1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-18 10:04:20 +03:00
lvm2/lib/metadata/raid_manip.c
Jonathan Earl Brassow 0c89ef513a Changing RAID status flags to 64-bit broke some binary flag operations.
LVM_WRITE is a 32-bit flag.  Now that RAID[_IMAGE|_META] are 64-bit,
and'ing a RAID LV's status against LVM_WRITE can reset the higher order
flags.

A similar thing will affect thinp flags if not careful.
2011-09-13 16:33:21 +00:00

1109 lines
28 KiB
C

/*
* Copyright (C) 2011 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "lib.h"
#include "metadata.h"
#include "toolcontext.h"
#include "segtype.h"
#include "display.h"
#include "archiver.h"
#include "activate.h"
#include "lv_alloc.h"
#include "lvm-string.h"
#include "str_list.h"
#include "memlock.h"
uint32_t lv_raid_image_count(const struct logical_volume *lv)
{
struct lv_segment *seg = first_seg(lv);
if (!seg_is_raid(seg))
return 1;
return seg->area_count;
}
static int _activate_sublv_preserving_excl(struct logical_volume *top_lv,
struct logical_volume *sub_lv)
{
struct cmd_context *cmd = top_lv->vg->cmd;
/* If top RAID was EX, use EX */
if (lv_is_active_exclusive_locally(top_lv)) {
if (!activate_lv_excl(cmd, sub_lv))
return_0;
} else {
if (!activate_lv(cmd, sub_lv))
return_0;
}
return 1;
}
/*
* _lv_is_on_pv
* @lv:
* @pv:
*
* If any of the component devices of the LV are on the given PV, 1
* is returned; otherwise 0. For example if one of the images of a RAID
* (or its metadata device) is on the PV, 1 would be returned for the
* top-level LV.
* If you wish to check the images themselves, you should pass them.
*
* FIXME: This should be made more generic, possibly use 'for_each_sub_lv',
* and be put in lv_manip.c. 'for_each_sub_lv' does not yet allow us to
* short-circuit execution or pass back the values we need yet though...
*/
static int _lv_is_on_pv(struct logical_volume *lv, struct physical_volume *pv)
{
uint32_t s;
struct physical_volume *pv2;
struct lv_segment *seg;
if (!lv)
return 0;
seg = first_seg(lv);
if (!seg)
return 0;
/* Check mirror log */
if (_lv_is_on_pv(seg->log_lv, pv))
return 1;
/* Check stack of LVs */
dm_list_iterate_items(seg, &lv->segments) {
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) == AREA_PV) {
pv2 = seg_pv(seg, s);
if (id_equal(&pv->id, &pv2->id))
return 1;
if (pv->dev && pv2->dev &&
(pv->dev->dev == pv2->dev->dev))
return 1;
}
if ((seg_type(seg, s) == AREA_LV) &&
_lv_is_on_pv(seg_lv(seg, s), pv))
return 1;
if (!seg_is_raid(seg))
continue;
/* This is RAID, so we know the meta_area is AREA_LV */
if (_lv_is_on_pv(seg_metalv(seg, s), pv))
return 1;
}
}
return 0;
}
static int _lv_is_on_pvs(struct logical_volume *lv, struct dm_list *pvs)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, pvs)
if (_lv_is_on_pv(lv, pvl->pv)) {
log_debug("%s is on %s", lv->name,
pv_dev_name(pvl->pv));
return 1;
} else
log_debug("%s is not on %s", lv->name,
pv_dev_name(pvl->pv));
return 0;
}
static int _raid_in_sync(struct logical_volume *lv)
{
percent_t sync_percent;
if (!lv_raid_percent(lv, &sync_percent)) {
log_error("Unable to determine sync status of %s/%s.",
lv->vg->name, lv->name);
return 0;
}
return (sync_percent == PERCENT_100) ? 1 : 0;
}
/*
* _raid_remove_top_layer
* @lv
* @removal_list
*
* Remove top layer of RAID LV in order to convert to linear.
* This function makes no on-disk changes. The residual LVs
* returned in 'removal_list' must be freed by the caller.
