1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-06 17:18:29 +03:00
lvm2/gdb/sparclet-stub.c
1999-04-16 01:33:56 +00:00

1233 lines
30 KiB
C

/****************************************************************************
THIS SOFTWARE IS NOT COPYRIGHTED
HP offers the following for use in the public domain. HP makes no
warranty with regard to the software or it's performance and the
user accepts the software "AS IS" with all faults.
HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
****************************************************************************/
/****************************************************************************
* Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
*
* Module name: remcom.c $
* Revision: 1.34 $
* Date: 91/03/09 12:29:49 $
* Contributor: Lake Stevens Instrument Division$
*
* Description: low level support for gdb debugger. $
*
* Considerations: only works on target hardware $
*
* Written by: Glenn Engel $
* ModuleState: Experimental $
*
* NOTES: See Below $
*
* Modified for SPARC by Stu Grossman, Cygnus Support.
* Based on sparc-stub.c, it's modified for SPARClite Debug Unit hardware
* breakpoint support to create sparclite-stub.c, by Kung Hsu, Cygnus Support.
*
* This code has been extensively tested on the Fujitsu SPARClite demo board.
*
* To enable debugger support, two things need to happen. One, a
* call to set_debug_traps() is necessary in order to allow any breakpoints
* or error conditions to be properly intercepted and reported to gdb.
* Two, a breakpoint needs to be generated to begin communication. This
* is most easily accomplished by a call to breakpoint(). Breakpoint()
* simulates a breakpoint by executing a trap #1.
*
*************
*
* The following gdb commands are supported:
*
* command function Return value
*
* g return the value of the CPU registers hex data or ENN
* G set the value of the CPU registers OK or ENN
* P set the value of a single CPU register OK or P01 (???)
*
* mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
* MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
*
* c Resume at current address SNN ( signal NN)
* cAA..AA Continue at address AA..AA SNN
*
* s Step one instruction SNN
* sAA..AA Step one instruction from AA..AA SNN
*
* k kill
*
* ? What was the last sigval ? SNN (signal NN)
*
* bBB..BB Set baud rate to BB..BB OK or BNN, then sets
* baud rate
*
* All commands and responses are sent with a packet which includes a
* checksum. A packet consists of
*
* $<packet info>#<checksum>.
*
* where
* <packet info> :: <characters representing the command or response>
* <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>>
*
* When a packet is received, it is first acknowledged with either '+' or '-'.
* '+' indicates a successful transfer. '-' indicates a failed transfer.
*
* Example:
*
* Host: Reply:
* $m0,10#2a +$00010203040506070809101112131415#42
*
****************************************************************************/
#include <string.h>
#include <signal.h>
/************************************************************************
*
* external low-level support routines
*/
extern void putDebugChar(); /* write a single character */
extern int getDebugChar(); /* read and return a single char */
/************************************************************************/
/* BUFMAX defines the maximum number of characters in inbound/outbound buffers*/
/* at least NUMREGBYTES*2 are needed for register packets */
#define BUFMAX 2048
static int initialized = 0; /* !0 means we've been initialized */
static int remote_debug = 0; /* turn on verbose debugging */
extern void breakinst();
void _cprint();
static void hw_breakpoint();
static void set_mem_fault_trap();
static void get_in_break_mode();
static unsigned char *mem2hex();
static const char hexchars[]="0123456789abcdef";
#define NUMREGS 121
static unsigned long saved_stack_pointer;
/* Number of bytes of registers. */
#define NUMREGBYTES (NUMREGS * 4)
enum regnames { G0, G1, G2, G3, G4, G5, G6, G7,
O0, O1, O2, O3, O4, O5, SP, O7,
L0, L1, L2, L3, L4, L5, L6, L7,
I0, I1, I2, I3, I4, I5, FP, I7,
F0, F1, F2, F3, F4, F5, F6, F7,
F8, F9, F10, F11, F12, F13, F14, F15,
F16, F17, F18, F19, F20, F21, F22, F23,
F24, F25, F26, F27, F28, F29, F30, F31,
Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR,
CCSR, CCPR, CCCRCR, CCOR, CCOBR, CCIBR, CCIR, UNUSED1,
ASR1, ASR15, ASR17, ASR18, ASR19, ASR20, ASR21, ASR22,
/* the following not actually implemented */
AWR0, AWR1, AWR2, AWR3, AWR4, AWR5, AWR6, AWR7,
AWR8, AWR9, AWR10, AWR11, AWR12, AWR13, AWR14, AWR15,
AWR16, AWR17, AWR18, AWR19, AWR20, AWR21, AWR22, AWR23,
AWR24, AWR25, AWR26, AWR27, AWR28, AWR29, AWR30, AWR31,
APSR
};
/*************************** ASSEMBLY CODE MACROS *************************/
/* */
extern void trap_low();
asm("
.reserve trapstack, 1000 * 4, \"bss\", 8
.data
.align 4
in_trap_handler:
.word 0
.text
.align 4
! This function is called when any SPARC trap (except window overflow or
! underflow) occurs. It makes sure that the invalid register window is still
! available before jumping into C code. It will also restore the world if you
! return from handle_exception.
