1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-18 10:04:20 +03:00
lvm2/lib/raid/raid.c
2013-09-30 08:17:56 +02:00

540 lines
14 KiB
C

/*
* Copyright (C) 2011 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "lib.h"
#include "toolcontext.h"
#include "segtype.h"
#include "display.h"
#include "text_export.h"
#include "text_import.h"
#include "config.h"
#include "str_list.h"
#include "targets.h"
#include "lvm-string.h"
#include "activate.h"
#include "metadata.h"
#include "lv_alloc.h"
#include "defaults.h"
static const char *_raid_name(const struct lv_segment *seg)
{
return seg->segtype->name;
}
static int _raid_text_import_area_count(const struct dm_config_node *sn,
uint32_t *area_count)
{
if (!dm_config_get_uint32(sn, "device_count", area_count)) {
log_error("Couldn't read 'device_count' for "
"segment '%s'.", dm_config_parent_name(sn));
return 0;
}
return 1;
}
static int _raid_text_import_areas(struct lv_segment *seg,
const struct dm_config_node *sn,
const struct dm_config_value *cv)
{
unsigned int s;
struct logical_volume *lv1;
const char *seg_name = dm_config_parent_name(sn);
if (!seg->area_count) {
log_error("No areas found for segment %s", seg_name);
return 0;
}
for (s = 0; cv && s < seg->area_count; s++, cv = cv->next) {
if (cv->type != DM_CFG_STRING) {
log_error("Bad volume name in areas array for segment %s.", seg_name);
return 0;
}
if (!cv->next) {
log_error("Missing data device in areas array for segment %s.", seg_name);
return 0;
}
/* Metadata device comes first */
if (!(lv1 = find_lv(seg->lv->vg, cv->v.str))) {
log_error("Couldn't find volume '%s' for segment '%s'.",
cv->v.str ? : "NULL", seg_name);
return 0;
}
if (!set_lv_segment_area_lv(seg, s, lv1, 0, RAID_META))
return_0;
/* Data device comes second */
cv = cv->next;
if (!(lv1 = find_lv(seg->lv->vg, cv->v.str))) {
log_error("Couldn't find volume '%s' for segment '%s'.",
cv->v.str ? : "NULL", seg_name);
return 0;
}
if (!set_lv_segment_area_lv(seg, s, lv1, 0, RAID_IMAGE))
return_0;
}
/*
* Check we read the correct number of RAID data/meta pairs.
*/
if (cv || (s < seg->area_count)) {
log_error("Incorrect number of areas in area array "
"for segment '%s'.", seg_name);
return 0;
}
return 1;
}
static int _raid_text_import(struct lv_segment *seg,
const struct dm_config_node *sn,
struct dm_hash_table *pv_hash)
{
const struct dm_config_value *cv;
if (dm_config_has_node(sn, "region_size")) {
if (!dm_config_get_uint32(sn, "region_size", &seg->region_size)) {
log_error("Couldn't read 'region_size' for "
"segment %s of logical volume %s.",
dm_config_parent_name(sn), seg->lv->name);
return 0;
}
}
if (dm_config_has_node(sn, "stripe_size")) {
if (!dm_config_get_uint32(sn, "stripe_size", &seg->stripe_size)) {
log_error("Couldn't read 'stripe_size' for "
"segment %s of logical volume %s.",
dm_config_parent_name(sn), seg->lv->name);
return 0;
}
}
if (dm_config_has_node(sn, "writebehind")) {
if (!dm_config_get_uint32(sn, "writebehind", &seg->writebehind)) {
log_error("Couldn't read 'writebehind' for "
"segment %s of logical volume %s.",
dm_config_parent_name(sn), seg->lv->name);
return 0;
}
}
if (dm_config_has_node(sn, "min_recovery_rate")) {
if (!dm_config_get_uint32(sn, "min_recovery_rate",
&seg->min_recovery_rate)) {
log_error("Couldn't read 'min_recovery_rate' for "