*
* Returns: 1 on succes, 0 on failure
*/
static int _raid_remove_top_layer(struct logical_volume *lv,
struct dm_list *removal_list)
{
struct lv_list *lvl_array, *lvl;
struct lv_segment *seg = first_seg(lv);
if (!seg_is_mirrored(seg)) {
log_error(INTERNAL_ERROR
"Unable to remove RAID layer from segment type %s",
seg->segtype->name);
return 0;
}
if (seg->area_count != 1) {
log_error(INTERNAL_ERROR
"Unable to remove RAID layer when there"
" is more than one sub-lv");
return 0;
}
lvl_array = dm_pool_alloc(lv->vg->vgmem, 2 * sizeof(*lvl));
if (!lvl_array) {
log_error("Memory allocation failed.");
return 0;
}
/* Add last metadata area to removal_list */
lvl_array[0].lv = seg_metalv(seg, 0);
lv_set_visible(seg_metalv(seg, 0));
remove_seg_from_segs_using_this_lv(seg_metalv(seg, 0), seg);
seg_metatype(seg, 0) = AREA_UNASSIGNED;
dm_list_add(removal_list, &(lvl_array[0].list));
/* Remove RAID layer and add residual LV to removal_list*/
seg_lv(seg, 0)->status &= ~RAID_IMAGE;
lv_set_visible(seg_lv(seg, 0));
lvl_array[1].lv = seg_lv(seg, 0);
dm_list_add(removal_list, &(lvl_array[1].list));
if (!remove_layer_from_lv(lv, seg_lv(seg, 0)))
return_0;
lv->status &= ~(MIRRORED | RAID);
return 1;
}
/*
* _clear_lv
* @lv
*
* If LV is active:
* clear first block of device
* otherwise:
* activate, clear, deactivate
*
* Returns: 1 on success, 0 on failure
*/
static int _clear_lv(struct logical_volume *lv)
{
int was_active = lv_is_active(lv);
if (!was_active && !activate_lv(lv->vg->cmd, lv)) {
log_error("Failed to activate %s for clearing",
lv->name);
return 0;
}
log_verbose("Clearing metadata area of %s/%s",
lv->vg->name, lv->name);
/*
* Rather than wiping lv->size, we can simply
* wipe the first sector to remove the superblock of any previous
* RAID devices. It is much quicker.
*/
if (!set_lv(lv->vg->cmd, lv, 1, 0)) {
log_error("Failed to zero %s", lv->name);
return 0;
}
if (!was_active && !deactivate_lv(lv->vg->cmd, lv)) {
log_error("Failed to deactivate %s", lv->name);
return 0;
}
return 1;
}
/* Makes on-disk metadata changes */
static int _clear_lvs(struct dm_list *lv_list)
{
struct lv_list *lvl;
struct volume_group *vg = NULL;
if (dm_list_empty(lv_list)) {
log_debug(INTERNAL_ERROR "Empty list of LVs given for clearing");
return 1;
}
dm_list_iterate_items(lvl, lv_list) {
if (!lv_is_visible(lvl->lv)) {
log_error(INTERNAL_ERROR
"LVs must be set visible before clearing");
return 0;
}
vg = lvl->lv->vg;
}
/*
* FIXME: only vg_[write|commit] if LVs are not already written
* as visible in the LVM metadata (which is never the case yet).
*/
if (!vg || !vg_write(vg) || !vg_commit(vg))
return_0;
dm_list_iterate_items(lvl, lv_list)
if (!_clear_lv(lvl->lv))
return 0;
return 1;
}
/*
* _shift_and_rename_image_components
* @seg: Top-level RAID segment
*
* Shift all higher indexed segment areas down to fill in gaps where
* there are 'AREA_UNASSIGNED' areas and rename data/metadata LVs so
* that their names match their new index. When finished, set
* seg->area_count to new reduced total.
*
* Returns: 1 on success, 0 on failure
*/
static int _shift_and_rename_image_components(struct lv_segment *seg)
{
int len;
char *shift_name;
uint32_t s, missing;
struct cmd_context *cmd = seg->lv->vg->cmd;
/*
* All LVs must be properly named for their index before
* shifting begins. (e.g. Index '0' must contain *_rimage_0 and
* *_rmeta_0. Index 'n' must contain *_rimage_n and *_rmeta_n.)
