mirror of
git://sourceware.org/git/lvm2.git
synced 2025-01-21 22:04:19 +03:00
8a2fc58645
Add some cflow & scope support. Separate out DEFS from CFLAGS. Remove inlines and use unique function names.
204 lines
6.3 KiB
C
204 lines
6.3 KiB
C
/*
|
|
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
|
|
* Copyright (C) 2004 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* This file is part of LVM2.
|
|
*
|
|
* This copyrighted material is made available to anyone wishing to use,
|
|
* modify, copy, or redistribute it subject to the terms and conditions
|
|
* of the GNU General Public License v.2.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#ifndef _LVM_LIST_H
|
|
#define _LVM_LIST_H
|
|
|
|
#include <assert.h>
|
|
|
|
/*
|
|
* A list consists of a list head plus elements.
|
|
* Each element has 'next' and 'previous' pointers.
|
|
* The list head's pointers point to the first and the last element.
|
|
*/
|
|
|
|
struct list {
|
|
struct list *n, *p;
|
|
};
|
|
|
|
/*
|
|
* Initialise a list before use.
|
|
* The list head's next and previous pointers point back to itself.
|
|
*/
|
|
#define LIST_INIT(name) struct list name = { &(name), &(name) }
|
|
void list_init(struct list *head);
|
|
|
|
/*
|
|
* Insert an element before 'head'.
|
|
* If 'head' is the list head, this adds an element to the end of the list.
|
|
*/
|
|
void list_add(struct list *head, struct list *elem);
|
|
|
|
/*
|
|
* Insert an element after 'head'.
|
|
* If 'head' is the list head, this adds an element to the front of the list.
|
|
*/
|
|
void list_add_h(struct list *head, struct list *elem);
|
|
|
|
/*
|
|
* Delete an element from its list.
|
|
* Note that this doesn't change the element itself - it may still be safe
|
|
* to follow its pointers.
|
|
*/
|
|
void list_del(struct list *elem);
|
|
|
|
/*
|
|
* Is the list empty?
|
|
*/
|
|
int list_empty(struct list *head);
|
|
|
|
/*
|
|
* Is this the first element of the list?
|
|
*/
|
|
int list_start(struct list *head, struct list *elem);
|
|
|
|
/*
|
|
* Is this the last element of the list?
|
|
*/
|
|
int list_end(struct list *head, struct list *elem);
|
|
|
|
/*
|
|
* Return first element of the list or NULL if empty
|
|
*/
|
|
struct list *list_first(struct list *head);
|
|
|
|
/*
|
|
* Return last element of the list or NULL if empty
|
|
*/
|
|
struct list *list_last(struct list *head);
|
|
|
|
/*
|
|
* Return the previous element of the list, or NULL if we've reached the start.
|
|
*/
|
|
struct list *list_prev(struct list *head, struct list *elem);
|
|
|
|
/*
|
|
* Return the next element of the list, or NULL if we've reached the end.
|
|
*/
|
|
struct list *list_next(struct list *head, struct list *elem);
|
|
|
|
/*
|
|
* Given the address v of an instance of 'struct list' called 'head'
|
|
* contained in a structure of type t, return the containing structure.
|
|
*/
|
|
#define list_struct_base(v, t, head) \
|
|
((t *)((uintptr_t)(v) - (uintptr_t)&((t *) 0)->head))
|
|
|
|
/*
|
|
* Given the address v of an instance of 'struct list list' contained in
|
|
* a structure of type t, return the containing structure.
|
|
*/
|
|
#define list_item(v, t) list_struct_base((v), t, list)
|
|
|
|
/*
|
|
* Given the address v of one known element e in a known structure of type t,
|
|
* return another element f.
|
|
*/
|
|
#define struct_field(v, t, e, f) \
|
|
(((t *)((uintptr_t)(v) - (uintptr_t)&((t *) 0)->e))->f)
|
|
|
|
/*
|
|
* Given the address v of a known element e in a known structure of type t,
|
|
* return the list head 'list'
|
|
*/
|
|
#define list_head(v, t, e) struct_field(v, t, e, list)
|
|
|
|
/*
|
|
* Set v to each element of a list in turn.
