1
0
mirror of git://sourceware.org/git/lvm2.git synced 2024-12-22 17:35:59 +03:00
lvm2/lib/metadata/pv.c
David Teigland d4e434d1e6 pvs: new attr and field for unchosen duplicate device
When there are duplicate devices for a PV, one device
is preferred and chosen to exist in the VG.  The other
devices are not used by lvm, but are displayed by pvs
with a new PV attr "d", indicating that they are
unchosen duplicate PVs.

The "duplicate" reporting field is set to "duplicate"
when the PV is an unchosen duplicate, and that field
is blank for the chosen PV.
2016-05-06 09:00:00 -05:00

420 lines
9.5 KiB
C

/*
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004-2010 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "lib.h"
#include "metadata.h"
#include "lvmcache.h"
/*
* FIXME: Check for valid handle before dereferencing field or log error?
*/
#define pv_field(handle, field) ((handle)->field)
char *pv_fmt_dup(const struct physical_volume *pv)
{
if (!pv->fmt)
return NULL;
return dm_pool_strdup(pv->vg->vgmem, pv->fmt->name);
}
char *pv_name_dup(struct dm_pool *mem, const struct physical_volume *pv)
{
return dm_pool_strdup(mem ? mem : pv->vg->vgmem, dev_name(pv->dev));
}
/*
* Gets/Sets for external LVM library
*/
struct id pv_id(const struct physical_volume *pv)
{
return pv_field(pv, id);
}
char *pv_uuid_dup(struct dm_pool *mem, const struct physical_volume *pv)
{
return id_format_and_copy(mem ? mem : pv->vg->vgmem, &pv->id);
}
char *pv_tags_dup(const struct physical_volume *pv)
{
return tags_format_and_copy(pv->vg->vgmem, &pv->tags);
}
const struct format_type *pv_format_type(const struct physical_volume *pv)
{
return pv_field(pv, fmt);
}
struct id pv_vgid(const struct physical_volume *pv)
{
return pv_field(pv, vgid);
}
struct device *pv_dev(const struct physical_volume *pv)
{
return pv_field(pv, dev);
}
const char *pv_vg_name(const struct physical_volume *pv)
{
/* Avoid exposing internal orphan names to users */
return (!is_orphan(pv)) ? pv_field(pv, vg_name) : "";
}
const char *pv_dev_name(const struct physical_volume *pv)
{
return dev_name(pv_dev(pv));
}
uint64_t pv_size(const struct physical_volume *pv)
{
return pv_field(pv, size);
}
uint64_t pv_dev_size(const struct physical_volume *pv)
{
uint64_t size;
if (!dev_get_size(pv->dev, &size))
size = 0;
return size;
}
uint64_t pv_size_field(const struct physical_volume *pv)
{
uint64_t size;
if (!pv->pe_count)
size = pv->size;
else
size = (uint64_t) pv->pe_count * pv->pe_size;
return size;
}
uint64_t pv_free(const struct physical_volume *pv)
{
uint64_t freespace;
if (!pv->vg || is_orphan_vg(pv->vg->name))
freespace = pv->size;
else
freespace = (uint64_t)
(pv->pe_count - pv->pe_alloc_count) * pv->pe_size;
return freespace;
}
uint64_t pv_status(const struct physical_volume *pv)
{
return pv_field(pv, status);
}
uint32_t pv_pe_size(const struct physical_volume *pv)
{
return pv_field(pv, pe_size);
}
uint64_t pv_ba_start(const struct physical_volume *pv)
{
return pv_field(pv, ba_start);
}
uint64_t pv_ba_size(const struct physical_volume *pv)
{
return pv_field(pv, ba_size);
}
uint64_t pv_pe_start(const struct physical_volume *pv)
{
return pv_field(pv, pe_start);
