmd->dev_dir))) { if (dev_dir_found) *dev_dir_found = 1; vg_name += strlen(cmd->dev_dir); while (*vg_name == '/') vg_name++; } else if (dev_dir_found) *dev_dir_found = 0; return vg_name; } /* * Returns 1 if VG should be ignored. */ int ignore_vg(struct volume_group *vg, const char *vg_name, int allow_inconsistent, int *ret) { uint32_t read_error = vg_read_error(vg); if (!read_error) return 0; if ((read_error == FAILED_INCONSISTENT) && allow_inconsistent) return 0; if (read_error == FAILED_CLUSTERED && vg->cmd->ignore_clustered_vgs) log_verbose("Skipping volume group %s", vg_name); else { log_error("Skipping volume group %s", vg_name); *ret = ECMD_FAILED; } return 1; } /* * Metadata iteration functions */ int process_each_lv_in_vg(struct cmd_context *cmd, struct volume_group *vg, const struct dm_list *arg_lvnames, const struct dm_list *tags, struct dm_list *failed_lvnames, void *handle, process_single_lv_fn_t process_single_lv) { int ret_max = ECMD_PROCESSED; int ret = 0; unsigned process_all = 0; unsigned process_lv = 0; unsigned tags_supplied = 0; unsigned lvargs_supplied = 0; unsigned lvargs_matched = 0; char *lv_name; struct lv_list *lvl; if (!vg_check_status(vg, EXPORTED_VG)) return ECMD_FAILED; if (tags && !dm_list_empty(tags)) tags_supplied = 1; if (arg_lvnames && !dm_list_empty(arg_lvnames)) lvargs_supplied = 1; /* Process all LVs in this VG if no restrictions given */ if (!tags_supplied && !lvargs_supplied) process_all = 1; /* Or if VG tags match */ if (!process_lv && tags_supplied && str_list_match_list(tags, &vg->tags, NULL)) { process_all = 1; } /* * FIXME: In case of remove it goes through deleted entries, * but it works since entries are allocated from vg mem pool. */ dm_list_iterate_items(lvl, &vg->lvs) { if (lvl->lv->status & SNAPSHOT) continue; /* Skip availability change for non-virt snaps when processing all LVs */ /* FIXME: pass process_all to process_single_lv() */ if (process_all && arg_count(cmd, activate_ARG) && lv_is_cow(lvl->lv) && !lv_is_virtual_origin(origin_from_cow(lvl->lv))) continue; if (lv_is_virtual_origin(lvl->lv) && !arg_count(cmd, all_ARG)) continue; /* * Only let hidden LVs through it --all was used or the LVs * were specifically named on the command line. */ if (!lvargs_supplied && !lv_is_visible(lvl->lv) && !arg_count(cmd, all_ARG)) continue; /* Should we process this LV? */ if (process_all) process_lv = 1; else process_lv = 0; /* LV tag match? */ if (!process_lv && tags_supplied && str_list_match_list(tags, &lvl->lv->tags, NULL)) { process_lv = 1; } /* LV name match? */ if (lvargs_supplied && str_list_match_item(arg_lvnames, lvl->lv->name)) { process_lv = 1; lvargs_matched++; } if (!process_lv) continue; if (sigint_caught()) return_ECMD_FAILED; lvl->lv->vg->cmd_missing_vgs = 0; ret = process_single_lv(cmd, lvl->lv, handle); if (ret != ECMD_PROCESSED && failed_lvnames) { lv_name = dm_pool_strdup(cmd->mem, lvl->lv->name); if (!lv_name || !str_list_add(cmd->mem, failed_lvnames, lv_name)) { log_error("Allocation failed for str_list."); return ECMD_FAILED; } if (lvl->lv->vg->cmd_missing_vgs) ret = ECMD_PROCESSED; } if (ret > ret_max) ret_max = ret; } if (lvargs_supplied && lvargs_matched != dm_list_size(arg_lvnames)) { /* * FIXME: lvm supports removal of LV with all its dependencies * this leads to miscalculation that depends on the order of args. */ log_error("One or more specified logical volume(s) not found."); if (ret_max < ECMD_FAILED) ret_max = ECMD_FAILED; } return ret_max; } int process_each_lv(struct cmd_context *cmd, int argc, char **argv, uint32_t flags, void *handle, process_single_lv_fn_t process_single_lv) { int opt = 0; int ret_max = ECMD_PROCESSED; int ret = 0; struct dm_list *tags_arg; struct dm_list *vgnames; /* VGs to process */ struct str_list *sll, *strl; struct cmd_vg *cvl_vg; struct dm_list cmd_vgs; struct dm_list failed_lvnames; struct dm_list tags, lvnames; struct dm_list arg_lvnames; /* Cmdline vgname or vgname/lvname */ struct dm_list arg_vgnames; char *vglv; size_t vglv_sz; const char *vgname; dm_list_init(&tags); dm_list_init(&arg_lvnames); dm_list_init(&failed_lvnames); if (argc) { log_verbose("Using logical volume(s) on command line"); dm_list_init(&arg_vgnames); for (; opt < argc; opt++) { const char *lv_name = argv[opt]; const char *tmp_lv_name; char *vgname_def; unsigned dev_dir_found = 0; /* Do we have a tag or vgname or lvname? */ vgname = lv_name; if (*vgname == '@') { if (!validate_tag(vgname + 1)) { log_error("Skipping invalid tag %s", vgname); continue; } if (!str_list_add(cmd->mem, &tags, dm_pool_strdup(cmd->mem, vgname + 1))) { log_error("strlist allocation failed"); return ECMD_FAILED; } continue; } /* FIXME Jumbled parsing */ vgname = skip_dev_dir(cmd, vgname, &dev_dir_found); if (*vgname == '/') { log_error("\"%s\": Invalid path for Logical " "Volume", argv[opt]); if (ret_max < ECMD_FAILED) ret_max = ECMD_FAILED; continue; } lv_name = vgname; if ((tmp_lv_name = strchr(vgname, '/'))) { /* Must be an LV */ lv_name = tmp_lv_name; while (*lv_name == '/') lv_name++; if (!