mirror of
git://sourceware.org/git/lvm2.git
synced 2025-01-03 05:18:29 +03:00
341 lines
6.3 KiB
C
341 lines
6.3 KiB
C
/*
|
|
* dm-table.c
|
|
*
|
|
* Copyright (C) 2001 Sistina Software (UK) Limited.
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
/*
|
|
* Changelog
|
|
*
|
|
* 16/08/2001 - First version [Joe Thornber]
|
|
*/
|
|
|
|
#include "dm.h"
|
|
|
|
/* ceiling(n / size) * size */
|
|
static inline ulong round_up(ulong n, ulong size)
|
|
{
|
|
ulong r = n % size;
|
|
return n + (r ? (size - r) : 0);
|
|
}
|
|
|
|
/* ceiling(n / size) */
|
|
static inline ulong div_up(ulong n, ulong size)
|
|
{
|
|
return round_up(n, size) / size;
|
|
}
|
|
|
|
/* similar to ceiling(log_size(n)) */
|
|
static uint int_log(ulong n, ulong base)
|
|
{
|
|
int result = 0;
|
|
|
|
while (n > 1) {
|
|
n = div_up(n, base);
|
|
result++;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* return the highest key that you could lookup
|
|
* from the n'th node on level l of the btree.
|
|
*/
|
|
static offset_t high(struct dm_table *t, int l, int n)
|
|
{
|
|
for (; l < t->depth - 1; l++)
|
|
n = get_child(n, CHILDREN_PER_NODE - 1);
|
|
|
|
if (n >= t->counts[l])
|
|
return (offset_t) -1;
|
|
|
|
return get_node(t, l, n)[KEYS_PER_NODE - 1];
|
|
}
|
|
|
|
/*
|
|
* fills in a level of the btree based on the
|
|
* highs of the level below it.
|
|
*/
|
|
static int setup_btree_index(int l, struct dm_table *t)
|
|
{
|
|
int n, k;
|
|
offset_t *node;
|
|
|
|
for (n = 0; n < t->counts[l]; n++) {
|
|
node = get_node(t, l, n);
|
|
|
|
for (k = 0; k < KEYS_PER_NODE; k++)
|
|
node[k] = high(t, l + 1, get_child(n, k));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* highs, and targets are managed as dynamic
|
|
* arrays during a table load.
|
|
*/
|
|
static int alloc_targets(struct dm_table *t, int num)
|
|
{
|
|
offset_t *n_highs;
|
|
struct target *n_targets;
|
|
int n = t->num_targets;
|
|
int size = (sizeof(struct target) + sizeof(offset_t)) * num;
|
|
|
|
n_highs = vmalloc(size);
|
|
if (!n_highs)
|
|
return -ENOMEM;
|
|
|
|
n_targets = (struct target *) (n_highs + num);
|
|
|
|
if (n) {
|
|
memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
|
|
memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
|
|
}
|
|
|
|
vfree(t->highs);
|
|
|
|
t->num_allocated = num;
|
|
t->highs = n_highs;
|
|
t->targets = n_targets;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct dm_table *dm_table_create(void)
|
|
{
|
|
struct dm_table *t = kmalloc(sizeof(struct dm_table), GFP_NOIO);
|
|
|
|
if (!t)
|
|
return 0;
|
|
|
|
memset(t, 0, sizeof(*t));
|
|
INIT_LIST_HEAD(&t->devices);
|
|
|
|
/* allocate a single nodes worth of targets to
|
|
begin with */
|
|
if (alloc_targets(t, KEYS_PER_NODE)) {
|
|
kfree(t);
|
|
t = 0;
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
static void free_devices(struct list_head *devices)
|
|
{
|
|
struct list_head *tmp, *next;
|
|
|
|
for (tmp = devices->next; tmp != devices; tmp = next) {
|
|
struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
|
|
next = tmp->next;
|
|
kfree(dd);
|
|
}
|
|
}
|
|
|
|
void dm_table_destroy(struct dm_table *t)
|
|
{
|
|
int i;
|
|
|
|
/* free the indexes (see dm_table_complete) */
|
|
if (t->depth >= 2)
|
|
vfree(t->index[t->depth - 2]);
|
|
|
|
|
|
/* free the targets */
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
struct target *tgt = &t->targets[i];
|
|
if (tgt->type->dtr)
|
|
tgt->type->dtr(t, tgt->private);
|
|
}
|
|
|
|
vfree(t->highs);
|
|
|
|
/* free the device list */
|
|
if (t->devices.next != &t->devices) {
|
|
WARN("there are still devices present, someone isn't "
|
|
"calling dm_table_remove_device");
|
|
|
|
free_devices(&t->devices);
|
|
}
|
|
|
|
kfree(t);
|
|
}
|
|
|
|
/*
|
|
* Checks to see if we need to extend
|
|
* highs or targets.