}
uint32_t pv_pe_count(const struct physical_volume *pv)
{
return pv_field(pv, pe_count);
}
uint32_t pv_pe_alloc_count(const struct physical_volume *pv)
{
return pv_field(pv, pe_alloc_count);
}
uint32_t pv_mda_count(const struct physical_volume *pv)
{
struct lvmcache_info *info;
info = lvmcache_info_from_pvid((const char *)&pv->id.uuid, 0);
return info ? lvmcache_mda_count(info) : UINT64_C(0);
}
static int _count_unignored(struct metadata_area *mda, void *baton)
{
uint32_t *count = baton;
if (!mda_is_ignored(mda))
(*count) ++;
return 1;
}
uint32_t pv_mda_used_count(const struct physical_volume *pv)
{
struct lvmcache_info *info;
uint32_t used_count=0;
info = lvmcache_info_from_pvid((const char *)&pv->id.uuid, 0);
if (!info)
return 0;
lvmcache_foreach_mda(info, _count_unignored, &used_count);
return used_count;
}
/**
* is_orphan - Determine whether a pv is an orphan based on its vg_name
* @pv: handle to the physical volume
*/
int is_orphan(const struct physical_volume *pv)
{
return is_orphan_vg(pv_field(pv, vg_name));
}
/**
* is_pv - Determine whether a pv is a real pv or dummy one
* @pv: handle to device
*/
int is_pv(const struct physical_volume *pv)
{
return (pv_field(pv, vg_name) ? 1 : 0);
}
int is_missing_pv(const struct physical_volume *pv)
{
return pv_field(pv, status) & MISSING_PV ? 1 : 0;
}
int is_used_pv(const struct physical_volume *pv)
{
struct lvmcache_info *info;
uint32_t ext_flags;
if (!pv->fmt)
return 0;
if (!is_orphan(pv))
return 1;
if (!(pv->fmt->features & FMT_PV_FLAGS))
return 0;
if (!(info = lvmcache_info_from_pvid((const char *)&pv->id, 0))) {
log_error("Failed to find cached info for PV %s.", pv_dev_name(pv));
return -1;
}
ext_flags = lvmcache_ext_flags(info);
return ext_flags & PV_EXT_USED ? 1 : 0;
}
char *pv_attr_dup(struct dm_pool *mem, const struct physical_volume *pv)
{
char *repstr;
int used = is_used_pv(pv);
int duplicate = lvmcache_dev_is_unchosen_duplicate(pv->dev);
if (!(repstr = dm_pool_zalloc(mem, 4))) {
log_error("dm_pool_alloc failed");
return NULL;
}
/*
* An allocatable PV is always used, so we don't need to show 'u'.
*/
if (duplicate)
repstr[0] = 'd';
else if (pv->status & ALLOCATABLE_PV)
repstr[0] = 'a';
else if (used > 0)
repstr[0] = 'u';
else
repstr[0] = '-';
repstr[1] = (pv->status & EXPORTED_VG) ? 'x' : '-';
repstr[2] = (pv->status & MISSING_PV) ? 'm' : '-';
return repstr;
}
uint64_t pv_mda_size(const struct physical_volume *pv)
{
struct lvmcache_info *info;
uint64_t min_mda_size = 0;
const char *pvid = (const char *)(&pv->id.uuid);
/* PVs could have 2 mdas of different sizes (rounding effect) */
if ((info = lvmcache_info_from_pvid(pvid, 0)))
min_mda_size = lvmcache_smallest_mda_size(info);
return min_mda_size;
}
static int _pv_mda_free(struct metadata_area *mda, void *baton)
{
uint64_t mda_free;
uint64_t *freespace = baton;
if (!mda->ops->mda_free_sectors)
return 1;
mda_free = mda->ops->mda_free_sectors(mda);
if (mda_free < *freespace)
*freespace = mda_free;
return 1;
}
uint64_t lvmcache_info_mda_free(struct lvmcache_info *info)
{
uint64_t freespace = UINT64_MAX;
if (info)
lvmcache_foreach_mda(info, _pv_mda_free, &freespace);
if (freespace == UINT64_MAX)
