1
0
mirror of git://sourceware.org/git/lvm2.git synced 2024-12-31 21:18:26 +03:00
lvm2/lib/metadata/lv_manip.c
Alasdair Kergon 1832f310ac Add --type to lvcreate/resize.
Add virtual segment types, zero and error.

A large sparse device can be constructed as a writeable snapshot of a large
zero device.
2004-05-11 16:01:58 +00:00

741 lines
17 KiB
C

/*
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU General Public License v.2.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "lib.h"
#include "metadata.h"
#include "locking.h"
#include "pv_map.h"
#include "lvm-string.h"
#include "toolcontext.h"
#include "lv_alloc.h"
#include "display.h"
#include "segtypes.h"
/*
* These functions adjust the pe counts in pv's
* after we've added or removed segments.
*/
static void _get_extents(struct lv_segment *seg)
{
unsigned int s, count;
struct physical_volume *pv;
for (s = 0; s < seg->area_count; s++) {
if (seg->area[s].type != AREA_PV)
continue;
pv = seg->area[s].u.pv.pv;
count = seg->area_len;
pv->pe_alloc_count += count;
}
}
static void _put_extents(struct lv_segment *seg)
{
unsigned int s, count;
struct physical_volume *pv;
for (s = 0; s < seg->area_count; s++) {
if (seg->area[s].type != AREA_PV)
continue;
pv = seg->area[s].u.pv.pv;
if (pv) {
count = seg->area_len;
assert(pv->pe_alloc_count >= count);
pv->pe_alloc_count -= count;
}
}
}
struct lv_segment *alloc_lv_segment(struct pool *mem, uint32_t num_areas)
{
struct lv_segment *seg;
uint32_t len = sizeof(*seg) + (num_areas * sizeof(seg->area[0]));
if (!(seg = pool_zalloc(mem, len))) {
stack;
return NULL;
}
list_init(&seg->tags);
return seg;
}
static int _alloc_parallel_area(struct logical_volume *lv, uint32_t area_count,
uint32_t stripe_size,
struct segment_type *segtype,
struct pv_area **areas, uint32_t *ix)
{
uint32_t count, area_len, smallest;
uint32_t s;
struct lv_segment *seg;
int striped = 0;
/* Striped or mirrored? */
if (segtype->flags & SEG_AREAS_STRIPED)
striped = 1;
count = lv->le_count - *ix;
area_len = count / (striped ? area_count : 1);
smallest = areas[area_count - 1]->count;
if (smallest < area_len)
area_len = smallest;
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem, area_count))) {
log_err("Couldn't allocate new parallel segment.");
return 0;
}
seg->lv = lv;
seg->segtype = segtype;
seg->le = *ix;
seg->len = area_len * (striped ? area_count : 1);
seg->area_len = area_len;
seg->area_count = area_count;
seg->stripe_size = stripe_size;
seg->extents_copied = 0u;
for (s = 0; s < area_count; s++) {
struct pv_area *pva = areas[s];
seg->area[s].type = AREA_PV;
seg->area[s].u.pv.pv = pva->map->pvl->pv;
seg->area[s].u.pv.pe = pva->start;
consume_pv_area(pva, area_len);
}
list_add(&lv->segments, &seg->list);
*ix += seg->len;
if (!striped)
lv->status |= MIRRORED;
return 1;
}
static int _comp_area(const void *l, const void *r)
{
const struct pv_area *lhs = *((const struct pv_area **) l);
const struct pv_area *rhs = *((const struct pv_area **) r);
if (lhs->count < rhs->count)
return 1;
else if (lhs->count > rhs->count)
return -1;
return 0;
}
static int _alloc_parallel(struct logical_volume *lv,
struct list *pvms, uint32_t allocated,
uint32_t stripes, uint32_t stripe_size,
uint32_t mirrors, struct segment_type *segtype)
{
int r = 0;
struct list *pvmh;
