1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-05 13:18:20 +03:00
lvm2/lib/metadata/vg.c
David Teigland d9a77e8bb4 lvmcache: simplify metadata cache
The copy of VG metadata stored in lvmcache was not being used
in general.  It pretended to be a generic VG metadata cache,
but was not being used except for clvmd activation.  There
it was used to avoid reading from disk while devices were
suspended, i.e. in resume.

This removes the code that attempted to make this look
like a generic metadata cache, and replaces with with
something narrowly targetted to what it's actually used for.

This is a way of passing the VG from suspend to resume in
clvmd.  Since in the case of clvmd one caller can't simply
pass the same VG to both suspend and resume, suspend needs
to stash the VG somewhere that resume can grab it from.
(resume doesn't want to read it from disk since devices
are suspended.)  The lvmcache vginfo struct is used as a
convenient place to stash the VG to pass it from suspend
to resume, even though it isn't related to the lvmcache
or vginfo.  These suspended_vg* vginfo fields should
not be used or touched anywhere else, they are only to
be used for passing the VG data from suspend to resume
in clvmd.  The VG data being passed between suspend and
resume is never modified, and will only exist in the
brief period between suspend and resume in clvmd.

suspend has both old (current) and new (precommitted)
copies of the VG metadata.  It stashes both of these in
the vginfo prior to suspending devices.  When vg_commit
is successful, it sets a flag in vginfo as before,
signaling the transition from old to new metadata.

resume grabs the VG stashed by suspend.  If the vg_commit
happened, it grabs the new VG, and if the vg_commit didn't
happen it grabs the old VG.  The VG is then used to resume
LVs.

This isolates clvmd-specific code and usage from the
normal lvm vg_read code, making the code simpler and
the behavior easier to verify.

Sequence of operations:

- lv_suspend() has both vg_old and vg_new
  and stashes a copy of each onto the vginfo:
  lvmcache_save_suspended_vg(vg_old);
  lvmcache_save_suspended_vg(vg_new);

- vg_commit() happens, which causes all clvmd
  instances to call lvmcache_commit_metadata(vg).
  A flag is set in the vginfo indicating the
  transition from the old to new VG:
  vginfo->suspended_vg_committed = 1;

- lv_resume() needs either vg_old or vg_new
  to use in resuming LVs.  It doesn't want to
  read the VG from disk since devices are
  suspended, so it gets the VG stashed by
  lv_suspend:
  vg = lvmcache_get_suspended_vg(vgid);

If the vg_commit did not happen, suspended_vg_committed
will not be set, and in this case, lvmcache_get_suspended_vg()
will return the old VG instead of the new VG, and it will
resume LVs based on the old metadata.
2018-04-20 11:22:45 -05:00

