/* * Copyright (C) 2003-2004 Sistina Software, Inc. All rights reserved. * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. * * This file is part of LVM2. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU General Public License v.2. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "lib.h" #include "metadata.h" #include "toolcontext.h" #include "segtype.h" #include "display.h" #include "activate.h" #include "lv_alloc.h" #include "lvm-string.h" #include "locking.h" /* FIXME Should not be used in this file */ #include "defaults.h" /* FIXME: should this be defaults.h? */ /* These are the flags that represent the mirror failure restoration policies */ #define MIRROR_REMOVE 0 #define MIRROR_ALLOCATE 1 #define MIRROR_ALLOCATE_ANYWHERE 2 struct lv_segment *find_mirror_seg(struct lv_segment *seg) { return seg->mirror_seg; } /* * Reduce the region size if necessary to ensure * the volume size is a multiple of the region size. */ uint32_t adjusted_mirror_region_size(uint32_t extent_size, uint32_t extents, uint32_t region_size) { uint64_t region_max; region_max = (1 << (ffs((int)extents) - 1)) * (uint64_t) extent_size; if (region_max < UINT32_MAX && region_size > region_max) { region_size = (uint32_t) region_max; log_print("Using reduced mirror region size of %" PRIu32 " sectors", region_size); } return region_size; } static void _move_lv_segments(struct logical_volume *lv_to, struct logical_volume *lv_from) { struct lv_segment *seg; lv_to->segments = lv_from->segments; lv_to->segments.n->p = &lv_to->segments; lv_to->segments.p->n = &lv_to->segments; list_iterate_items(seg, &lv_to->segments) seg->lv = lv_to; /* FIXME set or reset seg->mirror_seg (according to status)? */ list_init(&lv_from->segments); lv_to->le_count = lv_from->le_count; lv_to->size = lv_from->size; lv_from->le_count = 0; lv_from->size = 0; } /* * Reduce mirrored_seg to num_mirrors images. */ int remove_mirror_images(struct lv_segment *mirrored_seg, uint32_t num_mirrors, struct list *removable_pvs, int remove_log) { uint32_t m; uint32_t extents; uint32_t s, s1; struct logical_volume *sub_lv; struct logical_volume *log_lv = NULL; struct logical_volume *lv1 = NULL; struct physical_volume *pv; struct lv_segment *seg; struct lv_segment_area area; int all_pvs_removable, pv_found; struct pv_list *pvl; uint32_t old_area_count = mirrored_seg->area_count; uint32_t new_area_count = mirrored_seg->area_count; struct segment_type *segtype; log_very_verbose("Reducing mirror set from %" PRIu32 " to %" PRIu32 " image(s)%s.", old_area_count, num_mirrors, remove_log ? " and no log volume" : ""); /* Move removable_pvs to end of array */ if (removable_pvs) { for (s = 0; s < mirrored_seg->area_count; s++) { all_pvs_removable = 1; sub_lv = seg_lv(mirrored_seg, s); list_iterate_items(seg, &sub_lv->segments) { for (s1 = 0; s1 < seg->area_count; s1++) { if (seg_type(seg, s1) != AREA_PV) /* FIXME Recurse for AREA_LV */ continue; pv = seg_pv(seg, s1); pv_found = 0; list_iterate_items(pvl, removable_pvs) { if (pv->dev->dev == pvl->pv->dev->dev) { pv_found = 1; break; } } if (!pv_found) { all_pvs_removable = 0; break; } } if (!all_pvs_removable) break; } if (all_pvs_removable) { /* Swap segment to end */ new_area_count--; area = mirrored_seg->areas[new_area_count]; mirrored_seg->areas[new_area_count] = mirrored_seg->areas[s]; mirrored_seg->areas[s] = area; } /* Found enough matches? */ if (new_area_count == num_mirrors) break; } if (new_area_count == mirrored_seg->area_count) { log_error("No mirror images found using specified PVs."); return 0; } } for (m = num_mirrors; m < mirrored_seg->area_count; m++) { seg_lv(mirrored_seg, m)->status &= ~MIRROR_IMAGE; seg_lv(mirrored_seg, m)->status |= VISIBLE_LV; } mirrored_seg->area_count = num_mirrors; /* If no more mirrors, remove mirror layer */ if (num_mirrors == 1) { lv1 = seg_lv(mirrored_seg, 0); extents = lv1->le_count; _move_lv_segments(mirrored_seg->lv, lv1); mirrored_seg->lv->status &= ~MIRRORED; remove_log = 1; /* Replace mirror with error segment */ segtype = get_segtype_from_string(mirrored_seg->lv->vg->cmd, "error"); if (!lv_add_virtual_segment(lv1, 0, extents, segtype)) return_0; } if (remove_log && mirrored_seg->log_lv) { log_lv = mirrored_seg->log_lv; mirrored_seg->log_lv = NULL; log_lv->status &= ~MIRROR_LOG; log_lv->status |= VISIBLE_LV; } /* * To successfully remove these unwanted LVs we need to * remove the LVs from the mirror set, commit that metadata * then deactivate and remove them fully. */ if (!vg_write(mirrored_seg->lv->vg)) { log_error("intermediate VG write failed."); return 0; } if (!suspend_lv(mirrored_seg->lv->vg->cmd, mirrored_seg->lv)) { log_error("Failed to lock %s", mirrored_seg->lv->name); vg_revert(mirrored_seg->lv->vg); return 0; } if (!vg_commit(mirrored_seg->lv->vg)) { resume_lv(mirrored_seg->lv->vg->cmd, mirrored_seg->lv); return 0; } log_very_verbose("Updating \"%s\" in kernel", mirrored_seg->lv->name); if (!resume_lv(mirrored_seg->lv->vg->cmd, mirrored_seg->lv)) { log_error("Problem reactivating %s", mirrored_seg->lv->name); return 0; } /* Delete the 'orphan' LVs */ for (m = num_mirrors; m < old_area_count; m++) { /* LV is now independent of the mirror so must acquire lock. */ if (!activate_lv(mirrored_seg->lv->vg->cmd, seg_lv(mirrored_seg, m))) { stack; return 0; } if (!deactivate_lv(mirrored_seg->lv->vg->cmd, seg_lv(mirrored_seg, m))) { stack; return 0; } if (!lv_remove(seg_lv(mirrored_seg, m))) { stack; return 0; } } if (lv1) { if (!activate_lv(mirrored_seg->lv->vg->cmd, lv1)) { stack; return 0; } if (!deactivate_lv(mirrored_seg->lv->vg->cmd, lv1)) { stack; return 0; } if (!lv_remove(lv1)) { stack; return 0; } } if (log_lv) { if (!activate_lv(mirrored_seg->lv->vg->cmd, log_lv)) { stack; return 0; } if (!deactivate_lv(mirrored_seg->lv->vg->cmd, log_lv)) { stack; return 0; } if (!lv_remove(log_lv)) { stack; return 0; } } return 1; } static int get_mirror_fault_policy(struct cmd_context *cmd, int log_policy) { const char *policy; if (log_policy) policy = find_config_str(NULL, "activation/mirror_log_fault_policy", DEFAULT_MIRROR_LOG_FAULT_POLICY); else policy = find_config_str(NULL, "activation/mirror_device_fault_policy", DEFAULT_MIRROR_DEV_FAULT_POLICY); if (!strcmp(policy, "remove")) return MIRROR_REMOVE; else if (!strcmp(policy, "allocate")) return MIRROR_ALLOCATE; else if (!strcmp(policy, "allocate_anywhere")) return MIRROR_ALLOCATE_ANYWHERE; if (log_policy) log_error("Bad activation/mirror_log_fault_policy"); else log_error("Bad activation/mirror_device_fault_policy"); return MIRROR_REMOVE; } static int get_mirror_log_fault_policy(struct cmd_context *cmd) { return get_mirror_fault_policy(cmd, 1); } static int get_mirror_device_fault_policy(struct cmd_context *cmd) { return get_mirror_fault_policy(cmd, 0); } /* * replace_mirror_images * @mirrored_seg: segment (which may be linear now) to restore * @num_mirrors: number of copies we should end up with * @replace_log: replace log if not present * @in_sync: was the original mirror in-sync? * * in_sync will be set to 0 if new mirror devices are being added * In other words, it is only useful if the log (and only the log) * is being restored. * * Returns: 0 on failure, 1 on reconfig, -1 if no reconfig done */ static int replace_mirror_images(struct lv_segment *mirrored_seg, uint32_t num_mirrors, int log_policy, int in_sync) { int r = -1; struct logical_volume *lv = mirrored_seg->lv; /* FIXME: Use lvconvert rather than duplicating its code */ if (mirrored_seg->area_count < num_mirrors) { log_error("WARNING: Failed to replace mirror device in %s/%s", mirrored_seg->lv->vg->name, mirrored_seg->lv->name); if ((mirrored_seg->area_count > 1) && !mirrored_seg->log_lv) log_error("WARNING: Use 'lvconvert -m %d %s/%s --corelog' to replace failed devices", num_mirrors - 1, lv->vg->name, lv->name); else log_error("WARNING: Use 'lvconvert -m %d %s/%s' to replace failed devices", num_mirrors - 1, lv->vg->name, lv->name); r = 0; /* REMEMBER/FIXME: set in_sync to 0 if a new mirror device was added */ in_sync = 0; } /* * FIXME: right now, we ignore the allocation policy specified to * allocate the new log. */ if ((mirrored_seg->area_count > 1) && !mirrored_seg->log_lv && (log_policy != MIRROR_REMOVE)) { log_error("WARNING: Failed to replace mirror log device in %s/%s", lv->vg->name, lv->name); log_error("WARNING: Use 'lvconvert -m %d %s/%s' to replace failed devices", mirrored_seg->area_count - 1 , lv->vg->name, lv->name); r = 0; } return r; } int reconfigure_mirror_images(struct lv_segment *mirrored_seg, uint32_t num_mirrors, struct list *removable_pvs, int remove_log) { int r; int insync = 0; int log_policy, dev_policy; uint32_t old_num_mirrors = mirrored_seg->area_count; int had_log = (mirrored_seg->log_lv) ? 1 : 0; float sync_percent = 0; /* was the mirror in-sync before problems? */ if (!lv_mirror_percent(mirrored_seg->lv->vg->cmd, mirrored_seg->lv, 0, &sync_percent, NULL)) log_error("WARNING: Unable to determine mirror sync status of %s/%s.", mirrored_seg->lv->vg->name, mirrored_seg->lv->name); else if (sync_percent >= 100.0) insync = 1; /* * While we are only removing devices, we can have sync set. * Setting this is only useful if we are moving to core log * otherwise the disk log will contain the sync information */ init_mirror_in_sync(insync); r = remove_mirror_images(mirrored_seg, num_mirrors, removable_pvs, remove_log); if (!r) /* Unable to remove bad devices */ return 0; log_print("WARNING: Bad device removed from mirror volume, %s/%s", mirrored_seg->lv->vg->name, mirrored_seg->lv->name); log_policy = get_mirror_log_fault_policy(mirrored_seg->lv->vg->cmd); dev_policy = get_mirror_device_fault_policy(mirrored_seg->lv->vg->cmd); r = replace_mirror_images(mirrored_seg, (dev_policy != MIRROR_REMOVE) ? old_num_mirrors : num_mirrors, log_policy, insync); if (!r) /* Failed to replace device(s) */ log_error("WARNING: Unable to find substitute device for mirror volume, %s/%s", mirrored_seg->lv->vg->name, mirrored_seg->lv->name); else if (r > 0) /* Success in replacing device(s) */ log_print("WARNING: Mirror volume, %s/%s restored - substitute for failed device found.", mirrored_seg->lv->vg->name, mirrored_seg->lv->name); else /* Bad device removed, but not replaced because of policy */ if (mirrored_seg->area_count == 1) { log_print("WARNING: Mirror volume, %s/%s converted to linear due to device failure.", mirrored_seg->lv->vg->name, mirrored_seg->lv->name); } else if (had_log && !mirrored_seg->log_lv) { log_print("WARNING: Mirror volume, %s/%s disk log removed due to device failure.", mirrored_seg->lv->vg->name, mirrored_seg->lv->name); } /* * If we made it here, we at least removed the bad device. * Consider this success. */ return 1; } static int _create_layers_for_mirror(struct alloc_handle *ah, uint32_t first_area, uint32_t num_mirrors, struct logical_volume *lv, const struct segment_type *segtype, struct logical_volume **img_lvs) { uint32_t m; char *img_name; size_t len; len = strlen(lv->name) + 32; if (!