struct pv_area **areas;
unsigned int pv_count = 0, ix;
struct pv_map *pvm;
size_t len;
uint32_t area_count;
if (stripes > 1 && mirrors > 1) {
log_error("striped mirrors are not supported yet");
return 0;
}
if (stripes > 1)
area_count = stripes;
else
area_count = mirrors;
list_iterate(pvmh, pvms)
pv_count++;
/* allocate an array of pv_areas, one candidate per pv */
len = sizeof(*areas) * pv_count;
if (!(areas = dbg_malloc(sizeof(*areas) * pv_count))) {
log_err("Couldn't allocate areas array.");
return 0;
}
while (allocated != lv->le_count) {
ix = 0;
list_iterate(pvmh, pvms) {
pvm = list_item(pvmh, struct pv_map);
if (list_empty(&pvm->areas))
continue;
areas[ix++] = list_item(pvm->areas.n, struct pv_area);
}
if (ix < area_count) {
log_error("Insufficient allocatable extents suitable "
"for parallel use for logical volume "
"%s: %u required", lv->name, lv->le_count);
goto out;
}
/* sort the areas so we allocate from the biggest */
qsort(areas, ix, sizeof(*areas), _comp_area);
if (!_alloc_parallel_area(lv, area_count, stripe_size, segtype,
areas, &allocated)) {
stack;
goto out;
}
}
r = 1;
out:
dbg_free(areas);
return r;
}
/*
* The heart of the allocation code. This function takes a
* pv_area and allocates it to the lv. If the lv doesn't need
* the complete area then the area is split, otherwise the area
* is unlinked from the pv_map.
*/
static int _alloc_linear_area(struct logical_volume *lv, uint32_t *ix,
struct pv_map *map, struct pv_area *pva)
{
uint32_t count, remaining;
struct lv_segment *seg;
count = pva->count;
remaining = lv->le_count - *ix;
if (count > remaining)
count = remaining;
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem, 1))) {
log_err("Couldn't allocate new stripe segment.");
return 0;
}
seg->lv = lv;
if (!(seg->segtype = get_segtype_from_string(lv->vg->cmd, "striped"))) {
stack;
return 0;
}
seg->le = *ix;
seg->len = count;
seg->area_len = count;
seg->stripe_size = 0;
seg->area_count = 1;
seg->area[0].type = AREA_PV;
seg->area[0].u.pv.pv = map->pvl->pv;
seg->area[0].u.pv.pe = pva->start;
list_add(&lv->segments, &seg->list);
consume_pv_area(pva, count);
*ix += count;
return 1;
}
static int _alloc_mirrored_area(struct logical_volume *lv, uint32_t *ix,
struct pv_map *map, struct pv_area *pva,
struct segment_type *segtype,
struct physical_volume *mirrored_pv,
uint32_t mirrored_pe)
{
uint32_t count, remaining;
struct lv_segment *seg;
count = pva->count;
remaining = lv->le_count - *ix;
if (count > remaining)
count = remaining;
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem, 2))) {
log_err("Couldn't allocate new mirrored segment.");
return 0;
}
seg->lv = lv;
seg->segtype = segtype;
seg->le = *ix;
seg->status = 0u;
seg->len = count;
seg->area_len = count;
seg->stripe_size = 0;
seg->area_count = 2;
seg->extents_copied = 0u;
/* FIXME Remove AREA_PV restriction here? */
seg->area[0].type = AREA_PV;
seg->area[0].u.pv.pv = mirrored_pv;
seg->area[0].u.pv.pe = mirrored_pe;
seg->area[1].type = AREA_PV;
seg->area[1].u.pv.pv = map->pvl->pv;
seg->area[1].u.pv.pe = pva->start;
list_add(&lv->segments, &seg->list);
consume_pv_area(pva, count);
*ix += count;
return 1;
}
/*
* Only one area per pv is allowed, so we search
* for the biggest area, or the first area that
* can complete the allocation.