!
! On entry, trap_low expects l1 and l2 to contain pc and npc respectivly.
.globl _trap_low
_trap_low:
mov %psr, %l0
mov %wim, %l3
srl %l3, %l0, %l4 ! wim >> cwp
and %l4, 0xff, %l4 ! Mask off windows 28, 29
cmp %l4, 1
bne window_fine ! Branch if not in the invalid window
nop
! Handle window overflow
mov %g1, %l4 ! Save g1, we use it to hold the wim
srl %l3, 1, %g1 ! Rotate wim right
and %g1, 0xff, %g1 ! Mask off windows 28, 29
tst %g1
bg good_wim ! Branch if new wim is non-zero
nop
! At this point, we need to bring a 1 into the high order bit of the wim.
! Since we don't want to make any assumptions about the number of register
! windows, we figure it out dynamically so as to setup the wim correctly.
! The normal way doesn't work on the sparclet as register windows
! 28 and 29 are special purpose windows.
!not %g1 ! Fill g1 with ones
!mov %g1, %wim ! Fill the wim with ones
!nop
!nop
!nop
!mov %wim, %g1 ! Read back the wim
!inc %g1 ! Now g1 has 1 just to left of wim
!srl %g1, 1, %g1 ! Now put 1 at top of wim
mov 0x80, %g1 ! Hack for sparclet
! This doesn't work on the sparclet.
!mov %g0, %wim ! Clear wim so that subsequent save
! won't trap
andn %l3, 0xff, %l5 ! Clear wim but not windows 28, 29
mov %l5, %wim
nop
nop
nop
good_wim:
save %g0, %g0, %g0 ! Slip into next window
mov %g1, %wim ! Install the new wim
std %l0, [%sp + 0 * 4] ! save L & I registers
std %l2, [%sp + 2 * 4]
std %l4, [%sp + 4 * 4]
std %l6, [%sp + 6 * 4]
std %i0, [%sp + 8 * 4]
std %i2, [%sp + 10 * 4]
std %i4, [%sp + 12 * 4]
std %i6, [%sp + 14 * 4]
restore ! Go back to trap window.
mov %l4, %g1 ! Restore %g1
window_fine:
sethi %hi(in_trap_handler), %l4
ld [%lo(in_trap_handler) + %l4], %l5
tst %l5
bg recursive_trap
inc %l5
set trapstack+1000*4, %sp ! Switch to trap stack
recursive_trap:
st %l5, [%lo(in_trap_handler) + %l4]
sub %sp,(16+1+6+1+88)*4,%sp ! Make room for input & locals
! + hidden arg + arg spill
! + doubleword alignment
! + registers[121]
std %g0, [%sp + (24 + 0) * 4] ! registers[Gx]
std %g2, [%sp + (24 + 2) * 4]
std %g4, [%sp + (24 + 4) * 4]
std %g6, [%sp + (24 + 6) * 4]
std %i0, [%sp + (24 + 8) * 4] ! registers[Ox]
std %i2, [%sp + (24 + 10) * 4]
std %i4, [%sp + (24 + 12) * 4]
std %i6, [%sp + (24 + 14) * 4]
! FP regs (sparclet doesn't have fpu)
mov %y, %l4
mov %tbr, %l5
st %l4, [%sp + (24 + 64) * 4] ! Y
st %l0, [%sp + (24 + 65) * 4] ! PSR
st %l3, [%sp + (24 + 66) * 4] ! WIM
st %l5, [%sp + (24 + 67) * 4] ! TBR
st %l1, [%sp + (24 + 68) * 4] ! PC
st %l2, [%sp + (24 + 69) * 4] ! NPC
! CPSR and FPSR not impl
or %l0, 0xf20, %l4
mov %l4, %psr ! Turn on traps, disable interrupts
nop
nop
nop
! Save coprocessor state.