(img_name = alloca(len))) { log_error("img_name allocation failed. " "Remove new LV and retry."); return 0; } if (dm_snprintf(img_name, len, "%s_mimage_%%d", lv->name) < 0) { log_error("img_name allocation failed. " "Remove new LV and retry."); return 0; } for (m = 0; m < num_mirrors; m++) { if (!(img_lvs[m] = lv_create_empty(lv->vg->fid, img_name, NULL, LVM_READ | LVM_WRITE, ALLOC_INHERIT, 0, lv->vg))) { log_error("Aborting. Failed to create mirror image LV. " "Remove new LV and retry."); return 0; } if (m < first_area) continue; if (!lv_add_segment(ah, m - first_area, 1, img_lvs[m], get_segtype_from_string(lv->vg->cmd, "striped"), 0, NULL, 0, 0, 0, NULL)) { log_error("Aborting. Failed to add mirror image segment " "to %s. Remove new LV and retry.", img_lvs[m]->name); return 0; } } return 1; } int create_mirror_layers(struct alloc_handle *ah, uint32_t first_area, uint32_t num_mirrors, struct logical_volume *lv, const struct segment_type *segtype, uint32_t status, uint32_t region_size, struct logical_volume *log_lv) { struct logical_volume **img_lvs; if (!(img_lvs = alloca(sizeof(*img_lvs) * num_mirrors))) { log_error("img_lvs allocation failed. " "Remove new LV and retry."); return 0; } if (!_create_layers_for_mirror(ah, first_area, num_mirrors, lv, segtype, img_lvs)) { stack; return 0; } /* Already got the parent mirror segment? */ if (lv->status & MIRRORED) return lv_add_more_mirrored_areas(lv, img_lvs, num_mirrors, MIRROR_IMAGE); /* Already got a non-mirrored area to be converted? */ if (first_area) _move_lv_segments(img_lvs[0], lv); if (!lv_add_mirror_segment(ah, lv, img_lvs, num_mirrors, segtype, 0, region_size, log_lv)) { log_error("Aborting. Failed to add mirror segment. " "Remove new LV and retry."); return 0; } lv->status |= MIRRORED; return 1; } int add_mirror_layers(struct alloc_handle *ah, uint32_t num_mirrors, uint32_t existing_mirrors, struct logical_volume *lv, const struct segment_type *segtype) { struct logical_volume **img_lvs; if (!(img_lvs = alloca(sizeof(*img_lvs) * num_mirrors))) { log_error("img_lvs allocation failed. " "Remove new LV and retry."); return 0; } if (!_create_layers_for_mirror(ah, 0, num_mirrors, lv, segtype, img_lvs)) { stack; return 0; } return lv_add_more_mirrored_areas(lv, img_lvs, num_mirrors, 0); } /* * Replace any LV segments on given PV with temporary mirror. * Returns list of LVs changed. */ int insert_pvmove_mirrors(struct cmd_context *cmd, struct logical_volume *lv_mirr, struct list *source_pvl, struct logical_volume *lv, struct list *allocatable_pvs, alloc_policy_t alloc, struct list *lvs_changed) { struct lv_segment *seg; struct lv_list *lvl; struct pv_list *pvl; struct physical_volume *pv; uint32_t pe; int lv_used = 0; uint32_t s, start_le, extent_count = 0u; const struct segment_type *segtype; struct pe_range *per; uint32_t pe_start, pe_end, per_end, stripe_multiplier; /* Only 1 PV may feature in source_pvl */ pvl = list_item(source_pvl->n, struct pv_list); if (!