|
|
*/
|
|
static inline int check_space(struct dm_table *t)
|
|
{
|
|
if (t->num_targets >= t->num_allocated)
|
|
return alloc_targets(t, t->num_allocated * 2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* convert a device path to a kdev_t.
|
|
*/
|
|
int lookup_device(const char *path, kdev_t *dev)
|
|
{
|
|
int r;
|
|
struct nameidata nd;
|
|
struct inode *inode;
|
|
|
|
if (!path_init(path, LOOKUP_FOLLOW, &nd))
|
|
return 0;
|
|
|
|
if ((r = path_walk(path, &nd)))
|
|
goto bad;
|
|
|
|
inode = nd.dentry->d_inode;
|
|
if (!inode) {
|
|
r = -ENOENT;
|
|
goto bad;
|
|
}
|
|
|
|
if (!S_ISBLK(inode->i_mode)) {
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
|
|
*dev = inode->i_rdev;
|
|
|
|
bad:
|
|
path_release(&nd);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* see if we've already got a device in the list.
|
|
*/
|
|
static struct dm_dev *find_device(struct list_head *l, kdev_t dev)
|
|
{
|
|
struct list_head *tmp;
|
|
|
|
for (tmp = l->next; tmp != l; tmp = tmp->next) {
|
|
|
|
struct dm_dev *dd = list_entry(tmp, struct dm_dev, list);
|
|
if (dd->dev == dev)
|
|
return dd;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* add a device to the list, or just increment the
|
|
* usage count if it's already present.
|
|
*/
|
|
int dm_table_get_device(struct dm_table *t, const char *path,
|
|
struct dm_dev **result)
|
|
{
|
|
int r;
|
|
kdev_t dev;
|
|
struct dm_dev *dd;
|
|
|
|
/* convert the path to a device */
|
|
if ((r = lookup_device(path, &dev)))
|
|
return r;
|
|
|
|
dd = find_device(&t->devices, dev);
|
|
if (!dd) {
|
|
dd = kmalloc(sizeof(*dd), GFP_KERNEL);
|
|
if (!dd)
|
|
return -ENOMEM;
|
|
|
|
dd->dev = dev;
|
|
dd->bd = 0;
|
|
atomic_set(&dd->count, 0);
|
|
list_add(&dd->list, &t->devices);
|
|
}
|
|
atomic_inc(&dd->count);
|
|
*result = dd;
|
|
|
|
return 0;
|
|
}
|
|
/*
|
|
* decrement a devices use count and remove it if
|
|
* neccessary.
|
|
*/
|
|
void dm_table_put_device(struct dm_table *t, struct dm_dev *dd)
|
|
{
|
|
if (atomic_dec_and_test(&dd->count)) {
|
|
list_del(&dd->list);
|
|
kfree(dd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* adds a target to the map
|
|
*/
|
|
int dm_table_add_target(struct dm_table *t, offset_t high,
|
|
struct target_type *type, void *private)
|
|
{
|
|
int r, n;
|
|
|
|
if ((r = check_space(t)))
|
|
return r;
|
|
|
|
n = t->num_targets++;
|
|
t->highs[n] = high;
|
|
t->targets[n].type = type;
|
|
t->targets[n].private = private;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int setup_indexes(struct dm_table *t)
|
|
{
|
|
int i, total = 0;
|
|
offset_t *indexes;
|
|
|
|
/* allocate the space for *all* the indexes */
|
|
for (i = t->depth - 2; i >= 0; i--) {
|
|
t->counts[i] = div_up(t->counts[i + 1], CHILDREN_PER_NODE);
|
|
total += t->counts[i];
|
|
}
|
|
|
|
if (!(indexes = vmalloc(NODE_SIZE * total)))
|
|
return -ENOMEM;
|
|
|
|
/* set up internal nodes, bottom-up */
|
|
for (i = t->depth - 2, total = 0; i >= 0; i--) {
|
|
t->index[i] = indexes + (KEYS_PER_NODE * t->counts[i]);
|
|
setup_btree_index(i, t);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* builds the btree to index the map
|
|
*/
|
|
int dm_table_complete(struct dm_table *t)
|
|
{
|
|
int leaf_nodes, r = 0;
|
|
|
|
/* how many indexes will the btree have ? */
|
|
leaf_nodes = div_up(t->num_targets, KEYS_PER_NODE);
|
|
t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
|
|
|
|
/* leaf layer has already been set up */
|
|
t->counts[t->depth - 1] = leaf_nodes;
|
|
t->index[t->depth - 1] = t->highs;
|
|
|
|
if (t->depth >= 2)
|
|
r = setup_indexes(t);
|
|
|
|
return r;
|
|
}
|
|
|
|
EXPORT_SYMBOL(dm_table_get_device);
|
|
EXPORT_SYMBOL(dm_table_put_device);
|