(vgname = extract_vgname(cmd, vgname))) { if (ret_max < ECMD_FAILED) { stack; ret_max = ECMD_FAILED; } continue; } } else if (!dev_dir_found && (vgname_def = default_vgname(cmd))) { vgname = vgname_def; } else lv_name = NULL; if (!str_list_add(cmd->mem, &arg_vgnames, dm_pool_strdup(cmd->mem, vgname))) { log_error("strlist allocation failed"); return ECMD_FAILED; } if (!lv_name) { if (!str_list_add(cmd->mem, &arg_lvnames, dm_pool_strdup(cmd->mem, vgname))) { log_error("strlist allocation failed"); return ECMD_FAILED; } } else { vglv_sz = strlen(vgname) + strlen(lv_name) + 2; if (!(vglv = dm_pool_alloc(cmd->mem, vglv_sz)) || dm_snprintf(vglv, vglv_sz, "%s/%s", vgname, lv_name) < 0) { log_error("vg/lv string alloc failed"); return ECMD_FAILED; } if (!str_list_add(cmd->mem, &arg_lvnames, vglv)) { log_error("strlist allocation failed"); return ECMD_FAILED; } } } vgnames = &arg_vgnames; } if (!argc || !dm_list_empty(&tags)) { log_verbose("Finding all logical volumes"); if (!lvmetad_vg_list_to_lvmcache(cmd)) stack; if (!(vgnames = get_vgnames(cmd, 0)) || dm_list_empty(vgnames)) { log_error("No volume groups found"); return ret_max; } } dm_list_iterate_items(strl, vgnames) { vgname = strl->str; dm_list_init(&cmd_vgs); if (!(cvl_vg = cmd_vg_add(cmd->mem, &cmd_vgs, vgname, NULL, flags))) return_ECMD_FAILED; if (!cmd_vg_read(cmd, &cmd_vgs)) { if (ignore_vg(cvl_vg->vg, vgname, 0, &ret_max)) stack; free_cmd_vgs(&cmd_vgs); continue; } tags_arg = &tags; dm_list_init(&lvnames); /* LVs to be processed in this VG */ dm_list_iterate_items(sll, &arg_lvnames) { const char *vg_name = sll->str; const char *lv_name = strchr(vg_name, '/'); if ((!lv_name && !strcmp(vg_name, vgname))) { /* Process all LVs in this VG */ tags_arg = NULL; dm_list_init(&lvnames); break; } else if (!strncmp(vg_name, vgname, strlen(vgname)) && lv_name && strlen(vgname) == (size_t) (lv_name - vg_name)) { if (!str_list_add(cmd->mem, &lvnames, dm_pool_strdup(cmd->mem, lv_name + 1))) { log_error("strlist allocation failed"); free_cmd_vgs(&cmd_vgs); return ECMD_FAILED; } } } for (;;) { if (sigint_caught()) return_ECMD_FAILED; ret = process_each_lv_in_vg(cmd, cvl_vg->vg, &lvnames, tags_arg, &failed_lvnames, handle, process_single_lv); if (ret != ECMD_PROCESSED) { stack; break; } if (dm_list_empty(&failed_lvnames)) break; /* Try again with failed LVs in this VG */ dm_list_init(&lvnames); dm_list_splice(&lvnames, &failed_lvnames); free_cmd_vgs(&cmd_vgs); if (!cmd_vg_read(cmd, &cmd_vgs)) { stack; ret = ECMD_FAILED; /* break */ break; } } if (ret > ret_max) ret_max = ret; free_cmd_vgs(&cmd_vgs); } return ret_max; } int process_each_segment_in_pv(struct cmd_context *cmd, struct volume_group *vg, struct physical_volume *pv, void *handle, process_single_pvseg_fn_t process_single_pvseg) { struct pv_segment *pvseg; struct pv_list *pvl; const char *vg_name = NULL; int ret_max = ECMD_PROCESSED; int ret; struct volume_group *old_vg = vg; struct pv_segment _free_pv_segment = { .pv = pv }; if (is_pv(pv) && !vg && !is_orphan(pv)) { vg_name = pv_vg_name(pv); vg = vg_read(cmd, vg_name, NULL, 0); if (ignore_vg(vg, vg_name, 0, &ret_max)) { release_vg(vg); stack; return ret_max; } /* * Replace possibly incomplete PV structure with new one * allocated in vg_read_internal() path. */ if (!(pvl = find_pv_in_vg(vg, pv_dev_name(pv)))) { log_error("Unable to find %s in volume group %s", pv_dev_name(pv), vg_name); unlock_and_release_vg(cmd, vg, vg_name); return ECMD_FAILED; } pv = pvl->pv; } if (dm_list_empty(&pv->segments)) { ret = process_single_pvseg(cmd, NULL, &_free_pv_segment, handle); if (ret > ret_max) ret_max = ret; } else dm_list_iterate_items(pvseg, &pv->segments) { if (sigint_caught()) { ret_max = ECMD_FAILED; stack; break; } ret = process_single_pvseg(cmd, vg, pvseg, handle); if (ret > ret_max) ret_max = ret; } if (vg_name) unlock_vg(cmd, vg_name); if (!old_vg) release_vg(vg); return ret_max; } int process_each_segment_in_lv(struct cmd_context *cmd, struct logical_volume *lv, void *handle, process_single_seg_fn_t process_single_seg) { struct lv_segment *seg; int ret_max = ECMD_PROCESSED; int ret; dm_list_iterate_items(seg, &lv->segments) { if (sigint_caught()) return_ECMD_FAILED; ret = process_single_seg(cmd, seg, handle); if (ret > ret_max) ret_max = ret; } return ret_max; } static int _process_one_vg(struct cmd_context *cmd, const char *vg_name, const char *vgid, struct dm_list *tags, struct dm_list *arg_vgnames, uint32_t flags, void *handle, int ret_max, process_single_vg_fn_t process_single_vg) { struct dm_list cmd_vgs; struct cmd_vg *cvl_vg; int ret = ECMD_PROCESSED; log_verbose("Finding volume group \"%s\"", vg_name); dm_list_init(&cmd_vgs); if (!