1
0
mirror of git://sourceware.org/git/lvm2.git synced 2024-12-21 13:34:40 +03:00
lvm2/test/unit/bcache_t.c
Zdenek Kabelac 7da47cea35 cleanup: typos in logging
Fixes various typos in printed/logged messages.
2024-08-30 16:51:15 +02:00

1037 lines
24 KiB
C

/*
* Copyright (C) 2018 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU General Public License v.2.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "units.h"
#include "lib/device/bcache.h"
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define SHOW_MOCK_CALLS 0
/*----------------------------------------------------------------
* Mock engine
*--------------------------------------------------------------*/
struct mock_engine {
struct io_engine e;
struct dm_list expected_calls;
struct dm_list issued_io;
unsigned max_io;
sector_t block_size;
};
enum method {
E_DESTROY,
E_ISSUE,
E_WAIT,
E_MAX_IO
};
struct mock_call {
struct dm_list list;
enum method m;
bool match_args;
enum dir d;
int di;
block_address b;
bool issue_r;
bool wait_r;
};
struct mock_io {
struct dm_list list;
int di;
sector_t sb;
sector_t se;
void *data;
void *context;
bool r;
};
static const char *_show_method(enum method m)
{
switch (m) {
case E_DESTROY:
return "destroy()";
case E_ISSUE:
return "issue()";
case E_WAIT:
return "wait()";
case E_MAX_IO:
return "max_io()";
}
return "<unknown>";
}
static void _expect(struct mock_engine *e, enum method m)
{
struct mock_call *mc = malloc(sizeof(*mc));
T_ASSERT(mc);
mc->m = m;
mc->match_args = false;
dm_list_add(&e->expected_calls, &mc->list);
}
static void _expect_read(struct mock_engine *e, int di, block_address b)
{
struct mock_call *mc = malloc(sizeof(*mc));
T_ASSERT(mc);
mc->m = E_ISSUE;
mc->match_args = true;
mc->d = DIR_READ;
mc->di = di;
mc->b = b;
mc->issue_r = true;
mc->wait_r = true;
dm_list_add(&e->expected_calls, &mc->list);
}
static void _expect_read_any(struct mock_engine *e)
{
struct mock_call *mc = malloc(sizeof(*mc));
T_ASSERT(mc);
mc->m = E_ISSUE;
mc->match_args = false;
mc->issue_r = true;
mc->wait_r = true;
dm_list_add(&e->expected_calls, &mc->list);
}
static void _expect_write(struct mock_engine *e, int di, block_address b)
{
struct mock_call *mc = malloc(sizeof(*mc));
T_ASSERT(mc);
mc->m = E_ISSUE;
mc->match_args = true;
mc->d = DIR_WRITE;
mc->di = di;
mc->b = b;
mc->issue_r = true;
mc->wait_r = true;
dm_list_add(&e->expected_calls, &mc->list);
}
static void _expect_read_bad_issue(struct mock_engine *e, int di, block_address b)
{
struct mock_call *mc = malloc(sizeof(*mc));
T_ASSERT(mc);
mc->m = E_ISSUE;
mc->match_args = true;
mc->d = DIR_READ;
mc->di = di;
mc->b = b;
mc->issue_r = false;
mc->wait_r = true;
dm_list_add(&e->expected_calls, &mc->list);
}
static void _expect_write_bad_issue(struct mock_engine *e, int di, block_address b)
{
struct mock_call *mc = malloc(sizeof(*mc));
T_ASSERT(mc);
mc->m = E_ISSUE;
mc->match_args = true;
mc->d = DIR_WRITE;
mc->di = di;
mc->b = b;
mc->issue_r = false;
mc->wait_r = true;
dm_list_add(&e->expected_calls, &mc->list);
}
static void _expect_read_bad_wait(struct mock_engine *e, int di, block_address b)
{
struct mock_call *mc = malloc(sizeof(*mc));
T_ASSERT(mc);
mc->m = E_ISSUE;
mc->match_args = true;
mc->d = DIR_READ;
mc->di = di;
mc->b = b;
mc->issue_r = true;
mc->wait_r = false;
dm_list_add(&e->expected_calls, &mc->list);
}
static void _expect_write_bad_wait(struct mock_engine *e, int di, block_address b)
{
struct mock_call *mc = malloc(sizeof(*mc));
T_ASSERT(mc);
mc->m = E_ISSUE;
mc->match_args = true;
mc->d = DIR_WRITE;
mc->di = di;
mc->b = b;
mc->issue_r = true;
mc->wait_r = false;
dm_list_add(&e->expected_calls, &mc->list);
}
static struct mock_call *_match_pop(struct mock_engine *e, enum method m)
{
