/* * Copyright (C) 2001 Sistina Software (UK) Limited. * * Translates between disk and in-core formats. * * This file is released under the LGPL. */ #include "lib.h" #include "disk-rep.h" #include "pool.h" #include "hash.h" #include "list.h" #include "lvm-string.h" #include "filter.h" #include #include static int _check_vg_name(const char *name) { return strlen(name) < NAME_LEN; } /* * Extracts the last part of a path. */ static char *_create_lv_name(struct pool *mem, const char *full_name) { const char *ptr = strrchr(full_name, '/'); if (!ptr) ptr = full_name; else ptr++; return pool_strdup(mem, ptr); } int import_pv(struct pool *mem, struct device *dev, struct volume_group *vg, struct physical_volume *pv, struct pv_disk *pvd) { memset(pv, 0, sizeof(*pv)); memcpy(&pv->id, pvd->pv_uuid, ID_LEN); pv->dev = dev; if (!(pv->vg_name = pool_strdup(mem, pvd->vg_name))) { stack; return 0; } /* Store system_id from first PV if PV belongs to a VG */ if (vg && !*vg->system_id) strncpy(vg->system_id, pvd->system_id, NAME_LEN); if (vg && strncmp(vg->system_id, pvd->system_id, sizeof(pvd->system_id))) log_very_verbose("System ID %s on %s differs from %s for " "volume group", pvd->system_id, dev_name(pv->dev), vg->system_id); /* * If exported, we still need to flag in pv->status too because * we don't always have a struct volume_group when we need this. */ if (pvd->pv_status & VG_EXPORTED) pv->status |= EXPORTED_VG; if (pvd->pv_allocatable) pv->status |= ALLOCATABLE_PV; pv->size = pvd->pv_size; pv->pe_size = pvd->pe_size; pv->pe_start = pvd->pe_start; pv->pe_count = pvd->pe_total; pv->pe_alloc_count = pvd->pe_allocated; return 1; } static int _system_id(char *s, const char *prefix) { struct utsname uts; if (uname(&uts) != 0) { log_sys_error("uname", "_system_id"); return 0; } if (lvm_snprintf(s, NAME_LEN, "%s%s%lu", prefix, uts.nodename, time(NULL)) < 0) { log_error("Generated system_id too long"); return 0; } return 1; } int export_pv(struct pool *mem, struct volume_group *vg, struct pv_disk *pvd, struct physical_volume *pv) { memset(pvd, 0, sizeof(*pvd)); pvd->id[0] = 'H'; pvd->id[1] = 'M'; pvd->version = 1; memcpy(pvd->pv_uuid, pv->id.uuid, ID_LEN); if (!_check_vg_name(pv->vg_name)) { stack; return 0; } memset(pvd->vg_name, 0, sizeof(pvd->vg_name)); if (pv->vg_name) strncpy(pvd->vg_name, pv->vg_name, sizeof(pvd->vg_name)); /* Preserve existing system_id if it exists */ if (vg && *vg->system_id) strncpy(pvd->system_id, vg->system_id, sizeof(pvd->system_id)); /* Is VG already exported or being exported? */ if (vg && (vg->status & EXPORTED_VG)) { /* Does system_id need setting? */ if (!*vg->system_id || strncmp(vg->system_id, EXPORTED_TAG, sizeof(EXPORTED_TAG) - 1)) { if (!_system_id(pvd->system_id, EXPORTED_TAG)) { stack; return 0; } } if (strlen(pvd->vg_name) + sizeof(EXPORTED_TAG) > sizeof(pvd->vg_name)) { log_error("Volume group name %s too long to export", pvd->vg_name); return 0; } strcat(pvd->vg_name, EXPORTED_TAG); } /* Is VG being imported? */ if (vg && !(vg->status & EXPORTED_VG) && *vg->system_id && !strncmp(vg->system_id, EXPORTED_TAG, sizeof(EXPORTED_TAG) - 1)) { if (!_system_id(pvd->system_id, IMPORTED_TAG)) { stack; return 0; } } /* Generate system_id if PV is in VG */ if (!pvd->system_id || !*pvd->system_id) if (!_system_id(pvd->system_id, "")) { stack; return 0; } /* Update internal system_id if we changed it */ if (vg && (!