(cvl_vg = cmd_vg_add(cmd->mem, &cmd_vgs, vg_name, vgid, flags))) return_ECMD_FAILED; for (;;) { if (sigint_caught()) { ret = ECMD_FAILED; stack; break; } if (!cmd_vg_read(cmd, &cmd_vgs)) { /* Allow FAILED_INCONSISTENT through only for vgcfgrestore */ if (ignore_vg(cvl_vg->vg, vg_name, flags & READ_ALLOW_INCONSISTENT, &ret)) { stack; break; } } if (!dm_list_empty(tags) && /* Only process if a tag matches or it's on arg_vgnames */ !str_list_match_item(arg_vgnames, vg_name) && !str_list_match_list(tags, &cvl_vg->vg->tags, NULL)) break; ret = process_single_vg(cmd, vg_name, cvl_vg->vg, handle); if (vg_read_error(cvl_vg->vg)) /* FAILED_INCONSISTENT */ break; if (!cvl_vg->vg->cmd_missing_vgs) break; free_cmd_vgs(&cmd_vgs); } free_cmd_vgs(&cmd_vgs); return (ret > ret_max) ? ret : ret_max; } int process_each_vg(struct cmd_context *cmd, int argc, char **argv, uint32_t flags, void *handle, process_single_vg_fn_t process_single_vg) { int opt = 0; int ret_max = ECMD_PROCESSED; struct str_list *sl; struct dm_list *vgnames, *vgids; struct dm_list arg_vgnames, tags; const char *vg_name, *vgid; dm_list_init(&tags); dm_list_init(&arg_vgnames); if (argc) { log_verbose("Using volume group(s) on command line"); for (; opt < argc; opt++) { vg_name = argv[opt]; if (*vg_name == '@') { if (!validate_tag(vg_name + 1)) { log_error("Skipping invalid tag %s", vg_name); if (ret_max < EINVALID_CMD_LINE) ret_max = EINVALID_CMD_LINE; continue; } if (!str_list_add(cmd->mem, &tags, dm_pool_strdup(cmd->mem, vg_name + 1))) { log_error("strlist allocation failed"); return ECMD_FAILED; } continue; } vg_name = skip_dev_dir(cmd, vg_name, NULL); if (strchr(vg_name, '/')) { log_error("Invalid volume group name: %s", vg_name); if (ret_max < EINVALID_CMD_LINE) ret_max = EINVALID_CMD_LINE; continue; } if (!str_list_add(cmd->mem, &arg_vgnames, dm_pool_strdup(cmd->mem, vg_name))) { log_error("strlist allocation failed"); return ECMD_FAILED; } } vgnames = &arg_vgnames; } if (!argc || !dm_list_empty(&tags)) { log_verbose("Finding all volume groups"); if (!lvmetad_vg_list_to_lvmcache(cmd)) stack; if (!(vgids = get_vgids(cmd, 0)) || dm_list_empty(vgids)) { log_error("No volume groups found"); return ret_max; } dm_list_iterate_items(sl, vgids) { if (sigint_caught()) return_ECMD_FAILED; vgid = sl->str; if (!(vgid) || !(vg_name = lvmcache_vgname_from_vgid(cmd->mem, vgid))) continue; ret_max = _process_one_vg(cmd, vg_name, vgid, &tags, &arg_vgnames, flags, handle, ret_max, process_single_vg); } } else { dm_list_iterate_items(sl, vgnames) { if (sigint_caught()) return_ECMD_FAILED; vg_name = sl->str; if (is_orphan_vg(vg_name)) continue; /* FIXME Unnecessary? */ ret_max = _process_one_vg(cmd, vg_name, NULL, &tags, &arg_vgnames, flags, handle, ret_max, process_single_vg); } } return ret_max; } int process_each_pv_in_vg(struct cmd_context *cmd, struct volume_group *vg, const struct dm_list *tags, void *handle, process_single_pv_fn_t process_single_pv) { int ret_max = ECMD_PROCESSED; int ret = 0; struct pv_list *pvl; dm_list_iterate_items(pvl, &vg->pvs) { if (sigint_caught()) return_ECMD_FAILED; if (tags && !dm_list_empty(tags) && !str_list_match_list(tags, &pvl->pv->tags, NULL)) { continue; } if ((ret = process_single_pv(cmd, vg, pvl->pv, handle)) > ret_max) ret_max = ret; } return ret_max; } static int _process_all_devs(struct cmd_context *cmd, void *handle, process_single_pv_fn_t process_single_pv) { struct pv_list *pvl; struct dm_list *pvslist; struct physical_volume *pv; struct physical_volume pv_dummy; struct dev_iter *iter; struct device *dev; int ret_max = ECMD_PROCESSED; int ret; lvmcache_seed_infos_from_lvmetad(cmd); if (!(pvslist = get_pvs(cmd))) return_ECMD_FAILED; if (!(iter = dev_iter_create(cmd->filter, 1))) { log_error("dev_iter creation failed"); return ECMD_FAILED; } while ((dev = dev_iter_get(iter))) { if (sigint_caught()) { ret_max = ECMD_FAILED; stack; break; } memset(&pv_dummy, 0, sizeof(pv_dummy)); dm_list_init(&pv_dummy.tags); dm_list_init(&pv_dummy.segments); pv_dummy.dev = dev; pv = &pv_dummy; /* TODO use a device-indexed hash here */ dm_list_iterate_items(pvl, pvslist) if (pvl->pv->dev == dev) pv = pvl->pv; ret = process_single_pv(cmd, NULL, pv, handle); free_pv_fid(pv); ret = process_single_pv(cmd, NULL, pv, handle); if (ret > ret_max) ret_max = ret; free_pv_fid(pv); } dev_iter_destroy(iter); return ret_max; } /* * If the lock_type is LCK_VG_READ (used only in reporting commands), * we lock VG_GLOBAL to enable use of metadata cache. * This can pause alongide pvscan or vgscan process for a while. */ int process_each_pv(struct cmd_context *cmd, int argc, char **argv, struct volume_group *vg, uint32_t flags, int scan_label_only, void *handle, process_single_pv_fn_t process_single_pv) { int opt = 0; int ret_max = ECMD_PROCESSED; int ret = 0; int lock_global = !(flags & READ_WITHOUT_LOCK) && !