"segment %s of logical volume %s.",
dm_config_parent_name(sn), seg->lv->name);
return 0;
}
}
if (dm_config_has_node(sn, "max_recovery_rate")) {
if (!dm_config_get_uint32(sn, "max_recovery_rate",
&seg->max_recovery_rate)) {
log_error("Couldn't read 'max_recovery_rate' for "
"segment %s of logical volume %s.",
dm_config_parent_name(sn), seg->lv->name);
return 0;
}
}
if (!dm_config_get_list(sn, "raids", &cv)) {
log_error("Couldn't find RAID array for "
"segment %s of logical volume %s.",
dm_config_parent_name(sn), seg->lv->name);
return 0;
}
if (!_raid_text_import_areas(seg, sn, cv)) {
log_error("Failed to import RAID images");
return 0;
}
seg->status |= RAID;
return 1;
}
static int _raid_text_export(const struct lv_segment *seg, struct formatter *f)
{
outf(f, "device_count = %u", seg->area_count);
if (seg->region_size)
outf(f, "region_size = %" PRIu32, seg->region_size);
if (seg->stripe_size)
outf(f, "stripe_size = %" PRIu32, seg->stripe_size);
if (seg->writebehind)
outf(f, "writebehind = %" PRIu32, seg->writebehind);
if (seg->min_recovery_rate)
outf(f, "min_recovery_rate = %" PRIu32, seg->min_recovery_rate);
if (seg->max_recovery_rate)
outf(f, "max_recovery_rate = %" PRIu32, seg->max_recovery_rate);
return out_areas(f, seg, "raid");
}
static int _raid_add_target_line(struct dev_manager *dm __attribute__((unused)),
struct dm_pool *mem __attribute__((unused)),
struct cmd_context *cmd __attribute__((unused)),
void **target_state __attribute__((unused)),
struct lv_segment *seg,
const struct lv_activate_opts *laopts __attribute__((unused)),
struct dm_tree_node *node, uint64_t len,
uint32_t *pvmove_mirror_count __attribute__((unused)))
{
uint32_t s;
uint64_t flags = 0;
uint64_t rebuilds = 0;
uint64_t writemostly = 0;
struct dm_tree_node_raid_params params;
memset(&params, 0, sizeof(params));
if (!seg->area_count) {
log_error(INTERNAL_ERROR "_raid_add_target_line called "
"with no areas for %s.", seg->lv->name);
return 0;
}
/*
* 64 device restriction imposed by kernel as well. It is
* not strictly a userspace limitation.
*/
if (seg->area_count > 64) {
log_error("Unable to handle more than 64 devices in a "
"single RAID array");
return 0;
}
if (!seg->region_size) {
log_error("Missing region size for mirror segment.");
return 0;
}
for (s = 0; s < seg->area_count; s++)
if (seg_lv(seg, s)->status & LV_REBUILD)
rebuilds |= 1 << s;
for (s = 0; s < seg->area_count; s++)
if (seg_lv(seg, s)->status & LV_WRITEMOSTLY)
writemostly |= 1 << s;
if (mirror_in_sync())
flags = DM_NOSYNC;
params.raid_type = _raid_name(seg);
if (seg->segtype->parity_devs) {
/* RAID 4/5/6 */
params.mirrors = 1;
params.stripes = seg->area_count - seg->segtype->parity_devs;
} else if (strcmp(seg->segtype->name, "raid10")) {
/* RAID 10 only supports 2 mirrors now */
params.mirrors = 2;
params.stripes = seg->area_count / 2;
} else {
/* RAID 1 */
params.mirrors = seg->area_count;
params.stripes = 1;
params.writebehind = seg->writebehind;
}
params.region_size = seg->region_size;
params.stripe_size = seg->stripe_size;
params.rebuilds = rebuilds;
params.writemostly = writemostly;
params.min_recovery_rate = seg->min_recovery_rate;
params.max_recovery_rate = seg->max_recovery_rate;
params.flags = flags;
if (!dm_tree_node_add_raid_target_with_params(node, len, &params))
return_0;
return add_areas_line(dm, seg, node, 0u, seg->area_count);