|
|
*/
|
|
#define list_iterate(v, head) \
|
|
for (v = (head)->n; v != head; v = v->n)
|
|
|
|
/*
|
|
* Set v to each element in a list in turn, starting from the element
|
|
* in front of 'start'.
|
|
* You can use this to 'unwind' a list_iterate and back out actions on
|
|
* already-processed elements.
|
|
* If 'start' is 'head' it walks the list backwards.
|
|
*/
|
|
#define list_uniterate(v, head, start) \
|
|
for (v = (start)->p; v != head; v = v->p)
|
|
|
|
/*
|
|
* A safe way to walk a list and delete and free some elements along
|
|
* the way.
|
|
* t must be defined as a temporary variable of the same type as v.
|
|
*/
|
|
#define list_iterate_safe(v, t, head) \
|
|
for (v = (head)->n, t = v->n; v != head; v = t, t = v->n)
|
|
|
|
/*
|
|
* Walk a list, setting 'v' in turn to the containing structure of each item.
|
|
* The containing structure should be the same type as 'v'.
|
|
* The 'struct list' variable within the containing structure is 'field'.
|
|
*/
|
|
#define list_iterate_items_gen(v, head, field) \
|
|
for (v = list_struct_base((head)->n, typeof(*v), field); \
|
|
&v->field != (head); \
|
|
v = list_struct_base(v->field.n, typeof(*v), field))
|
|
|
|
/*
|
|
* Walk a list, setting 'v' in turn to the containing structure of each item.
|
|
* The containing structure should be the same type as 'v'.
|
|
* The list should be 'struct list list' within the containing structure.
|
|
*/
|
|
#define list_iterate_items(v, head) list_iterate_items_gen(v, (head), list)
|
|
|
|
/*
|
|
* Walk a list, setting 'v' in turn to the containing structure of each item.
|
|
* The containing structure should be the same type as 'v'.
|
|
* The 'struct list' variable within the containing structure is 'field'.
|
|
* t must be defined as a temporary variable of the same type as v.
|
|
*/
|
|
#define list_iterate_items_gen_safe(v, t, head, field) \
|
|
for (v = list_struct_base((head)->n, typeof(*v), field), \
|
|
t = list_struct_base(v->field.n, typeof(*v), field); \
|
|
&v->field != (head); \
|
|
v = t, t = list_struct_base(v->field.n, typeof(*v), field))
|
|
/*
|
|
* Walk a list, setting 'v' in turn to the containing structure of each item.
|
|
* The containing structure should be the same type as 'v'.
|
|
* The list should be 'struct list list' within the containing structure.
|
|
* t must be defined as a temporary variable of the same type as v.
|
|
*/
|
|
#define list_iterate_items_safe(v, t, head) \
|
|
list_iterate_items_gen_safe(v, t, (head), list)
|
|
|
|
/*
|
|
* Walk a list backwards, setting 'v' in turn to the containing structure
|
|
* of each item.
|
|
* The containing structure should be the same type as 'v'.
|
|
* The 'struct list' variable within the containing structure is 'field'.
|
|
*/
|
|
#define list_iterate_back_items_gen(v, head, field) \
|
|
for (v = list_struct_base((head)->p, typeof(*v), field); \
|
|
&v->field != (head); \
|
|
v = list_struct_base(v->field.p, typeof(*v), field))
|
|
|
|
/*
|
|
* Walk a list backwards, setting 'v' in turn to the containing structure
|
|
* of each item.
|
|
* The containing structure should be the same type as 'v'.
|
|
* The list should be 'struct list list' within the containing structure.
|
|
*/
|
|
#define list_iterate_back_items(v, head) list_iterate_back_items_gen(v, (head), list)
|
|
|
|
/*
|
|
* Return the number of elements in a list by walking it.
|
|
*/
|
|
unsigned int list_size(const struct list *head);
|
|
|
|
#endif
|