*/
if (!seg_is_raid(seg))
return_0;
if (seg->area_count > 10) {
/*
* FIXME: Handling more would mean I'd have
* to handle double digits
*/
log_error("Unable handle arrays with more than 10 devices");
return 0;
}
log_very_verbose("Shifting images in %s", seg->lv->name);
for (s = 0, missing = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) == AREA_UNASSIGNED) {
if (seg_metatype(seg, s) != AREA_UNASSIGNED) {
log_error(INTERNAL_ERROR "Metadata segment area"
" #%d should be AREA_UNASSIGNED", s);
return 0;
}
missing++;
continue;
}
if (!missing)
continue;
log_very_verbose("Shifting %s and %s by %u",
seg_metalv(seg, s)->name,
seg_lv(seg, s)->name, missing);
/* Alter rmeta name */
shift_name = dm_pool_strdup(cmd->mem, seg_metalv(seg, s)->name);
if (!shift_name) {
log_error("Memory allocation failed.");
return 0;
}
len = strlen(shift_name) - 1;
shift_name[len] -= missing;
seg_metalv(seg, s)->name = shift_name;
/* Alter rimage name */
shift_name = dm_pool_strdup(cmd->mem, seg_lv(seg, s)->name);
if (!shift_name) {
log_error("Memory allocation failed.");
return 0;
}
len = strlen(shift_name) - 1;
shift_name[len] -= missing;
seg_lv(seg, s)->name = shift_name;
seg->areas[s - missing] = seg->areas[s];
seg->meta_areas[s - missing] = seg->meta_areas[s];
}
seg->area_count -= missing;
return 1;
}
/*
* Create an LV of specified type. Set visible after creation.
* This function does not make metadata changes.
*/
static int _alloc_image_component(struct logical_volume *lv,
struct alloc_handle *ah, uint32_t first_area,
uint64_t type, struct logical_volume **new_lv)
{
uint64_t status;
size_t len = strlen(lv->name) + 32;
char img_name[len];
struct logical_volume *tmp_lv;
const struct segment_type *segtype;
if (type == RAID_META) {
if (dm_snprintf(img_name, len, "%s_rmeta_%%d", lv->name) < 0)
return_0;
} else if (type == RAID_IMAGE) {
if (dm_snprintf(img_name, len, "%s_rimage_%%d", lv->name) < 0)
return_0;
} else {
log_error(INTERNAL_ERROR
"Bad type provided to _alloc_raid_component");
return 0;
}
if (!ah) {
first_area = 0;
log_error(INTERNAL_ERROR
"Stand-alone %s area allocation not implemented",
(type == RAID_META) ? "metadata" : "data");
return 0;
}
status = LVM_READ | LVM_WRITE | LV_NOTSYNCED | type;
tmp_lv = lv_create_empty(img_name, NULL, status, ALLOC_INHERIT, lv->vg);
if (!tmp_lv) {
log_error("Failed to allocate new raid component, %s", img_name);
return 0;
}
segtype = get_segtype_from_string(lv->vg->cmd, "striped");
if (!lv_add_segment(ah, first_area, 1, tmp_lv, segtype, 0, status, 0)) {
log_error("Failed to add segment to LV, %s", img_name);
return 0;
}
lv_set_visible(tmp_lv);
*new_lv = tmp_lv;
return 1;
}
static int _alloc_image_components(struct logical_volume *lv,
struct dm_list *pvs, uint32_t count,
struct dm_list *new_meta_lvs,
struct dm_list *new_data_lvs)
{
uint32_t s;
struct lv_segment *seg = first_seg(lv);
struct alloc_handle *ah;
struct dm_list *parallel_areas;
struct logical_volume *tmp_lv;
struct lv_list *lvl_array;
lvl_array = dm_pool_alloc(lv->vg->vgmem,
sizeof(*lvl_array) * count * 2);
if (!lvl_array)
return_0;
if (!(parallel_areas = build_parallel_areas_from_lv(lv, 0)))
return_0;
if (!(ah = allocate_extents(lv->vg, NULL, seg->segtype, 0, count, count,
seg->region_size, lv->le_count, pvs,
lv->alloc, parallel_areas)))
return_0;
for (s = 0; s < count; s++) {
/*
* The allocation areas are grouped together. First
* come the rimage allocated areas, then come the metadata
* allocated areas. Thus, the metadata areas are pulled
* from 's + count'.