}
static int _raid_target_status_compatible(const char *type)
{
return (strstr(type, "raid") != NULL);
}
static int _raid_modules_needed(struct dm_pool *mem,
const struct lv_segment *seg __attribute__((unused)),
struct dm_list *modules)
{
if (!str_list_add(mem, modules, "raid")) {
log_error("raid module string list allocation failed");
return 0;
}
return 1;
}
static void _raid_destroy(struct segment_type *segtype)
{
dm_free((void *) segtype);
}
#ifdef DEVMAPPER_SUPPORT
static int _raid_target_percent(void **target_state,
percent_t *percent,
struct dm_pool *mem,
struct cmd_context *cmd,
struct lv_segment *seg, char *params,
uint64_t *total_numerator,
uint64_t *total_denominator)
{
int i;
uint64_t numerator, denominator;
char *pos = params;
/*
* Status line:
* <raid_type> <#devs> <status_chars> <synced>/<total>
* Example:
* raid1 2 AA 1024000/1024000
*/
for (i = 0; i < 3; i++) {
pos = strstr(pos, " ");
if (pos)
pos++;
else
break;
}
if (!pos || (sscanf(pos, "%" PRIu64 "/%" PRIu64 "%n",
&numerator, &denominator, &i) != 2)) {
log_error("Failed to parse %s status fraction: %s",
(seg) ? seg->segtype->name : "segment", params);
return 0;
}
*total_numerator += numerator;
*total_denominator += denominator;
if (seg)
seg->extents_copied = seg->area_len * numerator / denominator;
*percent = make_percent(numerator, denominator);
return 1;
}
static int _raid_target_present(struct cmd_context *cmd,
const struct lv_segment *seg __attribute__((unused)),
unsigned *attributes __attribute__((unused)))
{
static int _raid_checked = 0;
static int _raid_present = 0;
if (!_raid_checked)
_raid_present = target_present(cmd, "raid", 1);
_raid_checked = 1;
return _raid_present;
}
#ifdef DMEVENTD
static const char *_get_raid_dso_path(struct cmd_context *cmd)
{
const char *config_str = find_config_tree_str(cmd, dmeventd_raid_library_CFG, NULL);
return get_monitor_dso_path(cmd, config_str);
}
static int _raid_target_monitored(struct lv_segment *seg, int *pending)
{
struct cmd_context *cmd = seg->lv->vg->cmd;
const char *dso_path = _get_raid_dso_path(cmd);
return target_registered_with_dmeventd(cmd, dso_path, seg->lv, pending);
}
static int _raid_set_events(struct lv_segment *seg, int evmask, int set)
{
struct cmd_context *cmd = seg->lv->vg->cmd;
const char *dso_path = _get_raid_dso_path(cmd);
return target_register_events(cmd, dso_path, seg->lv, evmask, set, 0);
}
static int _raid_target_monitor_events(struct lv_segment *seg, int events)
{
return _raid_set_events(seg, events, 1);
}
static int _raid_target_unmonitor_events(struct lv_segment *seg, int events)
{
return _raid_set_events(seg, events, 0);
}
#endif /* DEVMAPPER_SUPPORT */
#endif /* DMEVENTD */
static struct segtype_handler _raid_ops = {
.name = _raid_name,
.text_import_area_count = _raid_text_import_area_count,
.text_import = _raid_text_import,
.text_export = _raid_text_export,
.add_target_line = _raid_add_target_line,
.target_status_compatible = _raid_target_status_compatible,
#ifdef DEVMAPPER_SUPPORT
.target_percent = _raid_target_percent,
.target_present = _raid_target_present,
# ifdef DMEVENTD
.target_monitored = _raid_target_monitored,
.target_monitor_events = _raid_target_monitor_events,
.target_unmonitor_events = _raid_target_unmonitor_events,
# endif /* DMEVENTD */
#endif