*/
/*
* FIXME: subsequent lvextends may not be contiguous.
*/
static int _alloc_contiguous(struct logical_volume *lv,
struct list *pvms, uint32_t allocated)
{
struct list *tmp1;
struct pv_map *pvm;
struct pv_area *pva;
list_iterate(tmp1, pvms) {
pvm = list_item(tmp1, struct pv_map);
if (list_empty(&pvm->areas))
continue;
/* first item in the list is the biggest */
pva = list_item(pvm->areas.n, struct pv_area);
if (pva->count < lv->le_count)
continue;
if (!_alloc_linear_area(lv, &allocated, pvm, pva)) {
stack;
return 0;
}
break;
}
if (allocated != lv->le_count) {
log_error("Insufficient allocatable extents (%u) "
"for logical volume %s: %u required",
allocated, lv->name, lv->le_count);
return 0;
}
return 1;
}
/* FIXME Contiguous depends on *segment* (i.e. stripe) not LV */
static int _alloc_mirrored(struct logical_volume *lv,
struct list *pvms, uint32_t allocated,
struct segment_type *segtype,
struct physical_volume *mirrored_pv,
uint32_t mirrored_pe)
{
struct list *tmp1;
struct pv_map *pvm;
struct pv_area *pva;
uint32_t max_found = 0;
/* Try each PV in turn */
list_iterate(tmp1, pvms) {
pvm = list_item(tmp1, struct pv_map);
if (list_empty(&pvm->areas))
continue;
/* first item in the list is the biggest */
pva = list_item(pvm->areas.n, struct pv_area);
if (pva->count < lv->le_count - allocated) {
max_found = pva->count;
continue;
}
if (!_alloc_mirrored_area(lv, &allocated, pvm, pva, segtype,
mirrored_pv, mirrored_pe)) {
stack;
return 0;
}
break;
}
if (allocated != lv->le_count) {
log_error("Insufficient contiguous allocatable extents (%u) "
"for logical volume %s: %u required",
allocated + max_found, lv->name, lv->le_count);
return 0;
}
return 1;
}
/*
* Areas just get allocated in order until the lv
* is full.
*/
static int _alloc_next_free(struct logical_volume *lv,
struct list *pvms, uint32_t allocated)
{
struct list *tmp1, *tmp2;
struct pv_map *pvm;
struct pv_area *pva;
list_iterate(tmp1, pvms) {
pvm = list_item(tmp1, struct pv_map);
list_iterate(tmp2, &pvm->areas) {
pva = list_item(tmp2, struct pv_area);
if (!_alloc_linear_area(lv, &allocated, pvm, pva) ||
(allocated == lv->le_count))
goto done;
}
}
done:
if (allocated != lv->le_count) {
log_error("Insufficient allocatable logical extents (%u) "
"for logical volume %s: %u required",
allocated, lv->name, lv->le_count);
return 0;
}
return 1;
}
static int _alloc_virtual(struct logical_volume *lv,
uint32_t allocated, struct segment_type *segtype)
{
struct lv_segment *seg;
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem, 0))) {
log_err("Couldn't allocate new zero segment.");
return 0;
}
seg->lv = lv;
seg->segtype = segtype;
seg->status = 0u;
seg->le = allocated;
seg->len = lv->le_count - allocated;
seg->area_len = seg->len;
seg->stripe_size = 0;
seg->area_count = 0;
seg->extents_copied = 0u;
list_add(&lv->segments, &seg->list);
lv->status |= VIRTUAL;
return 1;
}
/*
* Chooses a correct allocation policy.