*/
if (!_alloc_image_component(lv, ah, s + count,
RAID_META, &tmp_lv))
return_0;
lvl_array[s + count].lv = tmp_lv;
dm_list_add(new_meta_lvs, &(lvl_array[s + count].list));
if (!_alloc_image_component(lv, ah, s, RAID_IMAGE, &tmp_lv))
return_0;
lvl_array[s].lv = tmp_lv;
dm_list_add(new_data_lvs, &(lvl_array[s].list));
}
alloc_destroy(ah);
return 1;
}
static int _raid_add_images(struct logical_volume *lv,
uint32_t new_count, struct dm_list *pvs)
{
uint32_t s;
uint32_t old_count = lv_raid_image_count(lv);
uint32_t count = new_count - old_count;
struct cmd_context *cmd = lv->vg->cmd;
struct lv_segment *seg = first_seg(lv);
struct dm_list meta_lvs, data_lvs;
struct lv_list *lvl;
struct lv_segment_area *new_areas;
dm_list_init(&meta_lvs); /* For image addition */
dm_list_init(&data_lvs); /* For image addition */
if (!seg_is_raid(seg)) {
log_error("Unable to add RAID images to %s of segment type %s",
lv->name, seg->segtype->name);
return 0;
}
if (!_alloc_image_components(lv, pvs, count, &meta_lvs, &data_lvs)) {
log_error("Failed to allocate new image components");
return 0;
}
/* Metadata LVs must be cleared before being added to the array */
if (!_clear_lvs(&meta_lvs))
goto fail;
/*
FIXME: It would be proper to activate the new LVs here, instead of having
them activated by the suspend. However, this causes residual device nodes
to be left for these sub-lvs.
dm_list_iterate_items(lvl, &meta_lvs)
if (!do_correct_activate(lv, lvl->lv))
return_0;
dm_list_iterate_items(lvl, &data_lvs)
if (!do_correct_activate(lv, lvl->lv))
return_0;
*/
/* Expand areas array */
if (!(new_areas = dm_pool_zalloc(lv->vg->cmd->mem,
new_count * sizeof(*new_areas))))
goto fail;
memcpy(new_areas, seg->areas, seg->area_count * sizeof(*seg->areas));
seg->areas = new_areas;
seg->area_count = new_count;
/* Expand meta_areas array */
if (!(new_areas = dm_pool_zalloc(lv->vg->cmd->mem,
new_count * sizeof(*new_areas))))
goto fail;
memcpy(new_areas, seg->meta_areas,
seg->area_count * sizeof(*seg->meta_areas));
seg->meta_areas = new_areas;
/* Set segment areas for metadata sub_lvs */
s = old_count;
dm_list_iterate_items(lvl, &meta_lvs) {
log_debug("Adding %s to %s",
lvl->lv->name, lv->name);
if (!set_lv_segment_area_lv(seg, s, lvl->lv, 0,
lvl->lv->status)) {
log_error("Failed to add %s to %s",
lvl->lv->name, lv->name);
goto fail;
}
s++;
}
/* Set segment areas for data sub_lvs */
s = old_count;
dm_list_iterate_items(lvl, &data_lvs) {
log_debug("Adding %s to %s",
lvl->lv->name, lv->name);
if (!set_lv_segment_area_lv(seg, s, lvl->lv, 0,
lvl->lv->status)) {
log_error("Failed to add %s to %s",
lvl->lv->name, lv->name);
goto fail;
}
s++;
}
/*
* FIXME: Failure handling during these points is harder.