! See SK/demo/hdlc_demo/ldc_swap_context.S.
mov %psr, %l0
sethi %hi(0x2000), %l5 ! EC bit in PSR
or %l5, %l0, %l5
mov %l5, %psr ! enable coprocessor
nop ! 3 nops after write to %psr (needed?)
nop
nop
crdcxt %ccsr, %l1 ! capture CCSR
mov 0x6, %l2
cwrcxt %l2, %ccsr ! set CCP state machine for CCFR
crdcxt %ccfr, %l2 ! capture CCOR
cwrcxt %l2, %ccfr ! tickle CCFR
crdcxt %ccfr, %l3 ! capture CCOBR
cwrcxt %l3, %ccfr ! tickle CCFR
crdcxt %ccfr, %l4 ! capture CCIBR
cwrcxt %l4, %ccfr ! tickle CCFR
crdcxt %ccfr, %l5 ! capture CCIR
cwrcxt %l5, %ccfr ! tickle CCFR
crdcxt %ccpr, %l6 ! capture CCPR
crdcxt %cccrcr, %l7 ! capture CCCRCR
st %l1, [%sp + (24 + 72) * 4] ! save CCSR
st %l2, [%sp + (24 + 75) * 4] ! save CCOR
st %l3, [%sp + (24 + 76) * 4] ! save CCOBR
st %l4, [%sp + (24 + 77) * 4] ! save CCIBR
st %l5, [%sp + (24 + 78) * 4] ! save CCIR
st %l6, [%sp + (24 + 73) * 4] ! save CCPR
st %l7, [%sp + (24 + 74) * 4] ! save CCCRCR
mov %l0, %psr ! restore original PSR
nop ! 3 nops after write to %psr (needed?)
nop
nop
! End of saving coprocessor state.
! Save asr regs
! Part of this is silly -- we should not display ASR15 or ASR19 at all.
sethi %hi(0x01000000), %l6
st %l6, [%sp + (24 + 81) * 4] ! ASR15 == NOP
sethi %hi(0xdeadc0de), %l6
or %l6, %lo(0xdeadc0de), %l6
st %l6, [%sp + (24 + 84) * 4] ! ASR19 == DEADC0DE
rd %asr1, %l4
st %l4, [%sp + (24 + 80) * 4]
! rd %asr15, %l4 ! must not read ASR15
! st %l4, [%sp + (24 + 81) * 4] ! (illegal instr trap)
rd %asr17, %l4
st %l4, [%sp + (24 + 82) * 4]
rd %asr18, %l4
st %l4, [%sp + (24 + 83) * 4]
! rd %asr19, %l4 ! must not read asr19
! st %l4, [%sp + (24 + 84) * 4] ! (halts the CPU)
rd %asr20, %l4
st %l4, [%sp + (24 + 85) * 4]
rd %asr21, %l4
st %l4, [%sp + (24 + 86) * 4]
rd %asr22, %l4
st %l4, [%sp + (24 + 87) * 4]
! End of saving asr regs
call _handle_exception
add %sp, 24 * 4, %o0 ! Pass address of registers
! Reload all of the registers that aren't on the stack
ld [%sp + (24 + 1) * 4], %g1 ! registers[Gx]
ldd [%sp + (24 + 2) * 4], %g2
ldd [%sp + (24 + 4) * 4], %g4
ldd [%sp + (24 + 6) * 4], %g6
ldd [%sp + (24 + 8) * 4], %i0 ! registers[Ox]
ldd [%sp + (24 + 10) * 4], %i2
ldd [%sp + (24 + 12) * 4], %i4
ldd [%sp + (24 + 14) * 4], %i6
! FP regs (sparclet doesn't have fpu)
! Update the coprocessor registers.
! See SK/demo/hdlc_demo/ldc_swap_context.S.
mov %psr, %l0
sethi %hi(0x2000), %l5 ! EC bit in PSR
or %l5, %l0, %l5
mov %l5, %psr ! enable coprocessor
nop ! 3 nops after write to %psr (needed?)
nop
nop
mov 0x6, %l2
cwrcxt %l2, %ccsr ! set CCP state machine for CCFR
ld [%sp + (24 + 72) * 4], %l1 ! saved CCSR
ld [%sp + (24 + 75) * 4], %l2 ! saved CCOR
ld [%sp + (24 + 76) * 4], %l3 ! saved CCOBR
ld [%sp + (24 + 77) * 4], %l4 ! saved CCIBR
ld [%sp + (24 + 78) * 4], %l5 ! saved CCIR
ld [%sp + (24 + 73) * 4], %l6 ! saved CCPR
ld [%sp + (24 + 74) * 4], %l7 ! saved CCCRCR
cwrcxt %l2, %ccfr ! restore CCOR
cwrcxt %l3, %ccfr ! restore CCOBR
cwrcxt %l4, %ccfr ! restore CCIBR
cwrcxt %l5, %ccfr ! restore CCIR
cwrcxt %l6, %ccpr ! restore CCPR
cwrcxt %l7, %cccrcr ! restore CCCRCR
cwrcxt %l1, %ccsr ! restore CCSR
mov %l0, %psr ! restore PSR
nop ! 3 nops after write to %psr (needed?)
nop
nop
! End of coprocessor handling stuff.