*/
static int _allocate(struct volume_group *vg, struct logical_volume *lv,
struct list *allocatable_pvs, uint32_t allocated,
alloc_policy_t alloc, struct segment_type *segtype,
uint32_t stripes, uint32_t stripe_size, uint32_t mirrors,
struct physical_volume *mirrored_pv, uint32_t mirrored_pe,
uint32_t status)
{
int r = 0;
struct pool *scratch;
struct list *pvms, *old_tail = lv->segments.p, *segh;
struct lv_segment *seg;
if (segtype->flags & SEG_VIRTUAL)
return _alloc_virtual(lv, allocated, segtype);
if (!(scratch = pool_create(1024))) {
stack;
return 0;
}
/*
* Build the sets of available areas on the pv's.
*/
if (!(pvms = create_pv_maps(scratch, vg, allocatable_pvs)))
goto out;
if (stripes > 1 || mirrors > 1)
r = _alloc_parallel(lv, pvms, allocated, stripes, stripe_size,
mirrors, segtype);
else if (mirrored_pv)
r = _alloc_mirrored(lv, pvms, allocated, segtype, mirrored_pv,
mirrored_pe);
else if (alloc == ALLOC_CONTIGUOUS)
r = _alloc_contiguous(lv, pvms, allocated);
else if (alloc == ALLOC_NEXT_FREE || alloc == ALLOC_DEFAULT)
r = _alloc_next_free(lv, pvms, allocated);
else {
log_error("Unknown allocation policy: "
"unable to setup logical volume.");
goto out;
}
if (r) {
vg->free_count -= lv->le_count - allocated;
/*
* Iterate through the new segments, updating pe
* counts in pv's.
*/
for (segh = lv->segments.p; segh != old_tail; segh = segh->p) {
seg = list_item(segh, struct lv_segment);
_get_extents(seg);
seg->status = status;
}
} else {
/*
* Put the segment list back how we found it.
*/
old_tail->n = &lv->segments;
lv->segments.p = old_tail;
}
out:
pool_destroy(scratch);
return r;
}
static char *_generate_lv_name(struct volume_group *vg, const char *format,
char *buffer, size_t len)
{
struct list *lvh;
struct logical_volume *lv;
int high = -1, i;
list_iterate(lvh, &vg->lvs) {
lv = (list_item(lvh, struct lv_list)->lv);
if (sscanf(lv->name, format, &i) != 1)
continue;
if (i > high)
high = i;
}
if (lvm_snprintf(buffer, len, format, high + 1) < 0)
return NULL;
return buffer;
}
struct logical_volume *lv_create_empty(struct format_instance *fi,
const char *name,
const char *name_format,
uint32_t status,
alloc_policy_t alloc,
struct volume_group *vg)
{
struct cmd_context *cmd = vg->cmd;
struct lv_list *ll = NULL;
struct logical_volume *lv;
char dname[32];
if (vg->max_lv && (vg->max_lv == vg->lv_count)) {
log_error("Maximum number of logical volumes (%u) reached "
"in volume group %s", vg->max_lv, vg->name);
return NULL;
}
if (!name && !(name = _generate_lv_name(vg, name_format, dname,
sizeof(dname)))) {
log_error("Failed to generate unique name for the new "
"logical volume");
return NULL;
}
log_verbose("Creating logical volume %s", name);
if (!(ll = pool_zalloc(cmd->mem, sizeof(*ll))) ||
!(ll->lv = pool_zalloc(cmd->mem, sizeof(*ll->lv)))) {
log_error("lv_list allocation failed");
if (ll)
pool_free(cmd->mem, ll);
return NULL;
}
lv = ll->lv;
lv->vg = vg;
if (!(lv->name = pool_strdup(cmd->mem, name))) {
log_error("lv name strdup failed");
if (ll)
pool_free(cmd->mem, ll);
return NULL;
}
lv->status = status;
lv->alloc = alloc;
lv->read_ahead = 0;