struct mock_call *mc;
if (dm_list_empty(&e->expected_calls))
test_fail("unexpected call to method %s\n", _show_method(m));
mc = dm_list_item(e->expected_calls.n, struct mock_call);
dm_list_del(&mc->list);
if (mc->m != m)
test_fail("expected %s, but got %s\n", _show_method(mc->m), _show_method(m));
#if SHOW_MOCK_CALLS
else
fprintf(stderr, "%s called (expected)\n", _show_method(m));
#endif
return mc;
}
static void _match(struct mock_engine *e, enum method m)
{
free(_match_pop(e, m));
}
static void _no_outstanding_expectations(struct mock_engine *e)
{
struct mock_call *mc;
if (!dm_list_empty(&e->expected_calls)) {
fprintf(stderr, "unsatisfied expectations:\n");
dm_list_iterate_items (mc, &e->expected_calls)
fprintf(stderr, " %s\n", _show_method(mc->m));
}
T_ASSERT(dm_list_empty(&e->expected_calls));
}
static struct mock_engine *_to_mock(struct io_engine *e)
{
return container_of(e, struct mock_engine, e);
}
static void _mock_destroy(struct io_engine *e)
{
struct mock_engine *me = _to_mock(e);
_match(me, E_DESTROY);
T_ASSERT(dm_list_empty(&me->issued_io));
T_ASSERT(dm_list_empty(&me->expected_calls));
free(_to_mock(e));
}
static bool _mock_issue(struct io_engine *e, enum dir d, int di,
sector_t sb, sector_t se, void *data, void *context)
{
bool r, wait_r;
struct mock_io *io;
struct mock_call *mc;
struct mock_engine *me = _to_mock(e);
mc = _match_pop(me, E_ISSUE);
if (mc->match_args) {
T_ASSERT(d == mc->d);
T_ASSERT(di == mc->di);
T_ASSERT(sb == mc->b * me->block_size);
T_ASSERT(se == (mc->b + 1) * me->block_size);
}
r = mc->issue_r;
wait_r = mc->wait_r;
free(mc);
if (r) {
io = malloc(sizeof(*io));
if (!io)
abort();
io->di = di;
io->sb = sb;
io->se = se;
io->data = data;
io->context = context;
io->r = wait_r;
dm_list_add(&me->issued_io, &io->list);
}
return r;
}
static bool _mock_wait(struct io_engine *e, io_complete_fn fn)
{
struct mock_io *io;
struct mock_engine *me = _to_mock(e);
_match(me, E_WAIT);
// FIXME: provide a way to control how many are completed and whether
// they error.
T_ASSERT(!dm_list_empty(&me->issued_io));
io = dm_list_item(me->issued_io.n, struct mock_io);
dm_list_del(&io->list);
fn(io->context, io->r ? 0 : -EIO);
free(io);
return true;
}
static unsigned _mock_max_io(struct io_engine *e)
{
struct mock_engine *me = _to_mock(e);
_match(me, E_MAX_IO);
return me->max_io;
}
static struct mock_engine *_mock_create(unsigned max_io, sector_t block_size)
{
struct mock_engine *m = malloc(sizeof(*m));
T_ASSERT(m);
m->e.destroy = _mock_destroy;
m->e.issue = _mock_issue;
m->e.wait = _mock_wait;
m->e.max_io = _mock_max_io;
m->max_io = max_io;
m->block_size = block_size;
dm_list_init(&m->expected_calls);
dm_list_init(&m->issued_io);
return m;
}
/*----------------------------------------------------------------
* Fixtures
*--------------------------------------------------------------*/
struct fixture {
struct mock_engine *me;
struct bcache *cache;
};
static struct fixture *_fixture_init(sector_t block_size, unsigned nr_cache_blocks)
{
struct fixture *f = malloc(sizeof(*f));
T_ASSERT(f);
f->me = _mock_create(16, block_size);
T_ASSERT(f->me);
_expect(f->me, E_MAX_IO);
f->cache = bcache_create(block_size, nr_cache_blocks, &f->me->e);
T_ASSERT(f->cache);
return f;
}
static void _fixture_exit(struct fixture *f)
{
if (f) {
_expect(f->me, E_DESTROY);
bcache_destroy(f->cache);
free(f);
}
}
static void *_small_fixture_init(void)
{
return _fixture_init(128, 16);
}
static void _small_fixture_exit(void *context)
{
_fixture_exit(context);
}
static void *_large_fixture_init(void)
{
return _fixture_init(128, 1024);
}
static void _large_fixture_exit(void *context)
{
_fixture_exit(context);
}
/*----------------------------------------------------------------
* Tests