*/
dm_list_iterate_items(lvl, &meta_lvs)
lv_set_hidden(lvl->lv);
dm_list_iterate_items(lvl, &data_lvs)
lv_set_hidden(lvl->lv);
if (!vg_write(lv->vg)) {
log_error("Failed to write changes to %s in %s",
lv->name, lv->vg->name);
return 0;
}
if (!suspend_lv(cmd, lv)) {
log_error("Failed to suspend %s/%s before committing changes",
lv->vg->name, lv->name);
return 0;
}
if (!vg_commit(lv->vg)) {
log_error("Failed to commit changes to %s in %s",
lv->name, lv->vg->name);
return 0;
}
if (!resume_lv(cmd, lv)) {
log_error("Failed to resume %s/%s after committing changes",
lv->vg->name, lv->name);
return 0;
}
return 1;
fail:
/* Cleanly remove newly-allocated LVs that failed insertion attempt */
dm_list_iterate_items(lvl, &meta_lvs)
if (!lv_remove(lvl->lv))
return_0;
dm_list_iterate_items(lvl, &data_lvs)
if (!lv_remove(lvl->lv))
return_0;
return_0;
}
/*
* _extract_image_components
* @seg
* @idx: The index in the areas array to remove
* @extracted_rmeta: The displaced metadata LV
* @extracted_rimage: The displaced data LV
*
* This function extracts the image components - setting the respective
* 'extracted' pointers. It appends '_extracted' to the LVs' names, so that
* there are not future conflicts. It does /not/ commit the results.
* (IOW, erroring-out requires no unwinding of operations.)
*
* This function does /not/ attempt to:
* 1) shift the 'areas' or 'meta_areas' arrays.
* The '[meta_]areas' are left as AREA_UNASSIGNED.
* 2) Adjust the seg->area_count
* 3) Name the extracted LVs appropriately (appends '_extracted' to names)
* These actions must be performed by the caller.
*
* Returns: 1 on success, 0 on failure
*/
static int _extract_image_components(struct lv_segment *seg, uint32_t idx,
struct logical_volume **extracted_rmeta,
struct logical_volume **extracted_rimage)
{
int len;
char *tmp_name;
struct volume_group *vg = seg->lv->vg;
struct logical_volume *data_lv = seg_lv(seg, idx);
struct logical_volume *meta_lv = seg_metalv(seg, idx);
log_very_verbose("Extracting image components %s and %s from %s",
data_lv->name, meta_lv->name, seg->lv->name);
data_lv->status &= ~RAID_IMAGE;
meta_lv->status &= ~RAID_META;
lv_set_visible(data_lv);
lv_set_visible(meta_lv);
/* release removes data and meta areas */
remove_seg_from_segs_using_this_lv(data_lv, seg);
remove_seg_from_segs_using_this_lv(meta_lv, seg);
seg_type(seg, idx) = AREA_UNASSIGNED;
seg_metatype(seg, idx) = AREA_UNASSIGNED;
len = strlen(meta_lv->name) + strlen("_extracted") + 1;
tmp_name = dm_pool_alloc(vg->vgmem, len);
if (!tmp_name)
return_0;
sprintf(tmp_name, "%s_extracted", meta_lv->name);
meta_lv->name = tmp_name;
len = strlen(data_lv->name) + strlen("_extracted") + 1;
tmp_name = dm_pool_alloc(vg->vgmem, len);
if (!tmp_name)
return_0;
sprintf(tmp_name, "%s_extracted", data_lv->name);
data_lv->name = tmp_name;
*extracted_rmeta = meta_lv;
*extracted_rimage = data_lv;
return 1;
}
/*
* _raid_extract_images
* @lv
* @new_count: The absolute count of images (e.g. '2' for a 2-way mirror)
* @target_pvs: The list of PVs that are candidates for removal
* @shift: If set, use _shift_and_rename_image_components().
* Otherwise, leave the [meta_]areas as AREA_UNASSIGNED and
* seg->area_count unchanged.
* @extracted_[meta|data]_lvs: The LVs removed from the array. If 'shift'
* is set, then there will likely be name conflicts.
*
* This function extracts _both_ portions of the indexed image. It
* does /not/ commit the results. (IOW, erroring-out requires no unwinding
* of operations.)