lv->major = -1;
lv->minor = -1;
lv->size = UINT64_C(0);
lv->le_count = 0;
list_init(&lv->segments);
list_init(&lv->tags);
if (fi->fmt->ops->lv_setup && !fi->fmt->ops->lv_setup(fi, lv)) {
stack;
if (ll)
pool_free(cmd->mem, ll);
return NULL;
}
vg->lv_count++;
list_add(&vg->lvs, &ll->list);
return lv;
}
int lv_extend(struct format_instance *fid,
struct logical_volume *lv,
struct segment_type *segtype,
uint32_t stripes, uint32_t stripe_size,
uint32_t mirrors, uint32_t extents,
struct physical_volume *mirrored_pv, uint32_t mirrored_pe,
uint32_t status, struct list *allocatable_pvs,
alloc_policy_t alloc)
{
uint32_t old_le_count = lv->le_count;
uint64_t old_size = lv->size;
lv->le_count += extents;
lv->size += (uint64_t) extents *lv->vg->extent_size;
if (!_allocate(lv->vg, lv, allocatable_pvs, old_le_count, alloc,
segtype, stripes, stripe_size, mirrors, mirrored_pv,
mirrored_pe, status)) {
lv->le_count = old_le_count;
lv->size = old_size;
stack;
return 0;
}
if ((segtype->flags & SEG_CAN_SPLIT) && !lv_merge_segments(lv)) {
log_err("Couldn't merge segments after extending "
"logical volume.");
return 0;
}
if (fid->fmt->ops->lv_setup && !fid->fmt->ops->lv_setup(fid, lv)) {
stack;
return 0;
}
return 1;
}
int lv_reduce(struct format_instance *fi,
struct logical_volume *lv, uint32_t extents)
{
struct list *segh;
struct lv_segment *seg;
uint32_t count = extents;
int striped;
for (segh = lv->segments.p;
(segh != &lv->segments) && count; segh = segh->p) {
seg = list_item(segh, struct lv_segment);
if (seg->len <= count) {
/* remove this segment completely */
count -= seg->len;
_put_extents(seg);
list_del(segh);
} else {
/* reduce this segment */
_put_extents(seg);
seg->len -= count;
striped = seg->segtype->flags & SEG_AREAS_STRIPED;
/* Caller must ensure exact divisibility */
if (striped && (count % seg->area_count)) {
log_error("Segment extent reduction %" PRIu32
"not divisible by #stripes %" PRIu32,
count, seg->area_count);
return 0;
}
seg->area_len -=
count / (striped ? seg->area_count : 1);
_get_extents(seg);
count = 0;
}
}
lv->le_count -= extents;
lv->size = (uint64_t) lv->le_count * lv->vg->extent_size;
lv->vg->free_count += extents;
if (fi->fmt->ops->lv_setup && !fi->fmt->ops->lv_setup(fi, lv)) {
stack;
return 0;
}
return 1;
}
int lv_remove(struct volume_group *vg, struct logical_volume *lv)
{
struct list *segh;
struct lv_list *lvl;
/* find the lv list */
if (!(lvl = find_lv_in_vg(vg, lv->name))) {
stack;
return 0;
}
/* iterate through the lv's segments freeing off the pe's */
list_iterate(segh, &lv->segments)
_put_extents(list_item(segh, struct lv_segment));
vg->lv_count--;
vg->free_count += lv->le_count;
list_del(&lvl->list);
return 1;
}
uint32_t find_free_lvnum(struct logical_volume *lv)
{
int lvnum_used[MAX_RESTRICTED_LVS + 1];
uint32_t i = 0;
struct list *lvh;
struct lv_list *lvl;
int lvnum;
memset(&lvnum_used, 0, sizeof(lvnum_used));
list_iterate(lvh, &lv->vg->lvs) {
lvl = list_item(lvh, struct lv_list);
lvnum = lvnum_from_lvid(&lvl->lv->lvid);
if (lvnum <= MAX_RESTRICTED_LVS)
lvnum_used[lvnum] = 1;
}
while (lvnum_used[i])
i++;
return i;
}