*--------------------------------------------------------------*/
#define MEG 2048
#define SECTOR_SHIFT 9
#define PAGE_SIZE_SECTORS ((PAGE_SIZE) >> SECTOR_SHIFT)
static void good_create(sector_t block_size, unsigned nr_cache_blocks)
{
struct bcache *cache;
struct mock_engine *me = _mock_create(16, 128);
_expect(me, E_MAX_IO);
cache = bcache_create(block_size, nr_cache_blocks, &me->e);
T_ASSERT(cache);
_expect(me, E_DESTROY);
bcache_destroy(cache);
}
static void bad_create(sector_t block_size, unsigned nr_cache_blocks)
{
struct bcache *cache;
struct mock_engine *me = _mock_create(16, 128);
_expect(me, E_MAX_IO);
cache = bcache_create(block_size, nr_cache_blocks, &me->e);
T_ASSERT(!cache);
_expect(me, E_DESTROY);
me->e.destroy(&me->e);
}
static void test_create(void *fixture)
{
good_create(PAGE_SIZE_SECTORS, 16);
}
static void test_nr_cache_blocks_must_be_positive(void *fixture)
{
bad_create(PAGE_SIZE_SECTORS, 0);
}
static void test_block_size_must_be_positive(void *fixture)
{
bad_create(0, 16);
}
static void test_block_size_must_be_multiple_of_page_size(void *fixture)
{
static const unsigned _bad_examples[] = {3, 9, 13, 1025};
unsigned i;
for (i = 0; i < DM_ARRAY_SIZE(_bad_examples); i++)
bad_create(_bad_examples[i], 16);
for (i = 1; i < 100; i++)
good_create(i * PAGE_SIZE_SECTORS, 16);
}
static void test_get_triggers_read(void *context)
{
struct fixture *f = context;
int di = 17; // arbitrary key
struct block *b;
_expect_read(f->me, di, 0);
_expect(f->me, E_WAIT);
T_ASSERT(bcache_get(f->cache, di, 0, 0, &b));
bcache_put(b);
_expect_read(f->me, di, 1);
_expect(f->me, E_WAIT);
T_ASSERT(bcache_get(f->cache, di, 1, GF_DIRTY, &b));
_expect_write(f->me, di, 1);
_expect(f->me, E_WAIT);
bcache_put(b);
}
static void test_repeated_reads_are_cached(void *context)
{
struct fixture *f = context;
int di = 17; // arbitrary key
unsigned i;
struct block *b;
_expect_read(f->me, di, 0);
_expect(f->me, E_WAIT);
for (i = 0; i < 100; i++) {
T_ASSERT(bcache_get(f->cache, di, 0, 0, &b));
bcache_put(b);
}
}
static void test_block_gets_evicted_with_many_reads(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
const unsigned nr_cache_blocks = 16;
int di = 17; // arbitrary key
unsigned i;
struct block *b;
for (i = 0; i < nr_cache_blocks; i++) {
_expect_read(me, di, i);
_expect(me, E_WAIT);
T_ASSERT(bcache_get(cache, di, i, 0, &b));
bcache_put(b);
}
// Not enough cache blocks to hold this one
_expect_read(me, di, nr_cache_blocks);
_expect(me, E_WAIT);
T_ASSERT(bcache_get(cache, di, nr_cache_blocks, 0, &b));
bcache_put(b);
// Now if we run through we should find one block has been
// evicted. We go backwards because the oldest is normally
// evicted first.
_expect_read_any(me);
_expect(me, E_WAIT);
for (i = nr_cache_blocks; i; i--) {
T_ASSERT(bcache_get(cache, di, i - 1, 0, &b));
bcache_put(b);
}
}
static void test_prefetch_issues_a_read(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
const unsigned nr_cache_blocks = 16;
int di = 17; // arbitrary key
unsigned i;
struct block *b;
for (i = 0; i < nr_cache_blocks; i++) {
// prefetch should not wait
_expect_read(me, di, i);
bcache_prefetch(cache, di, i);
}
_no_outstanding_expectations(me);
for (i = 0; i < nr_cache_blocks; i++) {
_expect(me, E_WAIT);
T_ASSERT(bcache_get(cache, di, i, 0, &b));
bcache_put(b);
}
}
static void test_too_many_prefetches_does_not_trigger_a_wait(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
const unsigned nr_cache_blocks = 16;
int di = 17; // arbitrary key
unsigned i;
for (i = 0; i < 10 * nr_cache_blocks; i++) {
// prefetch should not wait
if (i < nr_cache_blocks)
_expect_read(me, di, i);
bcache_prefetch(cache, di, i);
}
// Destroy will wait for any in flight IO triggered by prefetches.