.modules_needed = _raid_modules_needed,
.destroy = _raid_destroy,
};
static struct segment_type *_init_raid_segtype(struct cmd_context *cmd,
const char *raid_type)
{
struct segment_type *segtype = dm_zalloc(sizeof(*segtype));
if (!segtype) {
log_error("Failed to allocate memory for %s segtype",
raid_type);
return NULL;
}
segtype->cmd = cmd;
segtype->flags = SEG_RAID;
#ifdef DEVMAPPER_SUPPORT
#ifdef DMEVENTD
if (_get_raid_dso_path(cmd))
segtype->flags |= SEG_MONITORED;
#endif
#endif
segtype->parity_devs = strstr(raid_type, "raid6") ? 2 : 1;
segtype->ops = &_raid_ops;
segtype->name = raid_type;
segtype->private = NULL;
log_very_verbose("Initialised segtype: %s", segtype->name);
return segtype;
}
static struct segment_type *_init_raid1_segtype(struct cmd_context *cmd)
{
struct segment_type *segtype;
segtype = _init_raid_segtype(cmd, "raid1");
if (!segtype)
return NULL;
segtype->flags |= SEG_AREAS_MIRRORED;
segtype->parity_devs = 0;
return segtype;
}
static struct segment_type *_init_raid10_segtype(struct cmd_context *cmd)
{
struct segment_type *segtype;
segtype = _init_raid_segtype(cmd, "raid10");
if (!segtype)
return NULL;
segtype->flags |= SEG_AREAS_MIRRORED;
segtype->parity_devs = 0;
return segtype;
}
static struct segment_type *_init_raid4_segtype(struct cmd_context *cmd)
{
return _init_raid_segtype(cmd, "raid4");
}
static struct segment_type *_init_raid5_segtype(struct cmd_context *cmd)
{
return _init_raid_segtype(cmd, "raid5");
}
static struct segment_type *_init_raid5_la_segtype(struct cmd_context *cmd)
{
return _init_raid_segtype(cmd, "raid5_la");
}
static struct segment_type *_init_raid5_ra_segtype(struct cmd_context *cmd)
{
return _init_raid_segtype(cmd, "raid5_ra");
}
static struct segment_type *_init_raid5_ls_segtype(struct cmd_context *cmd)
{
return _init_raid_segtype(cmd, "raid5_ls");
}
static struct segment_type *_init_raid5_rs_segtype(struct cmd_context *cmd)
{
return _init_raid_segtype(cmd, "raid5_rs");
}
static struct segment_type *_init_raid6_segtype(struct cmd_context *cmd)
{
return _init_raid_segtype(cmd, "raid6");
}
static struct segment_type *_init_raid6_zr_segtype(struct cmd_context *cmd)
{
return _init_raid_segtype(cmd, "raid6_zr");
}
static struct segment_type *_init_raid6_nr_segtype(struct cmd_context *cmd)
{
return _init_raid_segtype(cmd, "raid6_nr");
}
static struct segment_type *_init_raid6_nc_segtype(struct cmd_context *cmd)
{
return _init_raid_segtype(cmd, "raid6_nc");
}
#ifdef RAID_INTERNAL /* Shared */
int init_raid_segtypes(struct cmd_context *cmd, struct segtype_library *seglib)
#else
int init_multiple_segtypes(struct cmd_context *cmd, struct segtype_library *seglib);
int init_multiple_segtypes(struct cmd_context *cmd, struct segtype_library *seglib)
#endif
{
struct segment_type *segtype;
unsigned i = 0;
struct segment_type *(*raid_segtype_fn[])(struct cmd_context *) = {
_init_raid1_segtype,
_init_raid10_segtype,
_init_raid4_segtype,
_init_raid5_segtype,
_init_raid5_la_segtype,
_init_raid5_ra_segtype,
_init_raid5_ls_segtype,
_init_raid5_rs_segtype,
_init_raid6_segtype,
_init_raid6_zr_segtype,
_init_raid6_nr_segtype,
_init_raid6_nc_segtype,
NULL,
};
do {
if ((segtype = raid_segtype_fn[i](cmd)) &&
!lvm_register_segtype(seglib, segtype))
/* segtype is already destroyed */
return_0;
} while (raid_segtype_fn[++i]);
return 1;
}