*vg->system_id || strncmp(vg->system_id, pvd->system_id, sizeof(pvd->system_id)))) strncpy(vg->system_id, pvd->system_id, NAME_LEN); //pvd->pv_major = MAJOR(pv->dev); if (pv->status & ALLOCATABLE_PV) pvd->pv_allocatable = PV_ALLOCATABLE; pvd->pv_size = pv->size; pvd->lv_cur = 0; /* this is set when exporting the lv list */ if (vg) pvd->pe_size = vg->extent_size; else pvd->pe_size = pv->pe_size; pvd->pe_total = pv->pe_count; pvd->pe_allocated = pv->pe_alloc_count; pvd->pe_start = pv->pe_start; return 1; } int import_vg(struct pool *mem, struct volume_group *vg, struct disk_list *dl, int partial) { struct vg_disk *vgd = &dl->vgd; memcpy(vg->id.uuid, vgd->vg_uuid, ID_LEN); if (!_check_vg_name(dl->pvd.vg_name)) { stack; return 0; } if (!(vg->name = pool_strdup(mem, dl->pvd.vg_name))) { stack; return 0; } if (!(vg->system_id = pool_alloc(mem, NAME_LEN))) { stack; return 0; } *vg->system_id = '\0'; if (vgd->vg_status & VG_EXPORTED) vg->status |= EXPORTED_VG; if (vgd->vg_status & VG_EXTENDABLE) vg->status |= RESIZEABLE_VG; if (partial || (vgd->vg_access & VG_READ)) vg->status |= LVM_READ; if (!partial && (vgd->vg_access & VG_WRITE)) vg->status |= LVM_WRITE; if (vgd->vg_access & VG_CLUSTERED) vg->status |= CLUSTERED; if (vgd->vg_access & VG_SHARED) vg->status |= SHARED; vg->extent_size = vgd->pe_size; vg->extent_count = vgd->pe_total; vg->free_count = vgd->pe_total - vgd->pe_allocated; vg->max_lv = vgd->lv_max; vg->max_pv = vgd->pv_max; if (partial) vg->status |= PARTIAL_VG; return 1; } int export_vg(struct vg_disk *vgd, struct volume_group *vg) { memset(vgd, 0, sizeof(*vgd)); memcpy(vgd->vg_uuid, vg->id.uuid, ID_LEN); if (vg->status & LVM_READ) vgd->vg_access |= VG_READ; if (vg->status & LVM_WRITE) vgd->vg_access |= VG_WRITE; if (vg->status & CLUSTERED) vgd->vg_access |= VG_CLUSTERED; if (vg->status & SHARED) vgd->vg_access |= VG_SHARED; if (vg->status & EXPORTED_VG) vgd->vg_status |= VG_EXPORTED; if (vg->status & RESIZEABLE_VG) vgd->vg_status |= VG_EXTENDABLE; vgd->lv_max = vg->max_lv; vgd->lv_cur = vg->lv_count; vgd->pv_max = vg->max_pv; vgd->pv_cur = vg->pv_count; vgd->pe_size = vg->extent_size; vgd->pe_total = vg->extent_count; vgd->pe_allocated = vg->extent_count - vg->free_count; return 1; } int import_lv(struct pool *mem, struct logical_volume *lv, struct lv_disk *lvd) { lvid_from_lvnum(&lv->lvid, &lv->vg->id, lvd->lv_number); if (!(lv->name = _create_lv_name(mem, lvd->lv_name))) { stack; return 0; } lv->status |= VISIBLE_LV; if (lvd->lv_status & LV_SPINDOWN) lv->status |= SPINDOWN_LV; if (lvd->lv_status & LV_PERSISTENT_MINOR) { lv->status |= FIXED_MINOR; lv->minor = MINOR(lvd->lv_dev); lv->major = MAJOR(lvd->lv_dev); } else { lv->major = -1; lv->minor = -1; } if (lvd->lv_access & LV_READ) lv->status |= LVM_READ; if (lvd->lv_access & LV_WRITE) lv->status |= LVM_WRITE; if (lvd->lv_badblock) lv->status |= BADBLOCK_ON; /* Drop the unused LV_STRICT here */ if (lvd->lv_allocation & LV_CONTIGUOUS) lv->alloc = ALLOC_CONTIGUOUS; else lv->alloc = ALLOC_NEXT_FREE; lv->read_ahead = lvd->lv_read_ahead; lv->size = lvd->lv_size; lv->le_count = lvd->lv_allocated_le; list_init(&lv->segments); return 1; } static void _export_lv(struct lv_disk *lvd, struct volume_group *vg, struct logical_volume *lv, const char *dev_dir) { memset(lvd, 0, sizeof(*lvd)); snprintf(lvd->lv_name, sizeof(lvd->lv_name), "%s%s/%s", dev_dir, vg->name, lv->name); strcpy(lvd->vg_name, vg->name); if (lv->status & LVM_READ) lvd->lv_access |= LV_READ; if (lv->status & LVM_WRITE) lvd->lv_access |= LV_WRITE; if (lv->status & SPINDOWN_LV) lvd->lv_status |= LV_SPINDOWN; if (lv->status & FIXED_MINOR) { lvd->lv_status |= LV_PERSISTENT_MINOR; lvd->lv_dev = MKDEV(lv->major, lv->minor); } lvd->lv_read_ahead = lv->read_ahead; lvd->lv_stripes = list_item(lv->segments.n, struct lv_segment)->area_count; lvd->lv_stripesize = list_item(lv->segments.n, struct lv_segment)->stripe_size; lvd->lv_size = lv->size; lvd->lv_allocated_le = lv->le_count; if (lv->status & BADBLOCK_ON) lvd->lv_badblock = LV_BADBLOCK_ON; if (lv->alloc == ALLOC_CONTIGUOUS) lvd->lv_allocation |= LV_CONTIGUOUS; } int export_extents(struct disk_list *dl, uint32_t lv_num, struct logical_volume *lv, struct physical_volume *pv) { struct list *segh; struct pe_disk *ped; struct lv_segment *seg; uint32_t pe, s; list_iterate(segh, &lv->segments) { seg = list_item(segh, struct lv_segment); for (s = 0; s < seg->area_count; s++) { if (seg->type != SEG_STRIPED) { log_error("Non-striped segment type in LV %s: " "unsupported by format1", lv->name); return 0; } if (seg->area[s].type != AREA_PV) { log_error("LV stripe found in LV %s: " "unsupported by format1", lv->name); return 0; } if (seg->area[s].u.pv.pv != pv) continue; /* not our pv */ for (pe = 0; pe < (seg->len / seg->area_count); pe++) { ped = &dl->extents[pe + seg->area[s].u.pv.pe]; ped->lv_num = lv_num; ped->le_num = (seg->le / seg->area_count) + pe + s * (lv->le_count / seg->area_count); } } } return 1; } int import_pvs(const struct format_type *fmt, struct pool *mem, struct volume_group *vg, struct list *pvds, struct list *results, int *count) { struct list *pvdh; struct disk_list *dl; struct pv_list *pvl; *count = 0; list_iterate(pvdh, pvds) { dl = list_item(pvdh, struct disk_list); if (!(pvl = pool_zalloc(mem, sizeof(*pvl))) || !(pvl->pv = pool_alloc(mem, sizeof(*pvl->pv)))) { stack; return 0; } if (!import_pv(mem, dl->dev, vg, pvl->pv, &dl->pvd)) { stack; return 0; } pvl->pv->fmt = fmt; list_add(results, &pvl->list); (*count)++; } return 1; } static struct logical_volume *_add_lv(struct pool *mem, struct volume_group *vg, struct lv_disk *lvd) { struct lv_list *ll; struct logical_volume *lv; if (!(ll = pool_zalloc(mem, sizeof(*ll))) || !(ll->lv = pool_zalloc(mem, sizeof(*ll->lv)))) { stack; return NULL; } lv = ll->lv; lv->vg = vg; if (!import_lv(mem, lv, lvd)) { stack; return NULL; } list_add(&vg->lvs, &ll->list); vg->lv_count++; return lv; } int import_lvs(struct pool *mem, struct volume_group *vg, struct list *pvds) { struct disk_list *dl; struct lvd_list *ll; struct lv_disk *lvd; struct list *pvdh, *lvdh; list_iterate(pvdh, pvds) { dl = list_item(pvdh, struct disk_list); list_iterate(lvdh, &dl->lvds) { ll = list_item(lvdh, struct lvd_list); lvd = &ll->lvd; if (!find_lv(vg, lvd->lv_name) && !_add_lv(mem, vg, lvd)) { stack; return 0; } } } return 1; } /* FIXME: tidy */ int export_lvs(struct disk_list *dl, struct volume_group *vg, struct physical_volume *pv, const char *dev_dir) { int r = 0; struct list *lvh, *sh; struct lv_list *ll; struct lvd_list *lvdl; size_t len; uint32_t lv_num; struct hash_table *lvd_hash; if (!_check_vg_name(vg->name)) { stack; return 0; } if (!(lvd_hash = hash_create(32))) { stack; return 0; } /* * setup the pv's extents array */ len = sizeof(struct pe_disk) * dl->pvd.pe_total; if (!(dl->extents = pool_alloc(dl->mem, len))) { stack; goto out; } memset(dl->extents, 0, len); list_iterate(lvh, &vg->lvs) { ll = list_item(lvh, struct lv_list); if (!