(flags & READ_FOR_UPDATE) && !lvmetad_active(); struct pv_list *pvl; struct physical_volume *pv; struct dm_list *pvslist = NULL, *vgnames; struct dm_list tags; struct str_list *sll; char *at_sign, *tagname; struct device *dev; dm_list_init(&tags); if (lock_global && !lock_vol(cmd, VG_GLOBAL, LCK_VG_READ, NULL)) { log_error("Unable to obtain global lock."); return ECMD_FAILED; } if (argc) { log_verbose("Using physical volume(s) on command line"); for (; opt < argc; opt++) { if (sigint_caught()) { ret_max = ECMD_FAILED; goto_out; } dm_unescape_colons_and_at_signs(argv[opt], NULL, &at_sign); if (at_sign && (at_sign == argv[opt])) { tagname = at_sign + 1; if (!validate_tag(tagname)) { log_error("Skipping invalid tag %s", tagname); if (ret_max < EINVALID_CMD_LINE) ret_max = EINVALID_CMD_LINE; continue; } if (!str_list_add(cmd->mem, &tags, dm_pool_strdup(cmd->mem, tagname))) { log_error("strlist allocation failed"); goto bad; } continue; } if (vg) { if (!(pvl = find_pv_in_vg(vg, argv[opt]))) { log_error("Physical Volume \"%s\" not " "found in Volume Group " "\"%s\"", argv[opt], vg->name); ret_max = ECMD_FAILED; continue; } pv = pvl->pv; } else { if (!pvslist) { lvmcache_seed_infos_from_lvmetad(cmd); if (!(pvslist = get_pvs(cmd))) goto bad; } if (!(dev = dev_cache_get(argv[opt], cmd->filter))) { log_error("Failed to find device " "\"%s\"", argv[opt]); ret_max = ECMD_FAILED; continue; } pv = NULL; dm_list_iterate_items(pvl, pvslist) if (pvl->pv->dev == dev) pv = pvl->pv; if (!pv) { log_error("Failed to find physical volume " "\"%s\"", argv[opt]); ret_max = ECMD_FAILED; continue; } } ret = process_single_pv(cmd, vg, pv, handle); if (ret > ret_max) ret_max = ret; } if (!dm_list_empty(&tags) && (vgnames = get_vgnames(cmd, 1)) && !dm_list_empty(vgnames)) { dm_list_iterate_items(sll, vgnames) { if (sigint_caught()) { ret_max = ECMD_FAILED; goto_out; } vg = vg_read(cmd, sll->str, NULL, flags); if (ignore_vg(vg, sll->str, 0, &ret_max)) { release_vg(vg); stack; continue; } ret = process_each_pv_in_vg(cmd, vg, &tags, handle, process_single_pv); if (ret > ret_max) ret_max = ret; unlock_and_release_vg(cmd, vg, sll->str); } } } else { if (vg) { log_verbose("Using all physical volume(s) in " "volume group"); ret_max = process_each_pv_in_vg(cmd, vg, NULL, handle, process_single_pv); } else if (arg_count(cmd, all_ARG)) { ret_max = _process_all_devs(cmd, handle, process_single_pv); } else { log_verbose("Scanning for physical volume names"); lvmcache_seed_infos_from_lvmetad(cmd); if (!(pvslist = get_pvs(cmd))) goto bad; dm_list_iterate_items(pvl, pvslist) { if (sigint_caught()) { ret_max = ECMD_FAILED; goto_out; } ret = process_single_pv(cmd, NULL, pvl->pv, handle); if (ret > ret_max) ret_max = ret; free_pv_fid(pvl->pv); } } } out: if (pvslist) dm_list_iterate_items(pvl, pvslist) free_pv_fid(pvl->pv); if (lock_global) unlock_vg(cmd, VG_GLOBAL); return ret_max; bad: if (lock_global) unlock_vg(cmd, VG_GLOBAL); return ECMD_FAILED; } /* * Determine volume group name from a logical volume name */ const char *extract_vgname(struct cmd_context *cmd, const char *lv_name) { const char *vg_name = lv_name; char *st; char *dev_dir = cmd->dev_dir; /* Path supplied? */ if (vg_name && strchr(vg_name, '/')) { /* Strip dev_dir (optional) */ if (*vg_name == '/') { while (*vg_name == '/') vg_name++; vg_name--; } if (!strncmp(vg_name, dev_dir, strlen(dev_dir))) { vg_name += strlen(dev_dir); while (*vg_name == '/') vg_name++; } if (*vg_name == '/') { log_error("\"%s\": Invalid path for Logical " "Volume", lv_name); return 0; } /* Require exactly one set of consecutive slashes */ if ((st = strchr(vg_name, '/'))) while (*st == '/') st++; if (!st || strchr(st, '/')) { log_error("\"%s\": Invalid path for Logical Volume", lv_name); return 0; } vg_name = dm_pool_strdup(cmd->mem, vg_name); if (!vg_name) { log_error("Allocation of vg_name failed"); return 0; } *strchr(vg_name, '/') = '\0'; return vg_name; } if (!(vg_name = default_vgname(cmd))) { if (lv_name) log_error("Path required for Logical Volume \"%s\"", lv_name); return 0; } return vg_name; } /* * Extract default volume group name from environment */ char *default_vgname(struct cmd_context *cmd) { const char *vg_path; /* Take default VG from environment? */ vg_path = getenv("LVM_VG_NAME"); if (!vg_path) return 0; vg_path = skip_dev_dir(cmd, vg_path, NULL); if (strchr(vg_path, '/')) { log_error("Environment Volume Group in LVM_VG_NAME invalid: " "\"%s\"", vg_path); return 0; } return dm_pool_strdup(cmd->mem, vg_path); } /* * Process physical extent range specifiers */ static int _add_pe_range(struct dm_pool *mem, const char *pvname, struct dm_list *pe_ranges, uint32_t start, uint32_t count) { struct pe_range *per; log_debug("Adding PE range: start PE %" PRIu32 " length %" PRIu32 " on %s", start, count, pvname); /* Ensure no overlap with existing areas */ dm_list_iterate_items(per, pe_ranges) { if (((start < per->start) && (start + count - 1 >= per->start)) || ((start >= per->start) && (per->start + per->count - 1) >= start)) { log_error("Overlapping PE ranges specified (%" PRIu32 "-%" PRIu32 ", %" PRIu32 "-%" PRIu32 ")" " on %s", start, start + count - 1, per->start, per->start + per->count - 1, pvname); return 0; } } if (!