*
* Returns: 1 on success, 0 on failure
*/
static int _raid_extract_images(struct logical_volume *lv, uint32_t new_count,
struct dm_list *target_pvs, int shift,
struct dm_list *extracted_meta_lvs,
struct dm_list *extracted_data_lvs)
{
int s, extract, lvl_idx = 0;
struct lv_list *lvl_array;
struct lv_segment *seg = first_seg(lv);
struct logical_volume *rmeta_lv, *rimage_lv;
extract = seg->area_count - new_count;
log_verbose("Extracting %u %s from %s/%s", extract,
(extract > 1) ? "images" : "image",
lv->vg->name, lv->name);
lvl_array = dm_pool_alloc(lv->vg->vgmem,
sizeof(*lvl_array) * extract * 2);
if (!lvl_array)
return_0;
for (s = seg->area_count - 1; (s >= 0) && extract; s--) {
if (!_lv_is_on_pvs(seg_lv(seg, s), target_pvs) ||
!_lv_is_on_pvs(seg_metalv(seg, s), target_pvs))
continue;
if (!_raid_in_sync(lv) &&
(!seg_is_mirrored(seg) || (s == 0))) {
log_error("Unable to extract %sRAID image"
" while RAID array is not in-sync",
seg_is_mirrored(seg) ? "primary " : "");
return 0;
}
if (!_extract_image_components(seg, s, &rmeta_lv, &rimage_lv)) {
log_error("Failed to extract %s from %s",
seg_lv(seg, s)->name, lv->name);
return 0;
}
if (shift && !_shift_and_rename_image_components(seg)) {
log_error("Failed to shift and rename image components");
return 0;
}
lvl_array[lvl_idx].lv = rmeta_lv;
lvl_array[lvl_idx + 1].lv = rimage_lv;
dm_list_add(extracted_meta_lvs, &(lvl_array[lvl_idx++].list));
dm_list_add(extracted_data_lvs, &(lvl_array[lvl_idx++].list));
extract--;
}
if (extract) {
log_error("Unable to extract enough images to satisfy request");
return 0;
}
return 1;
}
static int _raid_remove_images(struct logical_volume *lv,
uint32_t new_count, struct dm_list *pvs)
{
struct dm_list removal_list;
struct lv_list *lvl;
dm_list_init(&removal_list);
if (!_raid_extract_images(lv, new_count, pvs, 1,
&removal_list, &removal_list)) {
log_error("Failed to extract images from %s/%s",
lv->vg->name, lv->name);
return 0;
}
/* Convert to linear? */
if ((new_count == 1) && !_raid_remove_top_layer(lv, &removal_list)) {
log_error("Failed to remove RAID layer after linear conversion");
return 0;
}
if (!vg_write(lv->vg)) {
log_error("Failed to write changes to %s in %s",
lv->name, lv->vg->name);
return 0;
}
if (!suspend_lv(lv->vg->cmd, lv)) {
log_error("Failed to suspend %s/%s before committing changes",
lv->vg->name, lv->name);
return 0;
}
if (!vg_commit(lv->vg)) {
log_error("Failed to commit changes to %s in %s",
lv->name, lv->vg->name);
return 0;
}
/*
* Resume original LV
* This also resumes all other sub-lvs (including the extracted)
*/
if (!resume_lv(lv->vg->cmd, lv)) {
log_error("Failed to resume %s/%s after committing changes",
lv->vg->name, lv->name);
return 0;
}
/*
* Eliminate the extracted LVs
*/
sync_local_dev_names(lv->vg->cmd);
if (!dm_list_empty(&removal_list)) {
dm_list_iterate_items(lvl, &removal_list) {
if (!deactivate_lv(lv->vg->cmd, lvl->lv))
return_0;
if (!lv_remove(lvl->lv))
return_0;
}
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
return_0;
}
return 1;
}
/*
* lv_raid_change_image_count
* @lv
* @new_count: The absolute count of images (e.g. '2' for a 2-way mirror)
* @pvs: The list of PVs that are candidates for removal (or empty list)
*
* RAID arrays have 'images' which are composed of two parts, they are:
* - 'rimage': The data/parity holding portion
* - 'rmeta' : The metadata holding portion (i.e. superblock/bitmap area)
* This function adds or removes _both_ portions of the image and commits
* the results.