for (i = 0; i < nr_cache_blocks; i++)
_expect(me, E_WAIT);
}
static void test_dirty_data_gets_written_back(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
int di = 17; // arbitrary key
struct block *b;
// Expect the read
_expect_read(me, di, 0);
_expect(me, E_WAIT);
T_ASSERT(bcache_get(cache, di, 0, GF_DIRTY, &b));
bcache_put(b);
// Expect the write
_expect_write(me, di, 0);
_expect(me, E_WAIT);
}
static void test_zeroed_data_counts_as_dirty(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
int di = 17; // arbitrary key
struct block *b;
// No read
T_ASSERT(bcache_get(cache, di, 0, GF_ZERO, &b));
bcache_put(b);
// Expect the write
_expect_write(me, di, 0);
_expect(me, E_WAIT);
}
static void test_flush_waits_for_all_dirty(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
const unsigned count = 16;
int di = 17; // arbitrary key
unsigned i;
struct block *b;
for (i = 0; i < count; i++) {
if (i % 2) {
T_ASSERT(bcache_get(cache, di, i, GF_ZERO, &b));
} else {
_expect_read(me, di, i);
_expect(me, E_WAIT);
T_ASSERT(bcache_get(cache, di, i, 0, &b));
}
bcache_put(b);
}
for (i = 0; i < count; i++) {
if (i % 2)
_expect_write(me, di, i);
}
for (i = 0; i < count; i++) {
if (i % 2)
_expect(me, E_WAIT);
}
T_ASSERT(bcache_flush(cache));
_no_outstanding_expectations(me);
}
static void test_multiple_files(void *context)
{
static int _dis[] = {1, 128, 345, 678, 890};
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
struct block *b;
unsigned i;
for (i = 0; i < DM_ARRAY_SIZE(_dis); i++) {
_expect_read(me, _dis[i], 0);
_expect(me, E_WAIT);
T_ASSERT(bcache_get(cache, _dis[i], 0, 0, &b));
bcache_put(b);
}
}
static void test_read_bad_issue(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
struct block *b;
_expect_read_bad_issue(me, 17, 0);
T_ASSERT(!bcache_get(cache, 17, 0, 0, &b));
}
static void test_read_bad_issue_intermittent(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
struct block *b;
int di = 17;
_expect_read_bad_issue(me, di, 0);
T_ASSERT(!bcache_get(cache, di, 0, 0, &b));
_expect_read(me, di, 0);
_expect(me, E_WAIT);
T_ASSERT(bcache_get(cache, di, 0, 0, &b));
bcache_put(b);
}
static void test_read_bad_wait(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
struct block *b;
int di = 17;
_expect_read_bad_wait(me, di, 0);
_expect(me, E_WAIT);
T_ASSERT(!bcache_get(cache, di, 0, 0, &b));
}
static void test_read_bad_wait_intermittent(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
struct block *b;
int di = 17;
_expect_read_bad_wait(me, di, 0);
_expect(me, E_WAIT);
T_ASSERT(!bcache_get(cache, di, 0, 0, &b));
_expect_read(me, di, 0);
_expect(me, E_WAIT);
T_ASSERT(bcache_get(cache, di, 0, 0, &b));
bcache_put(b);
}
static void test_write_bad_issue_stops_flush(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
struct block *b;
int di = 17;
T_ASSERT(bcache_get(cache, di, 0, GF_ZERO, &b));
_expect_write_bad_issue(me, di, 0);
bcache_put(b);
T_ASSERT(!bcache_flush(cache));
// we'll let it succeed the second time
_expect_write(me, di, 0);
_expect(me, E_WAIT);
T_ASSERT(bcache_flush(cache));
}
static void test_write_bad_io_stops_flush(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
struct block *b;
int di = 17;
T_ASSERT(bcache_get(cache, di, 0, GF_ZERO, &b));
_expect_write_bad_wait(me, di, 0);
_expect(me, E_WAIT);
bcache_put(b);
T_ASSERT(!bcache_flush(cache));
// we'll let it succeed the second time
_expect_write(me, di, 0);
_expect(me, E_WAIT);
T_ASSERT(bcache_flush(cache));
}
static void test_invalidate_not_present(void *context)
{
struct fixture *f = context;
struct bcache *cache = f->cache;
int di = 17;
T_ASSERT(bcache_invalidate(cache, di, 0));
}
static void test_invalidate_present(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
struct block *b;
int di = 17;
_expect_read(me, di, 0);
_expect(me, E_WAIT);