(per = dm_pool_alloc(mem, sizeof(*per)))) { log_error("Allocation of list failed"); return 0; } per->start = start; per->count = count; dm_list_add(pe_ranges, &per->list); return 1; } static int xstrtouint32(const char *s, char **p, int base, uint32_t *result) { unsigned long ul; errno = 0; ul = strtoul(s, p, base); if (errno || *p == s || ul > UINT32_MAX) return 0; *result = ul; return 1; } static int _parse_pes(struct dm_pool *mem, char *c, struct dm_list *pe_ranges, const char *pvname, uint32_t size) { char *endptr; uint32_t start, end, len; /* Default to whole PV */ if (!c) { if (!_add_pe_range(mem, pvname, pe_ranges, UINT32_C(0), size)) return_0; return 1; } while (*c) { if (*c != ':') goto error; c++; /* Disallow :: and :\0 */ if (*c == ':' || !*c) goto error; /* Default to whole range */ start = UINT32_C(0); end = size - 1; /* Start extent given? */ if (isdigit(*c)) { if (!xstrtouint32(c, &endptr, 10, &start)) goto error; c = endptr; /* Just one number given? */ if (!*c || *c == ':') end = start; } /* Range? */ if (*c == '-') { c++; if (isdigit(*c)) { if (!xstrtouint32(c, &endptr, 10, &end)) goto error; c = endptr; } } else if (*c == '+') { /* Length? */ c++; if (isdigit(*c)) { if (!xstrtouint32(c, &endptr, 10, &len)) goto error; c = endptr; end = start + (len ? (len - 1) : 0); } } if (*c && *c != ':') goto error; if ((start > end) || (end > size - 1)) { log_error("PE range error: start extent %" PRIu32 " to " "end extent %" PRIu32, start, end); return 0; } if (!_add_pe_range(mem, pvname, pe_ranges, start, end - start + 1)) return_0; } return 1; error: log_error("Physical extent parsing error at %s", c); return 0; } static int _create_pv_entry(struct dm_pool *mem, struct pv_list *pvl, char *colon, int allocatable_only, struct dm_list *r) { const char *pvname; struct pv_list *new_pvl = NULL, *pvl2; struct dm_list *pe_ranges; pvname = pv_dev_name(pvl->pv); if (allocatable_only && !(pvl->pv->status & ALLOCATABLE_PV)) { log_warn("Physical volume %s not allocatable.", pvname); return 1; } if (allocatable_only && is_missing_pv(pvl->pv)) { log_warn("Physical volume %s is missing.", pvname); return 1; } if (allocatable_only && (pvl->pv->pe_count == pvl->pv->pe_alloc_count)) { log_warn("No free extents on physical volume \"%s\".", pvname); return 1; } dm_list_iterate_items(pvl2, r) if (pvl->pv->dev == pvl2->pv->dev) { new_pvl = pvl2; break; } if (!new_pvl) { if (!(new_pvl = dm_pool_alloc(mem, sizeof(*new_pvl)))) { log_error("Unable to allocate physical volume list."); return 0; } memcpy(new_pvl, pvl, sizeof(*new_pvl)); if (!(pe_ranges = dm_pool_alloc(mem, sizeof(*pe_ranges)))) { log_error("Allocation of pe_ranges list failed"); return 0; } dm_list_init(pe_ranges); new_pvl->pe_ranges = pe_ranges; dm_list_add(r, &new_pvl->list); } /* Determine selected physical extents */ if (!_parse_pes(mem, colon, new_pvl->pe_ranges, pv_dev_name(pvl->pv), pvl->pv->pe_count)) return_0; return 1; } struct dm_list *create_pv_list(struct dm_pool *mem, struct volume_group *vg, int argc, char **argv, int allocatable_only) { struct dm_list *r; struct pv_list *pvl; struct dm_list tags, arg_pvnames; char *pvname = NULL; char *colon, *at_sign, *tagname; int i; /* Build up list of PVs */ if (!(r = dm_pool_alloc(mem, sizeof(*r)))) { log_error("Allocation of list failed"); return NULL; } dm_list_init(r); dm_list_init(&tags); dm_list_init(&arg_pvnames); for (i = 0; i < argc; i++) { dm_unescape_colons_and_at_signs(argv[i], &colon, &at_sign); if (at_sign && (at_sign == argv[i])) { tagname = at_sign + 1; if (!validate_tag(tagname)) { log_error("Skipping invalid tag %s", tagname); continue; } dm_list_iterate_items(pvl, &vg->pvs) { if (str_list_match_item(&pvl->pv->tags, tagname)) { if (!_create_pv_entry(mem, pvl, NULL, allocatable_only, r)) return_NULL; } } continue; } pvname = argv[i]; if (colon && !(pvname = dm_pool_strndup(mem, pvname, (unsigned) (colon - pvname)))) { log_error("Failed to clone PV name"); return NULL; } if (!(pvl = find_pv_in_vg(vg, pvname))) { log_error("Physical Volume \"%s\" not found in " "Volume Group \"%s\"", pvname, vg->name); return NULL; } if (!_create_pv_entry(mem, pvl, colon, allocatable_only, r)) return_NULL; } if (dm_list_empty(r)) log_error("No specified PVs have space available"); return dm_list_empty(r) ? NULL : r; } struct dm_list *clone_pv_list(struct dm_pool *mem, struct dm_list *pvsl) { struct dm_list *r; struct pv_list *pvl, *new_pvl; /* Build up list of PVs */ if (!(r = dm_pool_alloc(mem, sizeof(*r)))) { log_error("Allocation of list failed"); return NULL; } dm_list_init(r); dm_list_iterate_items(pvl, pvsl) { if (!