! Update asr regs
ld [%sp + (24 + 80) * 4], %l4
wr %l4, %asr1
! ld [%sp + (24 + 81) * 4], %l4 ! can't write asr15
! wr %l4, %asr15
ld [%sp + (24 + 82) * 4], %l4
wr %l4, %asr17
ld [%sp + (24 + 83) * 4], %l4
wr %l4, %asr18
! ld [%sp + (24 + 84) * 4], %l4 ! can't write asr19
! wr %l4, %asr19
! ld [%sp + (24 + 85) * 4], %l4 ! can't write asr20
! wr %l4, %asr20
! ld [%sp + (24 + 86) * 4], %l4 ! can't write asr21
! wr %l4, %asr21
ld [%sp + (24 + 87) * 4], %l4
wr %l4, %asr22
! End of restoring asr regs
ldd [%sp + (24 + 64) * 4], %l0 ! Y & PSR
ldd [%sp + (24 + 68) * 4], %l2 ! PC & NPC
restore ! Ensure that previous window is valid
save %g0, %g0, %g0 ! by causing a window_underflow trap
mov %l0, %y
mov %l1, %psr ! Make sure that traps are disabled
! for rett
nop ! 3 nops after write to %psr (needed?)
nop
nop
sethi %hi(in_trap_handler), %l4
ld [%lo(in_trap_handler) + %l4], %l5
dec %l5
st %l5, [%lo(in_trap_handler) + %l4]
jmpl %l2, %g0 ! Restore old PC
rett %l3 ! Restore old nPC
");
/* Convert ch from a hex digit to an int */
static int
hex(ch)
unsigned char ch;
{
if (ch >= 'a' && ch <= 'f')
return ch-'a'+10;
if (ch >= '0' && ch <= '9')
return ch-'0';
if (ch >= 'A' && ch <= 'F')
return ch-'A'+10;
return -1;
}
/* scan for the sequence $<data>#<checksum> */
static void
getpacket(buffer)
char *buffer;
{
unsigned char checksum;
unsigned char xmitcsum;
int i;
int count;
unsigned char ch;
do
{
/* wait around for the start character, ignore all other characters */
while ((ch = (getDebugChar() & 0x7f)) != '$')
;
checksum = 0;
xmitcsum = -1;
count = 0;
/* now, read until a # or end of buffer is found */
while (count < BUFMAX)
{
ch = getDebugChar() & 0x7f;
if (ch == '#')
break;
checksum = checksum + ch;
buffer[count] = ch;
count = count + 1;
}
if (count >= BUFMAX)
continue;
buffer[count] = 0;
if (ch == '#')
{
xmitcsum = hex(ch = getDebugChar() & 0x7f) << 4;
xmitcsum |= hex(ch = getDebugChar() & 0x7f);
if (checksum != xmitcsum)
putDebugChar('-'); /* failed checksum */
else
{
putDebugChar('+'); /* successful transfer */
/* if a sequence char is present, reply the sequence ID */
if (buffer[2] == ':')
{
putDebugChar(buffer[0]);
putDebugChar(buffer[1]);
/* remove sequence chars from buffer */
count = strlen(buffer);
for (i=3; i <= count; i++)
buffer[i-3] = buffer[i];
}
}
}
}
while (checksum != xmitcsum);
}
/* send the packet in buffer. */
static void
putpacket(buffer)
unsigned char *buffer;
{
unsigned char checksum;
int count;
unsigned char ch;
/* $<packet info>#<checksum>. */
do
{
putDebugChar('$');
checksum = 0;
count = 0;
while (ch = buffer[count])
{
putDebugChar(ch);
checksum += ch;
count += 1;
}
putDebugChar('#');
putDebugChar(hexchars[checksum >> 4]);
putDebugChar(hexchars[checksum & 0xf]);
}
while ((getDebugChar() & 0x7f) != '+');
}
static char remcomInBuffer[BUFMAX];
static char remcomOutBuffer[BUFMAX];
/* Indicate to caller of mem2hex or hex2mem that there has been an
error. */
static volatile int mem_err = 0;
/* Convert the memory pointed to by mem into hex, placing result in buf.
* Return a pointer to the last char put in buf (null), in case of mem fault,
* return 0.