(segtype = get_segtype_from_string(lv->vg->cmd, "mirror"))) { stack; return 0; } if (activation() && segtype->ops->target_present && !segtype->ops->target_present(NULL)) { log_error("%s: Required device-mapper target(s) not " "detected in your kernel", segtype->name); return 0; } /* Split LV segments to match PE ranges */ list_iterate_items(seg, &lv->segments) { for (s = 0; s < seg->area_count; s++) { if (seg_type(seg, s) != AREA_PV || seg_dev(seg, s) != pvl->pv->dev) continue; /* Do these PEs need moving? */ list_iterate_items(per, pvl->pe_ranges) { pe_start = seg_pe(seg, s); pe_end = pe_start + seg->area_len - 1; per_end = per->start + per->count - 1; /* No overlap? */ if ((pe_end < per->start) || (pe_start > per_end)) continue; if (seg_is_striped(seg)) stripe_multiplier = seg->area_count; else stripe_multiplier = 1; if ((per->start != pe_start && per->start > pe_start) && !lv_split_segment(lv, seg->le + (per->start - pe_start) * stripe_multiplier)) { stack; return 0; } if ((per_end != pe_end && per_end < pe_end) && !lv_split_segment(lv, seg->le + (per_end - pe_start + 1) * stripe_multiplier)) { stack; return 0; } } } } /* Work through all segments on the supplied PV */ list_iterate_items(seg, &lv->segments) { for (s = 0; s < seg->area_count; s++) { if (seg_type(seg, s) != AREA_PV || seg_dev(seg, s) != pvl->pv->dev) continue; pe_start = seg_pe(seg, s); /* Do these PEs need moving? */ list_iterate_items(per, pvl->pe_ranges) { per_end = per->start + per->count - 1; if ((pe_start < per->start) || (pe_start > per_end)) continue; log_debug("Matched PE range %u-%u against " "%s %u len %u", per->start, per_end, dev_name(seg_dev(seg, s)), seg_pe(seg, s), seg->area_len); /* First time, add LV to list of LVs affected */ if (!lv_used) { if (!(lvl = dm_pool_alloc(cmd->mem, sizeof(*lvl)))) { log_error("lv_list alloc failed"); return 0; } lvl->lv = lv; list_add(lvs_changed, &lvl->list); lv_used = 1; } pv = seg_pv(seg, s); pe = seg_pe(seg, s); log_very_verbose("Moving %s:%u-%u of %s/%s", dev_name(pvl->pv->dev), pe, pe + seg->area_len - 1, lv->vg->name, lv->name); start_le = lv_mirr->le_count; /* FIXME Clean this up */ release_lv_segment_area(seg, s, seg->area_len); if (!lv_extend(lv_mirr, segtype, 1, seg->area_len, 0u, seg->area_len, pv, pe, PVMOVE, allocatable_pvs, alloc)) { log_error("Unable to allocate " "temporary LV for pvmove."); return 0; } set_lv_segment_area_lv(seg, s, lv_mirr, start_le, 0); extent_count += seg->area_len; lv->status |= LOCKED; break; } } } log_verbose("Moving %u extents of logical volume %s/%s", extent_count, lv->vg->name, lv->name); return 1; } /* Remove a temporary mirror */ int remove_pvmove_mirrors(struct volume_group *vg, struct logical_volume *lv_mirr) { struct lv_list *lvl; struct logical_volume *lv1; struct lv_segment *seg, *mir_seg; uint32_t s, c; /* Loop through all LVs except the temporary mirror */ list_iterate_items(lvl, &vg->lvs) { lv1 = lvl->lv; if (lv1 == lv_mirr) continue; /* Find all segments that point at the temporary mirror */ list_iterate_items(seg, &lv1->segments) { for (s = 0; s < seg->area_count; s++) { if (seg_type(seg, s) != AREA_LV || seg_lv(seg, s) != lv_mirr) continue; /* Find the mirror segment pointed at */ if (!(mir_seg = find_seg_by_le(lv_mirr, seg_le(seg, s)))) { /* FIXME Error message */ log_error("No segment found with LE"); return 0; } /* Check the segment params are compatible */ /* FIXME Improve error mesg & remove restrcn */ if (!seg_is_mirrored(mir_seg) || !(mir_seg->status & PVMOVE) || mir_seg->le != seg_le(seg, s) || mir_seg->area_count != 2 || mir_seg->area_len != seg->area_len) { log_error("Incompatible segments"); return 0; } /* Replace original segment with newly-mirrored * area (or original if reverting) */ if (mir_seg->extents_copied == mir_seg->area_len) c = 1; else c = 0; if (!move_lv_segment_area(seg, s, mir_seg, c)) { stack; return 0; } release_lv_segment_area(mir_seg, c ? 