T_ASSERT(bcache_get(cache, di, 0, 0, &b));
bcache_put(b);
T_ASSERT(bcache_invalidate(cache, di, 0));
}
static void test_invalidate_after_read_error(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
struct block *b;
int di = 17;
_expect_read_bad_issue(me, di, 0);
T_ASSERT(!bcache_get(cache, di, 0, 0, &b));
T_ASSERT(bcache_invalidate(cache, di, 0));
}
static void test_invalidate_after_write_error(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
struct block *b;
int di = 17;
T_ASSERT(bcache_get(cache, di, 0, GF_ZERO, &b));
bcache_put(b);
// invalidate should fail if the write fails
_expect_write_bad_wait(me, di, 0);
_expect(me, E_WAIT);
T_ASSERT(!bcache_invalidate(cache, di, 0));
// and should succeed if the write does
_expect_write(me, di, 0);
_expect(me, E_WAIT);
T_ASSERT(bcache_invalidate(cache, di, 0));
// a read is not required to get the block
_expect_read(me, di, 0);
_expect(me, E_WAIT);
T_ASSERT(bcache_get(cache, di, 0, 0, &b));
bcache_put(b);
}
static void test_invalidate_held_block(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
struct block *b;
int di = 17;
T_ASSERT(bcache_get(cache, di, 0, GF_ZERO, &b));
T_ASSERT(!bcache_invalidate(cache, di, 0));
_expect_write(me, di, 0);
_expect(me, E_WAIT);
bcache_put(b);
}
//----------------------------------------------------------------
// abort tests
static void test_abort_no_blocks(void *context)
{
struct fixture *f = context;
struct bcache *cache = f->cache;
int di = 17;
// We have no expectations
bcache_abort_di(cache, di);
}
static void test_abort_single_block(void *context)
{
struct fixture *f = context;
struct bcache *cache = f->cache;
struct block *b;
int di = 17;
T_ASSERT(bcache_get(cache, di, 0, GF_ZERO, &b));
bcache_put(b);
bcache_abort_di(cache, di);
// no write should be issued
T_ASSERT(bcache_flush(cache));
}
static void test_abort_forces_reread(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
struct block *b;
int di = 17;
_expect_read(me, di, 0);
_expect(me, E_WAIT);
T_ASSERT(bcache_get(cache, di, 0, GF_DIRTY, &b));
bcache_put(b);
bcache_abort_di(cache, di);
T_ASSERT(bcache_flush(cache));
// Check the block is re-read
_expect_read(me, di, 0);
_expect(me, E_WAIT);
T_ASSERT(bcache_get(cache, di, 0, 0, &b));
bcache_put(b);
}
static void test_abort_only_specific_di(void *context)
{
struct fixture *f = context;
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
struct block *b;
int di1 = 17, di2 = 18;
T_ASSERT(bcache_get(cache, di1, 0, GF_ZERO, &b));
bcache_put(b);
T_ASSERT(bcache_get(cache, di1, 1, GF_ZERO, &b));
bcache_put(b);
T_ASSERT(bcache_get(cache, di2, 0, GF_ZERO, &b));
bcache_put(b);
T_ASSERT(bcache_get(cache, di2, 1, GF_ZERO, &b));
bcache_put(b);
bcache_abort_di(cache, di2);
// writes for di1 should still be issued
_expect_write(me, di1, 0);
_expect_write(me, di1, 1);
_expect(me, E_WAIT);
_expect(me, E_WAIT);
T_ASSERT(bcache_flush(cache));
}
//----------------------------------------------------------------
// Chasing a bug reported by dct
static void _cycle(struct fixture *f, unsigned nr_cache_blocks)
{
struct mock_engine *me = f->me;
struct bcache *cache = f->cache;
unsigned i;
struct block *b;
for (i = 0; i < nr_cache_blocks; i++) {
// prefetch should not wait
_expect_read(me, i, 0);
bcache_prefetch(cache, i, 0);
}
// This double checks the reads occur in response to the prefetch
_no_outstanding_expectations(me);
for (i = 0; i < nr_cache_blocks; i++) {
_expect(me, E_WAIT);
T_ASSERT(bcache_get(cache, i, 0, 0, &b));
bcache_put(b);
}
_no_outstanding_expectations(me);
}
static void test_concurrent_reads_after_invalidate(void *context)
{
struct fixture *f = context;
unsigned i, nr_cache_blocks = 16;
_cycle(f, nr_cache_blocks);
for (i = 0; i < nr_cache_blocks; i++)
bcache_invalidate_di(f->cache, i);
_cycle(f, nr_cache_blocks);