*
* Returns: 1 on success, 0 on failure
*/
int lv_raid_change_image_count(struct logical_volume *lv,
uint32_t new_count, struct dm_list *pvs)
{
uint32_t old_count = lv_raid_image_count(lv);
struct lv_segment *seg = first_seg(lv);
if (!seg_is_mirrored(seg)) {
log_error("Unable to change image count of non-mirrored RAID.");
return 0;
}
if (old_count == new_count) {
log_error("%s/%s already has image count of %d",
lv->vg->name, lv->name, new_count);
return 1;
}
if (old_count > new_count)
return _raid_remove_images(lv, new_count, pvs);
return _raid_add_images(lv, new_count, pvs);
}
int lv_raid_split(struct logical_volume *lv, const char *split_name,
uint32_t new_count, struct dm_list *splittable_pvs)
{
const char *old_name;
struct lv_list *lvl;
struct dm_list removal_list, data_list;
struct cmd_context *cmd = lv->vg->cmd;
uint32_t old_count = lv_raid_image_count(lv);
dm_list_init(&removal_list);
dm_list_init(&data_list);
if ((old_count - new_count) != 1) {
log_error("Unable to split more than one image from %s/%s",
lv->vg->name, lv->name);
return 0;
}
if (!seg_is_mirrored(first_seg(lv))) {
log_error("Unable to split logical volume of segment type, %s",
first_seg(lv)->segtype->name);
return 0;
}
if (find_lv_in_vg(lv->vg, split_name)) {
log_error("Logical Volume \"%s\" already exists in %s",
split_name, lv->vg->name);
return 0;
}
if (!_raid_in_sync(lv)) {
log_error("Unable to split %s/%s while it is not in-sync.",
lv->vg->name, lv->name);
return 0;
}
if (!_raid_extract_images(lv, new_count, splittable_pvs, 1,
&removal_list, &data_list)) {
log_error("Failed to extract images from %s/%s",
lv->vg->name, lv->name);
return 0;
}
/* Convert to linear? */
if ((new_count == 1) && !_raid_remove_top_layer(lv, &removal_list)) {
log_error("Failed to remove RAID layer after linear conversion");
return 0;
}
/* Get first item */
dm_list_iterate_items(lvl, &data_list)
break;
old_name = lvl->lv->name;
lvl->lv->name = split_name;
if (!vg_write(lv->vg)) {
log_error("Failed to write changes to %s in %s",
lv->name, lv->vg->name);
return 0;
}
if (!suspend_lv(cmd, lv)) {
log_error("Failed to suspend %s/%s before committing changes",
lv->vg->name, lv->name);
return 0;
}
if (!vg_commit(lv->vg)) {
log_error("Failed to commit changes to %s in %s",
lv->name, lv->vg->name);
return 0;
}
/*
* Resume original LV
* This also resumes all other sub-lvs (including the extracted)
*/
if (!resume_lv(cmd, lv)) {
log_error("Failed to resume %s/%s after committing changes",
lv->vg->name, lv->name);
return 0;
}
/* Recycle newly split LV so it is properly renamed */
if (!suspend_lv(cmd, lvl->lv) || !resume_lv(cmd, lvl->lv)) {
log_error("Failed to rename %s to %s after committing changes",
old_name, split_name);
return 0;
}
/*
* Eliminate the residual LVs
*/
dm_list_iterate_items(lvl, &removal_list) {
if (!deactivate_lv(cmd, lvl->lv))
return_0;
if (!lv_remove(lvl->lv))
return_0;
}
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
return_0;
return 1;
}
/*
* lv_raid_split_and_track
* @lv
* @splittable_pvs
*
* Only allows a single image to be split while tracking. The image
* never actually leaves the mirror. It is simply made visible. This
* action triggers two things: 1) users are able to access the (data) image
* and 2) lower layers replace images marked with a visible flag with
* error targets.