freespace = UINT64_C(0);
return freespace;
}
uint64_t pv_mda_free(const struct physical_volume *pv)
{
const char *pvid = (const char *)&pv->id.uuid;
struct lvmcache_info *info;
if ((info = lvmcache_info_from_pvid(pvid, 0)))
return lvmcache_info_mda_free(info);
return 0;
}
uint64_t pv_used(const struct physical_volume *pv)
{
uint64_t used;
if (!pv->pe_count)
used = 0LL;
else
used = (uint64_t) pv->pe_alloc_count * pv->pe_size;
return used;
}
struct _pv_mda_set_ignored_baton {
unsigned mda_ignored;
struct dm_list *mdas_in_use, *mdas_ignored, *mdas_to_change;
};
static int _pv_mda_set_ignored_one(struct metadata_area *mda, void *baton)
{
struct _pv_mda_set_ignored_baton *b = baton;
struct metadata_area *vg_mda, *tmda;
if (mda_is_ignored(mda) && !b->mda_ignored) {
/* Changing an ignored mda to one in_use requires moving it */
dm_list_iterate_items_safe(vg_mda, tmda, b->mdas_ignored)
if (mda_locns_match(mda, vg_mda)) {
mda_set_ignored(vg_mda, b->mda_ignored);
dm_list_move(b->mdas_in_use, &vg_mda->list);
}
}
dm_list_iterate_items_safe(vg_mda, tmda, b->mdas_in_use)
if (mda_locns_match(mda, vg_mda))
/* Don't move mda: needs writing to disk. */
mda_set_ignored(vg_mda, b->mda_ignored);
mda_set_ignored(mda, b->mda_ignored);
return 1;
}
unsigned pv_mda_set_ignored(const struct physical_volume *pv, unsigned mda_ignored)
{
struct lvmcache_info *info;
struct _pv_mda_set_ignored_baton baton;
struct metadata_area *mda;
if (!(info = lvmcache_info_from_pvid((const char *)&pv->id.uuid, 0)))
return_0;
baton.mda_ignored = mda_ignored;
baton.mdas_in_use = &pv->fid->metadata_areas_in_use;
baton.mdas_ignored = &pv->fid->metadata_areas_ignored;
baton.mdas_to_change = baton.mda_ignored ? baton.mdas_in_use : baton.mdas_ignored;
if (is_orphan(pv)) {
dm_list_iterate_items(mda, baton.mdas_to_change)
mda_set_ignored(mda, baton.mda_ignored);
return 1;
}
/*
* Do not allow disabling of the the last PV in a VG.
*/
if (pv_mda_used_count(pv) == vg_mda_used_count(pv->vg)) {
log_error("Cannot disable all metadata areas in volume group %s.",
pv->vg->name);
return 0;
}
/*
* Non-orphan case is more complex.
* If the PV's mdas are ignored, and we wish to un-ignore,
* we clear the bit and move them from the ignored mda list to the
* in_use list, ensuring the new state will get written to disk
* in the vg_write() path.
* If the PV's mdas are not ignored, and we are setting
* them to ignored, we set the bit but leave them on the in_use
* list, ensuring the new state will get written to disk in the
* vg_write() path.
*/
/* FIXME: Try not to update the cache here! Also, try to iterate over
* PV mdas only using the format instance's index somehow
* (i.e. try to avoid using mda_locn_match call). */
lvmcache_foreach_mda(info, _pv_mda_set_ignored_one, &baton);
return 1;
}
struct label *pv_label(const struct physical_volume *pv)
{
struct lvmcache_info *info =
lvmcache_info_from_pvid((const char *)&pv->id.uuid, 0);
if (info)
return lvmcache_get_label(info);
/* process_each_pv() may create dummy PVs that have no label */
if (pv->vg && pv->dev)
log_error(INTERNAL_ERROR "PV %s unexpectedly not in cache.",
dev_name(pv->dev));
return NULL;
}