}
/*----------------------------------------------------------------
* Top level
*--------------------------------------------------------------*/
#define T(path, desc, fn) register_test(ts, "/base/device/bcache/" path, desc, fn)
static struct test_suite *_tiny_tests(void)
{
struct test_suite *ts = test_suite_create(NULL, NULL);
if (!ts) {
fprintf(stderr, "out of memory\n");
exit(1);
}
T("create-destroy", "simple create/destroy", test_create);
T("cache-blocks-positive", "nr cache blocks must be positive", test_nr_cache_blocks_must_be_positive);
T("block-size-positive", "block size must be positive", test_block_size_must_be_positive);
T("block-size-multiple-page", "block size must be a multiple of page size", test_block_size_must_be_multiple_of_page_size);
return ts;
}
static struct test_suite *_small_tests(void)
{
struct test_suite *ts = test_suite_create(_small_fixture_init, _small_fixture_exit);
if (!ts) {
fprintf(stderr, "out of memory\n");
exit(1);
}
T("get-reads", "bcache_get() triggers read", test_get_triggers_read);
T("reads-cached", "repeated reads are cached", test_repeated_reads_are_cached);
T("blocks-get-evicted", "block get evicted with many reads", test_block_gets_evicted_with_many_reads);
T("prefetch-reads", "prefetch issues a read", test_prefetch_issues_a_read);
T("prefetch-never-waits", "too many prefetches does not trigger a wait", test_too_many_prefetches_does_not_trigger_a_wait);
T("writeback-occurs", "dirty data gets written back", test_dirty_data_gets_written_back);
T("zero-flag-dirties", "zeroed data counts as dirty", test_zeroed_data_counts_as_dirty);
T("read-multiple-files", "read from multiple files", test_multiple_files);
T("read-bad-issue", "read fails if io engine unable to issue", test_read_bad_issue);
T("read-bad-issue-intermittent", "failed issue, followed by success", test_read_bad_issue_intermittent);
T("read-bad-io", "read issued ok, but io fails", test_read_bad_wait);
T("read-bad-io-intermittent", "failed io, followed by success", test_read_bad_wait_intermittent);
T("write-bad-issue-stops-flush", "flush fails temporarily if any block fails to write", test_write_bad_issue_stops_flush);
T("write-bad-io-stops-flush", "flush fails temporarily if any block fails to write", test_write_bad_io_stops_flush);
T("invalidate-not-present", "invalidate a block that isn't in the cache", test_invalidate_not_present);
T("invalidate-present", "invalidate a block that is in the cache", test_invalidate_present);
T("invalidate-read-error", "invalidate a block that errored", test_invalidate_after_read_error);
T("invalidate-write-error", "invalidate a block that errored", test_invalidate_after_write_error);
T("invalidate-fails-in-held", "invalidating a held block fails", test_invalidate_held_block);
T("abort-with-no-blocks", "you can call abort, even if there are no blocks in the cache", test_abort_no_blocks);
T("abort-single-block", "single block get silently discarded", test_abort_single_block);
T("abort-forces-read", "if a block has been discarded then another read is necc.", test_abort_forces_reread);
T("abort-specific-di", "abort doesn't effect other dis", test_abort_only_specific_di);
T("concurrent-reads-after-invalidate", "prefetch should still issue concurrent reads after invalidate",
test_concurrent_reads_after_invalidate);
return ts;
}
static struct test_suite *_large_tests(void)
{
struct test_suite *ts = test_suite_create(_large_fixture_init, _large_fixture_exit);
if (!ts) {
fprintf(stderr, "out of memory\n");
exit(1);
}
T("flush-waits", "flush waits for all dirty", test_flush_waits_for_all_dirty);
return ts;
}
void bcache_tests(struct dm_list *all_tests)
{
dm_list_add(all_tests, &_tiny_tests()->list);
dm_list_add(all_tests, &_small_tests()->list);
dm_list_add(all_tests, &_large_tests()->list);
}