(lvdl = pool_alloc(dl->mem, sizeof(*lvdl)))) { stack; goto out; } _export_lv(&lvdl->lvd, vg, ll->lv, dev_dir); lv_num = lvnum_from_lvid(&ll->lv->lvid); lvdl->lvd.lv_number = lv_num; if (!hash_insert(lvd_hash, ll->lv->name, &lvdl->lvd)) { stack; goto out; } if (!export_extents(dl, lv_num + 1, ll->lv, pv)) { stack; goto out; } list_add(&dl->lvds, &lvdl->list); dl->pvd.lv_cur++; } /* * Now we need to run through the snapshots, exporting * the SNAPSHOT_ORG flags etc. */ list_iterate(sh, &vg->snapshots) { struct lv_disk *org, *cow; struct snapshot *s = list_item(sh, struct snapshot_list)->snapshot; if (!(org = hash_lookup(lvd_hash, s->origin->name))) { log_err("Couldn't find snapshot origin '%s'.", s->origin->name); goto out; } if (!(cow = hash_lookup(lvd_hash, s->cow->name))) { log_err("Couldn't find snapshot cow store '%s'.", s->cow->name); goto out; } org->lv_access |= LV_SNAPSHOT_ORG; cow->lv_access |= LV_SNAPSHOT; cow->lv_snapshot_minor = org->lv_number; cow->lv_chunk_size = s->chunk_size; } r = 1; out: hash_destroy(lvd_hash); return r; } /* * FIXME: More inefficient code. */ int import_snapshots(struct pool *mem, struct volume_group *vg, struct list *pvds) { struct logical_volume *lvs[MAX_LV]; struct list *pvdh, *lvdh; struct disk_list *dl; struct lv_disk *lvd; int lvnum; struct logical_volume *org, *cow; /* build an index of lv numbers */ memset(lvs, 0, sizeof(lvs)); list_iterate(pvdh, pvds) { dl = list_item(pvdh, struct disk_list); list_iterate(lvdh, &dl->lvds) { lvd = &(list_item(lvdh, struct lvd_list)->lvd); lvnum = lvd->lv_number; if (lvnum > MAX_LV) { log_err("Logical volume number " "out of bounds."); return 0; } if (!lvs[lvnum] && !(lvs[lvnum] = find_lv(vg, lvd->lv_name))) { log_err("Couldn't find logical volume '%s'.", lvd->lv_name); return 0; } } } /* * Now iterate through yet again adding the snapshots. */ list_iterate(pvdh, pvds) { dl = list_item(pvdh, struct disk_list); list_iterate(lvdh, &dl->lvds) { lvd = &(list_item(lvdh, struct lvd_list)->lvd); if (!(lvd->lv_access & LV_SNAPSHOT)) continue; lvnum = lvd->lv_number; cow = lvs[lvnum]; if (!(org = lvs[lvd->lv_snapshot_minor])) { log_err("Couldn't find origin logical volume " "for snapshot '%s'.", lvd->lv_name); return 0; } /* we may have already added this snapshot */ if (lv_is_cow(cow)) continue; /* insert the snapshot */ if (!vg_add_snapshot(org, cow, 1, NULL, lvd->lv_chunk_size)) { log_err("Couldn't add snapshot."); return 0; } } } return 1; } int export_uuids(struct disk_list *dl, struct volume_group *vg) { struct uuid_list *ul; struct pv_list *pvl; struct list *pvh; list_iterate(pvh, &vg->pvs) { pvl = list_item(pvh, struct pv_list); if (!(ul = pool_alloc(dl->mem, sizeof(*ul)))) { stack; return 0; } memset(ul->uuid, 0, sizeof(ul->uuid)); memcpy(ul->uuid, pvl->pv->id.uuid, ID_LEN); list_add(&dl->uuids, &ul->list); } return 1; } /* * This calculates the nasty pv_number field * used by LVM1. */ void export_numbers(struct list *pvds, struct volume_group *vg) { struct list *pvdh; struct disk_list *dl; int pv_num = 1; list_iterate(pvdh, pvds) { dl = list_item(pvdh, struct disk_list); dl->pvd.pv_number = pv_num++; } } /* * Calculate vg_disk->pv_act. */ void export_pv_act(struct list *pvds) { struct list *pvdh; struct disk_list *dl; int act = 0; list_iterate(pvdh, pvds) { dl = list_item(pvdh, struct disk_list); if (dl->pvd.pv_status & PV_ACTIVE) act++; } list_iterate(pvdh, pvds) { dl = list_item(pvdh, struct disk_list); dl->vgd.pv_act = act; } } int export_vg_number(struct format_instance *fid, struct list *pvds, const char *vg_name, struct dev_filter *filter) { struct list *pvdh; struct disk_list *dl; int vg_num; if (!get_free_vg_number(fid, filter, vg_name, &vg_num)) { stack; return 0; } list_iterate(pvdh, pvds) { dl = list_item(pvdh, struct disk_list); dl->vgd.vg_number = vg_num; } return 1; }