* If MAY_FAULT is non-zero, then we will handle memory faults by returning
* a 0, else treat a fault like any other fault in the stub.
*/
static unsigned char *
mem2hex(mem, buf, count, may_fault)
unsigned char *mem;
unsigned char *buf;
int count;
int may_fault;
{
unsigned char ch;
set_mem_fault_trap(may_fault);
while (count-- > 0)
{
ch = *mem++;
if (mem_err)
return 0;
*buf++ = hexchars[ch >> 4];
*buf++ = hexchars[ch & 0xf];
}
*buf = 0;
set_mem_fault_trap(0);
return buf;
}
/* convert the hex array pointed to by buf into binary to be placed in mem
* return a pointer to the character AFTER the last byte written */
static char *
hex2mem(buf, mem, count, may_fault)
unsigned char *buf;
unsigned char *mem;
int count;
int may_fault;
{
int i;
unsigned char ch;
set_mem_fault_trap(may_fault);
for (i=0; i<count; i++)
{
ch = hex(*buf++) << 4;
ch |= hex(*buf++);
*mem++ = ch;
if (mem_err)
return 0;
}
set_mem_fault_trap(0);
return mem;
}
/* This table contains the mapping between SPARC hardware trap types, and
signals, which are primarily what GDB understands. It also indicates
which hardware traps we need to commandeer when initializing the stub. */
static struct hard_trap_info
{
unsigned char tt; /* Trap type code for SPARClite */
unsigned char signo; /* Signal that we map this trap into */
} hard_trap_info[] = {
{1, SIGSEGV}, /* instruction access exception */
{0x3b, SIGSEGV}, /* instruction access error */
{2, SIGILL}, /* illegal instruction */
{3, SIGILL}, /* privileged instruction */
{4, SIGEMT}, /* fp disabled */
{0x24, SIGEMT}, /* cp disabled */
{7, SIGBUS}, /* mem address not aligned */
{0x29, SIGSEGV}, /* data access exception */
{10, SIGEMT}, /* tag overflow */
{128+1, SIGTRAP}, /* ta 1 - normal breakpoint instruction */
{0, 0} /* Must be last */
};
/* Set up exception handlers for tracing and breakpoints */
void
set_debug_traps()
{
struct hard_trap_info *ht;
for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
exceptionHandler(ht->tt, trap_low);
/* In case GDB is started before us, ack any packets (presumably
"$?#xx") sitting there. */
putDebugChar ('+');
initialized = 1;
}
asm ("
! Trap handler for memory errors. This just sets mem_err to be non-zero. It
! assumes that %l1 is non-zero. This should be safe, as it is doubtful that
! 0 would ever contain code that could mem fault. This routine will skip
! past the faulting instruction after setting mem_err.
.text
.align 4
_fltr_set_mem_err:
sethi %hi(_mem_err), %l0
st %l1, [%l0 + %lo(_mem_err)]
jmpl %l2, %g0
rett %l2+4
");
static void
set_mem_fault_trap(enable)
int enable;
{
extern void fltr_set_mem_err();
mem_err = 0;
if (enable)
exceptionHandler(0x29, fltr_set_mem_err);
else
exceptionHandler(0x29, trap_low);
}
asm ("
.text
.align 4
_dummy_hw_breakpoint:
jmpl %l2, %g0
rett %l2+4
nop
nop
");
static void
set_hw_breakpoint_trap(enable)
int enable;
{
extern void dummy_hw_breakpoint();
if (enable)
exceptionHandler(255, dummy_hw_breakpoint);
else
exceptionHandler(255, trap_low);
}
static void
get_in_break_mode()
{
#if 0
int x;
mesg("get_in_break_mode, sp = ");
phex(&x);
#endif
set_hw_breakpoint_trap(1);
asm("
sethi %hi(0xff10), %l4
or %l4, %lo(0xff10), %l4
sta %g0, [%l4]0x1
nop
nop
nop
");
set_hw_breakpoint_trap(0);
}
/* Convert the SPARC hardware trap type code to a unix signal number. */
static int
computeSignal(tt)
int tt;
{
struct hard_trap_info *ht;
for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
if (ht->tt == tt)
return ht->signo;
return SIGHUP; /* default for things we don't know about */
}
/*
* While we find nice hex chars, build an int.
* Return number of chars processed.
*/
static int
hexToInt(char **ptr, int *intValue)
{
int numChars = 0;
int hexValue;
*intValue = 0;
while (**ptr)
{
hexValue = hex(**ptr);
if (hexValue < 0)
break;
*intValue = (*intValue << 4) | hexValue;
numChars ++;
(*ptr)++;
}
return (numChars);
}
/*
* This function does all command procesing for interfacing to gdb. It
* returns 1 if you should skip the instruction at the trap address, 0
* otherwise.