*
* Returns: 1 on success, 0 on error
*/
int lv_raid_split_and_track(struct logical_volume *lv,
struct dm_list *splittable_pvs)
{
int s;
struct lv_segment *seg = first_seg(lv);
if (!seg_is_mirrored(seg)) {
log_error("Unable to split images from non-mirrored RAID");
return 0;
}
if (!_raid_in_sync(lv)) {
log_error("Unable to split image from %s/%s while not in-sync",
lv->vg->name, lv->name);
return 0;
}
for (s = seg->area_count - 1; s >= 0; s--) {
if (!_lv_is_on_pvs(seg_lv(seg, s), splittable_pvs))
continue;
lv_set_visible(seg_lv(seg, s));
/*
* LVM_WRITE is 32-bit, if we don't '|' it with
* UINT64_C(0) it will remove all higher order flags
*/
seg_lv(seg, s)->status &= ~(UINT64_C(0) | LVM_WRITE);
break;
}
if (s >= seg->area_count) {
log_error("Unable to find image to satisfy request");
return 0;
}
if (!vg_write(lv->vg)) {
log_error("Failed to write changes to %s in %s",
lv->name, lv->vg->name);
return 0;
}
if (!suspend_lv(lv->vg->cmd, lv)) {
log_error("Failed to suspend %s/%s before committing changes",
lv->vg->name, lv->name);
return 0;
}
if (!vg_commit(lv->vg)) {
log_error("Failed to commit changes to %s in %s",
lv->name, lv->vg->name);
return 0;
}
log_print("%s split from %s for read-only purposes.",
seg_lv(seg, s)->name, lv->name);
/* Resume original LV */
if (!resume_lv(lv->vg->cmd, lv)) {
log_error("Failed to resume %s/%s after committing changes",
lv->vg->name, lv->name);
return 0;
}
/* Activate the split (and tracking) LV */
if (!_activate_sublv_preserving_excl(lv, seg_lv(seg, s)))
return 0;
log_print("Use 'lvconvert --merge %s/%s' to merge back into %s",
lv->vg->name, seg_lv(seg, s)->name, lv->name);
return 1;
}
int lv_raid_merge(struct logical_volume *image_lv)
{
uint32_t s;
char *p, *lv_name;
struct lv_list *lvl;
struct logical_volume *lv;
struct logical_volume *meta_lv = NULL;
struct lv_segment *seg;
struct volume_group *vg = image_lv->vg;
lv_name = dm_pool_strdup(vg->vgmem, image_lv->name);
if (!lv_name)
return_0;
if (!(p = strstr(lv_name, "_rimage_"))) {
log_error("Unable to merge non-mirror image %s/%s",
vg->name, image_lv->name);
return 0;
}
*p = '\0'; /* lv_name is now that of top-level RAID */
if (image_lv->status & LVM_WRITE) {
log_error("%s/%s is not read-only - refusing to merge",
vg->name, image_lv->name);
return 0;
}
if (!(lvl = find_lv_in_vg(vg, lv_name))) {
log_error("Unable to find containing RAID array for %s/%s",
vg->name, image_lv->name);
return 0;
}
lv = lvl->lv;
seg = first_seg(lv);
for (s = 0; s < seg->area_count; s++) {
if (seg_lv(seg, s) == image_lv) {
meta_lv = seg_metalv(seg, s);
}
}
if (!meta_lv)
return_0;
if (!deactivate_lv(vg->cmd, meta_lv)) {
log_error("Failed to deactivate %s", meta_lv->name);
return 0;
}
if (!deactivate_lv(vg->cmd, image_lv)) {
log_error("Failed to deactivate %s/%s before merging",
vg->name, image_lv->name);
return 0;
}
lv_set_hidden(image_lv);
image_lv->status |= (lv->status & LVM_WRITE);
image_lv->status |= RAID_IMAGE;
if (!vg_write(vg)) {
log_error("Failed to write changes to %s in %s",
lv->name, vg->name);
return 0;
}
if (!suspend_lv(vg->cmd, lv)) {
log_error("Failed to suspend %s/%s before committing changes",
vg->name, lv->name);
return 0;
}
if (!vg_commit(vg)) {
log_error("Failed to commit changes to %s in %s",
lv->name, vg->name);
return 0;
}
if (!resume_lv(vg->cmd, lv)) {
log_error("Failed to resume %s/%s after committing changes",
vg->name, lv->name);
return 0;
}
log_print("%s/%s successfully merged back into %s/%s",
vg->name, image_lv->name,
vg->name, lv->name);
return 1;
}