(new_pvl = dm_pool_zalloc(mem, sizeof(*new_pvl)))) { log_error("Unable to allocate physical volume list."); return NULL; } memcpy(new_pvl, pvl, sizeof(*new_pvl)); dm_list_add(r, &new_pvl->list); } return r; } void vgcreate_params_set_defaults(struct vgcreate_params *vp_def, struct volume_group *vg) { if (vg) { vp_def->vg_name = NULL; vp_def->extent_size = vg->extent_size; vp_def->max_pv = vg->max_pv; vp_def->max_lv = vg->max_lv; vp_def->alloc = vg->alloc; vp_def->clustered = vg_is_clustered(vg); vp_def->vgmetadatacopies = vg->mda_copies; } else { vp_def->vg_name = NULL; vp_def->extent_size = DEFAULT_EXTENT_SIZE * 2; vp_def->max_pv = DEFAULT_MAX_PV; vp_def->max_lv = DEFAULT_MAX_LV; vp_def->alloc = DEFAULT_ALLOC_POLICY; vp_def->clustered = DEFAULT_CLUSTERED; vp_def->vgmetadatacopies = DEFAULT_VGMETADATACOPIES; } } /* * Set members of struct vgcreate_params from cmdline arguments. * Do preliminary validation with arg_*() interface. * Further, more generic validation is done in validate_vgcreate_params(). * This function is to remain in tools directory. */ int vgcreate_params_set_from_args(struct cmd_context *cmd, struct vgcreate_params *vp_new, struct vgcreate_params *vp_def) { vp_new->vg_name = skip_dev_dir(cmd, vp_def->vg_name, NULL); vp_new->max_lv = arg_uint_value(cmd, maxlogicalvolumes_ARG, vp_def->max_lv); vp_new->max_pv = arg_uint_value(cmd, maxphysicalvolumes_ARG, vp_def->max_pv); vp_new->alloc = (alloc_policy_t) arg_uint_value(cmd, alloc_ARG, vp_def->alloc); /* Units of 512-byte sectors */ vp_new->extent_size = arg_uint_value(cmd, physicalextentsize_ARG, vp_def->extent_size); if (arg_count(cmd, clustered_ARG)) vp_new->clustered = !strcmp(arg_str_value(cmd, clustered_ARG, vp_def->clustered ? "y":"n"), "y"); else /* Default depends on current locking type */ vp_new->clustered = locking_is_clustered(); if (arg_sign_value(cmd, physicalextentsize_ARG, SIGN_NONE) == SIGN_MINUS) { log_error("Physical extent size may not be negative"); return 0; } if (arg_uint64_value(cmd, physicalextentsize_ARG, 0) > MAX_EXTENT_SIZE) { log_error("Physical extent size cannot be larger than %s", display_size(cmd, (uint64_t) MAX_EXTENT_SIZE)); return 0; } if (arg_sign_value(cmd, maxlogicalvolumes_ARG, SIGN_NONE) == SIGN_MINUS) { log_error("Max Logical Volumes may not be negative"); return 0; } if (arg_sign_value(cmd, maxphysicalvolumes_ARG, SIGN_NONE) == SIGN_MINUS) { log_error("Max Physical Volumes may not be negative"); return 0; } if (arg_count(cmd, metadatacopies_ARG)) { vp_new->vgmetadatacopies = arg_int_value(cmd, metadatacopies_ARG, DEFAULT_VGMETADATACOPIES); } else if (arg_count(cmd, vgmetadatacopies_ARG)) { vp_new->vgmetadatacopies = arg_int_value(cmd, vgmetadatacopies_ARG, DEFAULT_VGMETADATACOPIES); } else { vp_new->vgmetadatacopies = find_config_tree_int(cmd, metadata_vgmetadatacopies_CFG, NULL); } return 1; } /* Shared code for changing activation state for vgchange/lvchange */ int lv_change_activate(struct cmd_context *cmd, struct logical_volume *lv, activation_change_t activate) { if (!lv_active_change(cmd, lv, activate)) return_0; if (background_polling() && (activate != CHANGE_AN) && (activate != CHANGE_ALN) && (lv->status & (PVMOVE|CONVERTING|MERGING))) lv_spawn_background_polling(cmd, lv); return 1; } int lv_refresh(struct cmd_context *cmd, struct logical_volume *lv) { int r = 0; if (!cmd->partial_activation && (lv->status & PARTIAL_LV)) { log_error("Refusing refresh of partial LV %s. Use --partial to override.", lv->name); goto out; } r = suspend_lv(cmd, lv); if (!r) goto_out; r = resume_lv(cmd, lv); if (!r) goto_out; /* * check if snapshot merge should be polled * - unfortunately: even though the dev_manager will clear * the lv's merge attributes if a merge is not possible; * it is clearing a different instance of the lv (as * retrieved with lv_from_lvid) * - fortunately: polldaemon will immediately shutdown if the * origin doesn't have a status with a snapshot percentage */ if (background_polling() && lv_is_origin(lv) && lv_is_merging_origin(lv)) lv_spawn_background_polling(cmd, lv); out: return r; } int vg_refresh_visible(struct cmd_context *cmd, struct volume_group *vg) { struct lv_list *lvl; int r = 1; sigint_allow(); dm_list_iterate_items(lvl, &vg->lvs) { if (sigint_caught()) { r = 0; stack; break; } if (lv_is_visible(lvl->lv) && !lv_refresh(cmd, lvl->lv)) { r = 0; stack; } } sigint_restore(); return r; } void lv_spawn_background_polling(struct cmd_context *cmd, struct logical_volume *lv) { const char *pvname; if ((lv->status & PVMOVE) && (pvname = get_pvmove_pvname_from_lv_mirr(lv))) { log_verbose("Spawning background pvmove process for %s", pvname); pvmove_poll(cmd, pvname, 1); } else if ((lv->status & LOCKED) && (pvname = get_pvmove_pvname_from_lv(lv))) { log_verbose("Spawning background pvmove process for %s", pvname); pvmove_poll(cmd, pvname, 1); } if (lv->status & (CONVERTING|MERGING)) { log_verbose("Spawning background lvconvert process for %s", lv->name); lvconvert_poll(cmd, lv, 1); } } /* * Intial sanity checking of non-recovery related command-line arguments. * * Output arguments: * pp: structure allocated by caller, fields written / validated here */ int pvcreate_params_validate(struct cmd_context *cmd, int argc, char **argv, struct pvcreate_params *pp) { if (!argc) { log_error("Please enter a physical volume path"); return 0; } pp->yes = arg_count(cmd, yes_ARG); pp->force = (force_t) arg_count(cmd, force_ARG); if (arg_int_value(cmd, labelsector_ARG, 0) >= LABEL_SCAN_SECTORS) { log_error("labelsector must be less than %lu", LABEL_SCAN_SECTORS); return 0; } else { pp->labelsector = arg_int64_value(cmd, labelsector_ARG, DEFAULT_LABELSECTOR); } if (!(cmd->fmt->features & FMT_MDAS) && (arg_count(cmd, pvmetadatacopies_ARG) || arg_count(cmd, metadatasize_ARG) || arg_count(cmd, dataalignment_ARG) || arg_count(cmd, dataalignmentoffset_ARG))) { log_error("Metadata and data alignment parameters only " "apply to text format."); return 0; } if (!(cmd->fmt->features & FMT_BAS) && arg_count(cmd, bootloaderareasize_ARG)) { log_error("Bootloader area parameters only " "apply to text format."); return 0; } if (arg_count(cmd, metadataignore_ARG)) pp->metadataignore = arg_int_value(cmd, metadataignore_ARG, DEFAULT_PVMETADATAIGNORE); else pp->metadataignore = find_config_tree_bool(cmd, metadata_pvmetadataignore_CFG, NULL); if (arg_count(cmd, pvmetadatacopies_ARG) && !arg_int_value(cmd, pvmetadatacopies_ARG, -1) && pp->metadataignore) { log_error("metadataignore only applies to metadatacopies > 0"); return 0; } if (arg_count(cmd, zero_ARG)) pp->zero = strcmp(arg_str_value(cmd, zero_ARG, "y"), "n"); if (arg_sign_value(cmd, dataalignment_ARG, SIGN_NONE) == SIGN_MINUS) { log_error("Physical volume data alignment may not be negative"); return 0; } pp->data_alignment = arg_uint64_value(cmd, dataalignment_ARG, UINT64_C(0)); if (pp->data_alignment > UINT32_MAX) { log_error("Physical volume data alignment is too big."); return 0; } if (pp->data_alignment && pp->rp.pe_start != PV_PE_START_CALC) { if (pp->rp.pe_start % pp->data_alignment) log_warn("WARNING: Ignoring data alignment %" PRIu64 " incompatible with --restorefile value (%" PRIu64").", pp->data_alignment, pp->rp.pe_start); pp->data_alignment = 0; } if (arg_sign_value(cmd, dataalignmentoffset_ARG, SIGN_NONE) == SIGN_MINUS) { log_error("Physical volume data alignment offset may not be negative"); return 0; } pp->data_alignment_offset = arg_uint64_value(cmd, dataalignmentoffset_ARG, UINT64_C(0)); if (pp->data_alignment_offset > UINT32_MAX) { log_error("Physical volume data alignment offset is too big."); return 0; } if (pp->data_alignment_offset && pp->rp.pe_start != PV_PE_START_CALC) { log_warn("WARNING: Ignoring data alignment offset %" PRIu64 " incompatible with --restorefile value (%" PRIu64").", pp->data_alignment_offset, pp->rp.pe_start); pp->data_alignment_offset = 0; } if (arg_sign_value(cmd, metadatasize_ARG, SIGN_NONE) == SIGN_MINUS) { log_error("Metadata size may not be negative"); return 0; } if (arg_sign_value(cmd, bootloaderareasize_ARG, SIGN_NONE) == SIGN_MINUS) { log_error("Bootloader area size may not be negative"); return 0; } pp->pvmetadatasize = arg_uint64_value(cmd, metadatasize_ARG, UINT64_C(0)); if (!pp->pvmetadatasize) pp->pvmetadatasize = find_config_tree_int(cmd, metadata_pvmetadatasize_CFG, NULL); pp->pvmetadatacopies = arg_int_value(cmd, pvmetadatacopies_ARG, -1); if (pp->pvmetadatacopies < 0) pp->pvmetadatacopies = find_config_tree_int(cmd, metadata_pvmetadatacopies_CFG, NULL); pp->rp.ba_size = arg_uint64_value(cmd, bootloaderareasize_ARG, pp->rp.ba_size); return 1; } int get_activation_monitoring_mode(struct cmd_context *cmd, int *monitoring_mode) { *monitoring_mode = DEFAULT_DMEVENTD_MONITOR; if (arg_count(cmd, monitor_ARG) && (arg_count(cmd, ignoremonitoring_ARG) || arg_count(cmd, sysinit_ARG))) { log_error("--ignoremonitoring or --sysinit option not allowed with --monitor option"); return 0; } if (arg_count(cmd, monitor_ARG)) *monitoring_mode = arg_int_value(cmd, monitor_ARG, DEFAULT_DMEVENTD_MONITOR); else if (is_static() || arg_count(cmd, ignoremonitoring_ARG) || arg_count(cmd, sysinit_ARG) || !find_config_tree_bool(cmd, activation_monitoring_CFG, NULL)) *monitoring_mode = DMEVENTD_MONITOR_IGNORE; return 1; } int get_pool_params(struct cmd_context *cmd, struct profile *profile, int *passed_args, int *chunk_size_calc_method, uint32_t *chunk_size, thin_discards_t *discards, uint64_t *pool_metadata_size, int *zero) { *passed_args = 0; if (arg_count(cmd, zero_ARG)) { *passed_args |= PASS_ARG_ZERO; *zero = strcmp(arg_str_value(cmd, zero_ARG, "y"), "n"); log_very_verbose("Setting pool zeroing: %u", *zero); } if (arg_count(cmd, discards_ARG)) { *passed_args |= PASS_ARG_DISCARDS; *discards = (thin_discards_t) arg_uint_value(cmd, discards_ARG, 0); log_very_verbose("Setting pool discards: %s", get_pool_discards_name(*discards)); } if (arg_count(cmd, chunksize_ARG)) { if (arg_sign_value(cmd, chunksize_ARG, SIGN_NONE) == SIGN_MINUS) { log_error("Negative chunk size is invalid."); return 0; } *passed_args |= PASS_ARG_CHUNK_SIZE; *chunk_size = arg_uint_value(cmd, chunksize_ARG, DM_THIN_MIN_DATA_BLOCK_SIZE); log_very_verbose("Setting pool chunk size: %s", display_size(cmd, *chunk_size)); } if (!update_profilable_pool_params(cmd, profile, *passed_args, chunk_size_calc_method, chunk_size, discards, zero)) return_0; if (arg_count(cmd, poolmetadatasize_ARG)) { if (arg_sign_value(cmd, poolmetadatasize_ARG, SIGN_NONE) == SIGN_MINUS) { log_error("Negative pool metadata size is invalid."); return 0; } *passed_args |= PASS_ARG_POOL_METADATA_SIZE; } *pool_metadata_size = arg_uint64_value(cmd, poolmetadatasize_ARG, UINT64_C(0)); return 1; } /* * Generic stripe parameter checks. */ static int _validate_stripe_params(struct cmd_context *cmd, uint32_t *stripes, uint32_t *stripe_size) { if (*stripes == 1 && *stripe_size) { log_print_unless_silent("Ignoring stripesize argument with single stripe"); *stripe_size = 0; } if (*stripes > 1 && !*stripe_size) { *stripe_size = find_config_tree_int(cmd, metadata_stripesize_CFG, NULL) * 2; log_print_unless_silent("Using default stripesize %s", display_size(cmd, (uint64_t) *stripe_size)); } if (*stripes < 1 || *stripes > MAX_STRIPES) { log_error("Number of stripes (%d) must be between %d and %d", *stripes, 1, MAX_STRIPES); return 0; } if (*stripes > 1 && (*stripe_size < STRIPE_SIZE_MIN || *stripe_size & (*stripe_size - 1))) { log_error("Invalid stripe size %s", display_size(cmd, (uint64_t) *stripe_size)); return 0; } return 1; } /* * The stripe size is limited by the size of a uint32_t, but since the * value given by the user is doubled, and the final result must be a * power of 2, we must divide UINT_MAX by four and add 1 (to round it * up to the power of 2) */ int get_stripe_params(struct cmd_context *cmd, uint32_t *stripes, uint32_t *stripe_size) { /* stripes_long_ARG takes precedence (for lvconvert) */ *stripes = arg_uint_value(cmd, arg_count(cmd, stripes_long_ARG) ? stripes_long_ARG : stripes_ARG, 1); *stripe_size = arg_uint_value(cmd, stripesize_ARG, 0); if (*stripe_size) { if (arg_sign_value(cmd, stripesize_ARG, SIGN_NONE) == SIGN_MINUS) { log_error("Negative stripesize is invalid"); return 0; } if(arg_uint64_value(cmd, stripesize_ARG, 0) > STRIPE_SIZE_LIMIT * 2) { log_error("Stripe size cannot be larger than %s", display_size(cmd, (uint64_t) STRIPE_SIZE_LIMIT)); return 0; } } return _validate_stripe_params(cmd, stripes, stripe_size); } /* FIXME move to lib */ static int _pv_change_tag(struct physical_volume *pv, const char *tag, int addtag) { if (addtag) { if (!str_list_add(pv->fmt->cmd->mem, &pv->tags, tag)) { log_error("Failed to add tag %s to physical volume %s", tag, pv_dev_name(pv)); return 0; } } else str_list_del(&pv->tags, tag); return 1; } /* Set exactly one of VG, LV or PV */ int change_tag(struct cmd_context *cmd, struct volume_group *vg, struct logical_volume *lv, struct physical_volume *pv, int arg) { const char *tag; struct arg_value_group_list *current_group; dm_list_iterate_items(current_group, &cmd->arg_value_groups) { if (!grouped_arg_is_set(current_group->arg_values, arg)) continue; if (!(tag = grouped_arg_str_value(current_group->arg_values, arg, NULL))) { log_error("Failed to get tag"); return 0; } if (vg && !vg_change_tag(vg, tag, arg == addtag_ARG)) return_0; else if (lv && !lv_change_tag(lv, tag, arg == addtag_ARG)) return_0; else if (pv && !_pv_change_tag(pv, tag, arg == addtag_ARG)) return_0; } return 1; } int process_each_label(struct cmd_context *cmd, int argc, char **argv, void *handle, process_single_label_fn_t process_single_label) { struct label *label; struct dev_iter *iter; struct device *dev; int ret_max = ECMD_PROCESSED; int ret = 0; int opt = 0; if (argc) { for (; opt < argc; opt++) { if (!(dev = dev_cache_get(argv[opt], cmd->filter))) { log_error("Failed to find device " "\"%s\"", argv[opt]); ret_max = ECMD_FAILED; continue; } if (!label_read(dev, &label, 0)) { log_error("No physical volume label read from %s", argv[opt]); ret_max = ECMD_FAILED; continue; } ret = process_single_label(cmd, label, handle); if (ret > ret_max) ret_max = ret; if (sigint_caught()) break; } return ret_max; } if (!(iter = dev_iter_create(cmd->filter, 1))) { log_error("dev_iter creation failed"); return ECMD_FAILED; } while ((dev = dev_iter_get(iter))) { if (!label_read(dev, &label, 0)) continue; ret = process_single_label(cmd, label, handle); if (ret > ret_max) ret_max = ret; if (sigint_caught()) break; } dev_iter_destroy(iter); return ret_max; }