*/
static void
handle_exception (registers)
unsigned long *registers;
{
int tt; /* Trap type */
int sigval;
int addr;
int length;
char *ptr;
unsigned long *sp;
unsigned long dsr;
/* First, we must force all of the windows to be spilled out */
asm("
! Ugh. sparclet has broken save
!save %sp, -64, %sp
save
add %fp,-64,%sp
!save %sp, -64, %sp
save
add %fp,-64,%sp
!save %sp, -64, %sp
save
add %fp,-64,%sp
!save %sp, -64, %sp
save
add %fp,-64,%sp
!save %sp, -64, %sp
save
add %fp,-64,%sp
!save %sp, -64, %sp
save
add %fp,-64,%sp
!save %sp, -64, %sp
save
add %fp,-64,%sp
!save %sp, -64, %sp
save
add %fp,-64,%sp
restore
restore
restore
restore
restore
restore
restore
restore
");
if (registers[PC] == (unsigned long)breakinst)
{
registers[PC] = registers[NPC];
registers[NPC] += 4;
}
sp = (unsigned long *)registers[SP];
tt = (registers[TBR] >> 4) & 0xff;
/* reply to host that an exception has occurred */
sigval = computeSignal(tt);
ptr = remcomOutBuffer;
*ptr++ = 'T';
*ptr++ = hexchars[sigval >> 4];
*ptr++ = hexchars[sigval & 0xf];
*ptr++ = hexchars[PC >> 4];
*ptr++ = hexchars[PC & 0xf];
*ptr++ = ':';
ptr = mem2hex((char *)&registers[PC], ptr, 4, 0);
*ptr++ = ';';
*ptr++ = hexchars[FP >> 4];
*ptr++ = hexchars[FP & 0xf];
*ptr++ = ':';
ptr = mem2hex(sp + 8 + 6, ptr, 4, 0); /* FP */
*ptr++ = ';';
*ptr++ = hexchars[SP >> 4];
*ptr++ = hexchars[SP & 0xf];
*ptr++ = ':';
ptr = mem2hex((char *)&sp, ptr, 4, 0);
*ptr++ = ';';
*ptr++ = hexchars[NPC >> 4];
*ptr++ = hexchars[NPC & 0xf];
*ptr++ = ':';
ptr = mem2hex((char *)&registers[NPC], ptr, 4, 0);
*ptr++ = ';';
*ptr++ = hexchars[O7 >> 4];
*ptr++ = hexchars[O7 & 0xf];
*ptr++ = ':';
ptr = mem2hex((char *)&registers[O7], ptr, 4, 0);
*ptr++ = ';';
*ptr++ = 0;
putpacket(remcomOutBuffer);
while (1)
{
remcomOutBuffer[0] = 0;
getpacket(remcomInBuffer);
switch (remcomInBuffer[0])
{
case '?':
remcomOutBuffer[0] = 'S';
remcomOutBuffer[1] = hexchars[sigval >> 4];
remcomOutBuffer[2] = hexchars[sigval & 0xf];
remcomOutBuffer[3] = 0;
break;
case 'd':
remote_debug = !(remote_debug); /* toggle debug flag */
break;
case 'g': /* return the value of the CPU registers */
{
ptr = remcomOutBuffer;
ptr = mem2hex((char *)registers, ptr, 16 * 4, 0); /* G & O regs */
ptr = mem2hex(sp + 0, ptr, 16 * 4, 0); /* L & I regs */
memset(ptr, '0', 32 * 8); /* Floating point */
ptr = mem2hex((char *)&registers[Y],
ptr + 32 * 4 * 2,
8 * 4,
0); /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
ptr = mem2hex((char *)&registers[CCSR],
ptr,
8 * 4,
0); /* CCSR, CCPR, CCCRCR, CCOR, CCOBR, CCIBR, CCIR */
ptr = mem2hex((char *)&registers[ASR1],
ptr,
8 * 4,
0); /* ASR1,ASR15,ASR17,ASR18,ASR19,ASR20,ASR21,ASR22 */
#if 0 /* not implemented */
ptr = mem2hex((char *) &registers[AWR0],
ptr,
32 * 4,
0); /* Alternate Window Registers */
#endif
}
break;
case 'G': /* set value of all the CPU registers - return OK */
case 'P': /* set value of one CPU register - return OK */
{
unsigned long *newsp, psr;
psr = registers[PSR];
ptr = &remcomInBuffer[1];
if (remcomInBuffer[0] == 'P') /* do a single register */
{
int regno;
if (hexToInt (&ptr, &regno)
&& *ptr++ == '=')
if (regno >= L0 && regno <= I7)
hex2mem (ptr, sp + regno - L0, 4, 0);
else
hex2mem (ptr, (char *)&registers[regno], 4, 0);
else
{
strcpy (remcomOutBuffer, "P01");
break;
}
}
else
{
hex2mem(ptr, (char *)registers, 16 * 4, 0); /* G & O regs */
hex2mem(ptr + 16 * 4 * 2, sp + 0, 16 * 4, 0); /* L & I regs */
hex2mem(ptr + 64 * 4 * 2, (char *)&registers[Y],
8 * 4, 0); /* Y,PSR,WIM,TBR,PC,NPC,FPSR,CPSR */
hex2mem(ptr + 72 * 4 * 2, (char *)&registers[CCSR],