0 : 1U, mir_seg->area_len); /* Replace mirror with error segment */ if (! (mir_seg->segtype = get_segtype_from_string(vg->cmd, "error"))) { log_error("Missing error segtype"); return 0; } mir_seg->area_count = 0; /* FIXME Assumes only one pvmove at a time! */ lv1->status &= ~LOCKED; } } if (!lv_merge_segments(lv1)) stack; } if (!lv_empty(lv_mirr)) { stack; return 0; } return 1; } const char *get_pvmove_pvname_from_lv_mirr(struct logical_volume *lv_mirr) { struct lv_segment *seg; list_iterate_items(seg, &lv_mirr->segments) { if (!seg_is_mirrored(seg)) continue; if (seg_type(seg, 0) != AREA_PV) continue; return dev_name(seg_dev(seg, 0)); } return NULL; } const char *get_pvmove_pvname_from_lv(struct logical_volume *lv) { struct lv_segment *seg; uint32_t s; list_iterate_items(seg, &lv->segments) { for (s = 0; s < seg->area_count; s++) { if (seg_type(seg, s) != AREA_LV) continue; return get_pvmove_pvname_from_lv_mirr(seg_lv(seg, s)); } } return NULL; } struct logical_volume *find_pvmove_lv(struct volume_group *vg, struct device *dev, uint32_t lv_type) { struct lv_list *lvl; struct logical_volume *lv; struct lv_segment *seg; /* Loop through all LVs */ list_iterate_items(lvl, &vg->lvs) { lv = lvl->lv; if (!(lv->status & lv_type)) continue; /* Check segment origins point to pvname */ list_iterate_items(seg, &lv->segments) { if (seg_type(seg, 0) != AREA_PV) continue; if (seg_dev(seg, 0) != dev) continue; return lv; } } return NULL; } struct logical_volume *find_pvmove_lv_from_pvname(struct cmd_context *cmd, struct volume_group *vg, const char *name, uint32_t lv_type) { struct physical_volume *pv; if (!(pv = find_pv_by_name(cmd, name))) { stack; return NULL; } return find_pvmove_lv(vg, pv->dev, lv_type); } struct list *lvs_using_lv(struct cmd_context *cmd, struct volume_group *vg, struct logical_volume *lv) { struct list *lvs; struct logical_volume *lv1; struct lv_list *lvl, *lvl1; struct lv_segment *seg; uint32_t s; if (!(lvs = dm_pool_alloc(cmd->mem, sizeof(*lvs)))) { log_error("lvs list alloc failed"); return NULL; } list_init(lvs); /* Loop through all LVs except the one supplied */ list_iterate_items(lvl1, &vg->lvs) { lv1 = lvl1->lv; if (lv1 == lv) continue; /* Find whether any segment points at the supplied LV */ list_iterate_items(seg, &lv1->segments) { for (s = 0; s < seg->area_count; s++) { if (seg_type(seg, s) != AREA_LV || seg_lv(seg, s) != lv) continue; if (!(lvl = dm_pool_alloc(cmd->mem, sizeof(*lvl)))) { log_error("lv_list alloc failed"); return NULL; } lvl->lv = lv1; list_add(lvs, &lvl->list); goto next_lv; } } next_lv: ; } return lvs; } float copy_percent(struct logical_volume *lv_mirr) { uint32_t numerator = 0u, denominator = 0u; struct lv_segment *seg; list_iterate_items(seg, &lv_mirr->segments) { denominator += seg->area_len; if (seg_is_mirrored(seg)) numerator += seg->extents_copied; else numerator += seg->area_len; } return denominator ? (float) numerator *100 / denominator : 100.0; } /* * Fixup mirror pointers after single-pass segment import */ int fixup_imported_mirrors(struct volume_group *vg) { struct lv_list *lvl; struct lv_segment *seg; uint32_t s; list_iterate_items(lvl, &vg->lvs) { list_iterate_items(seg, &lvl->lv->segments) { if (seg->segtype != get_segtype_from_string(vg->cmd, "mirror")) continue; if (seg->log_lv) first_seg(seg->log_lv)->mirror_seg = seg; for (s = 0; s < seg->area_count; s++) if (seg_type(seg, s) == AREA_LV) first_seg(seg_lv(seg, s))->mirror_seg = seg; } } return 1; }