8 * 4, 0); /* CCSR,CCPR,CCCRCR,CCOR,CCOBR,CCIBR,CCIR */
hex2mem(ptr + 80 * 4 * 2, (char *)&registers[ASR1],
8 * 4, 0); /* ASR1 ... ASR22 */
#if 0 /* not implemented */
hex2mem(ptr + 88 * 4 * 2, (char *)&registers[AWR0],
8 * 4, 0); /* Alternate Window Registers */
#endif
}
/* See if the stack pointer has moved. If so, then copy the saved
locals and ins to the new location. This keeps the window
overflow and underflow routines happy. */
newsp = (unsigned long *)registers[SP];
if (sp != newsp)
sp = memcpy(newsp, sp, 16 * 4);
/* Don't allow CWP to be modified. */
if (psr != registers[PSR])
registers[PSR] = (psr & 0x1f) | (registers[PSR] & ~0x1f);
strcpy(remcomOutBuffer,"OK");
}
break;
case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
/* Try to read %x,%x. */
ptr = &remcomInBuffer[1];
if (hexToInt(&ptr, &addr)
&& *ptr++ == ','
&& hexToInt(&ptr, &length))
{
if (mem2hex((char *)addr, remcomOutBuffer, length, 1))
break;
strcpy (remcomOutBuffer, "E03");
}
else
strcpy(remcomOutBuffer,"E01");
break;
case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
/* Try to read '%x,%x:'. */
ptr = &remcomInBuffer[1];
if (hexToInt(&ptr, &addr)
&& *ptr++ == ','
&& hexToInt(&ptr, &length)
&& *ptr++ == ':')
{
if (hex2mem(ptr, (char *)addr, length, 1))
strcpy(remcomOutBuffer, "OK");
else
strcpy(remcomOutBuffer, "E03");
}
else
strcpy(remcomOutBuffer, "E02");
break;
case 'c': /* cAA..AA Continue at address AA..AA(optional) */
/* try to read optional parameter, pc unchanged if no parm */
ptr = &remcomInBuffer[1];
if (hexToInt(&ptr, &addr))
{
registers[PC] = addr;
registers[NPC] = addr + 4;
}
/* Need to flush the instruction cache here, as we may have deposited a
breakpoint, and the icache probably has no way of knowing that a data ref to
some location may have changed something that is in the instruction cache.
*/
flush_i_cache();
return;
/* kill the program */
case 'k' : /* do nothing */
break;
#if 0
case 't': /* Test feature */
asm (" std %f30,[%sp]");
break;
#endif
case 'r': /* Reset */
asm ("call 0
nop ");
break;
#if 0
Disabled until we can unscrew this properly
case 'b': /* bBB... Set baud rate to BB... */
{
int baudrate;
extern void set_timer_3();
ptr = &remcomInBuffer[1];
if (!hexToInt(&ptr, &baudrate))
{
strcpy(remcomOutBuffer,"B01");
break;
}
/* Convert baud rate to uart clock divider */
switch (baudrate)
{
case 38400:
baudrate = 16;
break;
case 19200:
baudrate = 33;
break;
case 9600:
baudrate = 65;
break;
default:
strcpy(remcomOutBuffer,"B02");
goto x1;
}
putpacket("OK"); /* Ack before changing speed */
set_timer_3(baudrate); /* Set it */
}
x1: break;
#endif
} /* switch */
/* reply to the request */
putpacket(remcomOutBuffer);
}
}
/* This function will generate a breakpoint exception. It is used at the
beginning of a program to sync up with a debugger and can be used
otherwise as a quick means to stop program execution and "break" into
the debugger. */
void
breakpoint()
{
if (!initialized)
return;
asm(" .globl _breakinst
_breakinst: ta 1
");
}
static void
hw_breakpoint()
{
asm("
ta 127
");
}
#if 0 /* experimental and never finished, left here for reference */
static void
splet_temp(void)
{
asm(" sub %sp,(16+1+6+1+121)*4,%sp ! Make room for input & locals
! + hidden arg + arg spill
! + doubleword alignment
! + registers[121]
! Leave a trail of breadcrumbs! (save register save area for debugging)
mov %sp, %l0
add %l0, 24*4, %l0
sethi %hi(_debug_registers), %l1
st %l0, [%lo(_debug_registers) + %l1]
! Save the Alternate Register Set: (not implemented yet)
! To save the Alternate Register set, we must:
! 1) Save the current SP in some global location.
! 2) Swap the register sets.
! 3) Save the Alternate SP in the Y register
! 4) Fetch the SP that we saved in step 1.
! 5) Use that to save the rest of the regs (not forgetting ASP in Y)
! 6) Restore the Alternate SP from Y
! 7) Swap the registers back.
! 1) Copy the current stack pointer to global _SAVED_STACK_POINTER:
sethi %hi(_saved_stack_pointer), %l0
st %sp, [%lo(_saved_stack_pointer) + %l0]
! 2) Swap the register sets:
mov %psr, %l1
sethi %hi(0x10000), %l2
xor %l1, %l2, %l1
mov %l1, %psr
nop ! 3 nops after write to %psr (needed?)
nop
nop
! 3) Save Alternate L0 in Y
wr %l0, 0, %y
! 4) Load former SP into alternate SP, using L0
sethi %hi(_saved_stack_pointer), %l0
or %lo(_saved_stack_pointer), %l0, %l0
swap [%l0], %sp
! 4.5) Restore alternate L0
rd %y, %l0
! 5) Save the Alternate Window Registers
st %r0, [%sp + (24 + 88) * 4] ! AWR0
st %r1, [%sp + (24 + 89) * 4] ! AWR1
st %r2, [%sp + (24 + 90) * 4] ! AWR2
st %r3, [%sp + (24 + 91) * 4] ! AWR3
st %r4, [%sp + (24 + 92) * 4] ! AWR4
st %r5, [%sp + (24 + 93) * 4] ! AWR5
st %r6, [%sp + (24 + 94) * 4] ! AWR6
st %r7, [%sp + (24 + 95) * 4] ! AWR7
st %r8, [%sp + (24 + 96) * 4] ! AWR8
st %r9, [%sp + (24 + 97) * 4] ! AWR9
st %r10, [%sp + (24 + 98) * 4] ! AWR10
st %r11, [%sp + (24 + 99) * 4] ! AWR11
st %r12, [%sp + (24 + 100) * 4] ! AWR12
st %r13, [%sp + (24 + 101) * 4] ! AWR13
! st %r14, [%sp + (24 + 102) * 4] ! AWR14 (SP)
st %r15, [%sp + (24 + 103) * 4] ! AWR15
st %r16, [%sp + (24 + 104) * 4] ! AWR16
st %r17, [%sp + (24 + 105) * 4] ! AWR17
st %r18, [%sp + (24 + 106) * 4] ! AWR18
st %r19, [%sp + (24 + 107) * 4] ! AWR19
st %r20, [%sp + (24 + 108) * 4] ! AWR20
st %r21, [%sp + (24 + 109) * 4] ! AWR21
st %r22, [%sp + (24 + 110) * 4] ! AWR22
st %r23, [%sp + (24 + 111) * 4] ! AWR23
st %r24, [%sp + (24 + 112) * 4] ! AWR24
st %r25, [%sp + (24 + 113) * 4] ! AWR25
st %r26, [%sp + (24 + 114) * 4] ! AWR26
st %r27, [%sp + (24 + 115) * 4] ! AWR27
st %r28, [%sp + (24 + 116) * 4] ! AWR28
st %r29, [%sp + (24 + 117) * 4] ! AWR29
st %r30, [%sp + (24 + 118) * 4] ! AWR30
st %r31, [%sp + (24 + 119) * 4] ! AWR21
! Get the Alternate PSR (I hope...)
rd %psr, %l2
st %l2, [%sp + (24 + 120) * 4] ! APSR
! Don't forget the alternate stack pointer
rd %y, %l3
st %l3, [%sp + (24 + 102) * 4] ! AWR14 (SP)
! 6) Restore the Alternate SP (saved in Y)
rd %y, %o6
! 7) Swap the registers back:
mov %psr, %l1
sethi %hi(0x10000), %l2
xor %l1, %l2, %l1
mov %l1, %psr
nop ! 3 nops after write to %psr (needed?)
nop
nop
");
}
#endif