822 lines
19 KiB
C

/*
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004-2010 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "lib.h"
#include "metadata.h"
#include "display.h"
#include "activate.h"
#include "toolcontext.h"
#include "lvmcache.h"
#include "archiver.h"
#include "lvmetad.h"
struct volume_group *alloc_vg(const char *pool_name, struct cmd_context *cmd,
const char *vg_name)
{
struct dm_pool *vgmem;
struct volume_group *vg;
if (!(vgmem = dm_pool_create(pool_name, VG_MEMPOOL_CHUNK)) ||
!(vg = dm_pool_zalloc(vgmem, sizeof(*vg)))) {
log_error("Failed to allocate volume group structure");
if (vgmem)
dm_pool_destroy(vgmem);
return NULL;
}
if (vg_name && !(vg->name = dm_pool_strdup(vgmem, vg_name))) {
log_error("Failed to allocate VG name.");
dm_pool_destroy(vgmem);
return NULL;
}
if (!(vg->lvm1_system_id = dm_pool_zalloc(vgmem, NAME_LEN + 1))) {
log_error("Failed to allocate VG systemd id.");
dm_pool_destroy(vgmem);
return NULL;
}
vg->system_id = "";
vg->cmd = cmd;
vg->vgmem = vgmem;
vg->alloc = ALLOC_NORMAL;
if (!(vg->hostnames = dm_hash_create(16))) {
log_error("Failed to allocate VG hostname hashtable.");
dm_pool_destroy(vgmem);
return NULL;
}
dm_list_init(&vg->pvs);
dm_list_init(&vg->pvs_to_write);
dm_list_init(&vg->pv_write_list);
dm_list_init(&vg->pvs_outdated);
dm_list_init(&vg->lvs);
dm_list_init(&vg->historical_lvs);
dm_list_init(&vg->tags);
dm_list_init(&vg->removed_lvs);
dm_list_init(&vg->removed_historical_lvs);
dm_list_init(&vg->removed_pvs);
log_debug_mem("Allocated VG %s at %p.", vg->name ? : "<no name>", vg);
return vg;
}
static void _free_vg(struct volume_group *vg)
{
vg_set_fid(vg, NULL);
if (vg->cmd && vg->vgmem == vg->cmd->mem) {
log_error(INTERNAL_ERROR "global memory pool used for VG %s",
vg->name);
return;
}
log_debug_mem("Freeing VG %s at %p.", vg->name ? : "<no name>", vg);
dm_hash_destroy(vg->hostnames);
dm_pool_destroy(vg->vgmem);
}
void release_vg(struct volume_group *vg)
{
if (!vg || (vg->fid && vg == vg->fid->fmt->orphan_vg))
return;
release_vg(vg->vg_committed);
release_vg(vg->vg_precommitted);
_free_vg(vg);
}
/*
* FIXME out of place, but the main (cmd) pool has been already
* destroyed and touching the fid (also via release_vg) will crash the
* program
*
* For now quick wrapper to allow destroy of orphan vg
*/
void free_orphan_vg(struct volume_group *vg)
{
_free_vg(vg);
}
int link_lv_to_vg(struct volume_group *vg, struct logical_volume *lv)
{
struct lv_list *lvl;
if (vg_max_lv_reached(vg))
stack;
if (!(lvl = dm_pool_zalloc(vg->vgmem, sizeof(*lvl))))
return_0;
lvl->lv = lv;
lv->vg = vg;
dm_list_add(&vg->lvs, &lvl->list);
lv->status &= ~LV_REMOVED;
return 1;
}
int unlink_lv_from_vg(struct logical_volume *lv)
{
struct lv_list *lvl;
if (!(lvl = find_lv_in_vg(lv->vg, lv->name)))
return_0;
dm_list_move(&lv->vg->removed_lvs, &lvl->list);
lv->status |= LV_REMOVED;
return 1;
}
int vg_max_lv_reached(struct volume_group *vg)
{
if (!vg->max_lv)
return 0;
if (vg->max_lv > vg_visible_lvs(vg))
return 0;
log_verbose("Maximum number of logical volumes (%u) reached "
"in volume group %s", vg->max_lv, vg->name);
return 1;
}
char *vg_fmt_dup(const struct volume_group *vg)
{
if (!vg->fid || !vg->fid->fmt)
return NULL;
return dm_pool_strdup(vg->vgmem, vg->fid->fmt->name);
}
char *vg_name_dup(const struct volume_group *vg)
{
return dm_pool_strdup(vg->vgmem, vg->name);
}
char *vg_system_id_dup(const struct volume_group *vg)
{
return dm_pool_strdup(vg->vgmem, vg->system_id ? : vg->lvm1_system_id ? : "");
}
char *vg_lock_type_dup(const struct volume_group *vg)
{
return dm_pool_strdup(vg->vgmem, vg->lock_type ? : vg->lock_type ? : "");
}
char *vg_lock_args_dup(const struct volume_group *vg)
{
return dm_pool_strdup(vg->vgmem, vg->lock_args ? : vg->lock_args ? : "");
}
char *vg_uuid_dup(const struct volume_group *vg)
{
return id_format_and_copy(vg->vgmem, &vg->id);
}
char *vg_tags_dup(const struct volume_group *vg)
{
return tags_format_and_copy(vg->vgmem, &vg->tags);
}
uint32_t vg_seqno(const struct volume_group *vg)
{
return vg->seqno;
}
uint64_t vg_status(const struct volume_group *vg)
{
return vg->status;
}
uint64_t vg_size(const struct volume_group *vg)
{
return (uint64_t) vg->extent_count * vg->extent_size;
}
uint64_t vg_free(const struct volume_group *vg)
{
return (uint64_t) vg->free_count * vg->extent_size;
}
uint64_t vg_extent_size(const struct volume_group *vg)
{
return (uint64_t) vg->extent_size;
}
uint64_t vg_extent_count(const struct volume_group *vg)
{
return (uint64_t) vg->extent_count;
}
uint64_t vg_free_count(const struct volume_group *vg)
{
return (uint64_t) vg->free_count;
}
uint64_t vg_pv_count(const struct volume_group *vg)
{
return (uint64_t) vg->pv_count;
}
uint64_t vg_max_pv(const struct volume_group *vg)
{
return (uint64_t) vg->max_pv;
}
uint64_t vg_max_lv(const struct volume_group *vg)
{
return (uint64_t) vg->max_lv;
}
unsigned snapshot_count(const struct volume_group *vg)
{
struct lv_list *lvl;
unsigned num_snapshots = 0;
dm_list_iterate_items(lvl, &vg->lvs)
if (lv_is_cow(lvl->lv))
num_snapshots++;
return num_snapshots;
}
unsigned vg_visible_lvs(const struct volume_group *vg)
{
struct lv_list *lvl;
unsigned lv_count = 0;
dm_list_iterate_items(lvl, &vg->lvs) {
if (lv_is_visible(lvl->lv))
lv_count++;
}
return lv_count;
}
uint32_t vg_mda_count(const struct volume_group *vg)
{
return dm_list_size(&vg->fid->metadata_areas_in_use) +
dm_list_size(&vg->fid->metadata_areas_ignored);
}
uint32_t vg_mda_used_count(const struct volume_group *vg)
{
uint32_t used_count = 0;
struct metadata_area *mda;
/*
* Ignored mdas could be on either list - the reason being the state
* may have changed from ignored to un-ignored and we need to write
* the state to disk.
*/
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use)
if (!mda_is_ignored(mda))
used_count++;
return used_count;
}
uint32_t vg_mda_copies(const struct volume_group *vg)
{
return vg->mda_copies;
}
uint64_t vg_mda_size(const struct volume_group *vg)
{
return find_min_mda_size(&vg->fid->metadata_areas_in_use);
}
uint64_t vg_mda_free(const struct volume_group *vg)
{
uint64_t freespace = UINT64_MAX, mda_free;
struct metadata_area *mda;
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) {
if (!mda->ops->mda_free_sectors)
continue;
mda_free = mda->ops->mda_free_sectors(mda);
if (mda_free < freespace)
freespace = mda_free;
}
if (freespace == UINT64_MAX)
freespace = UINT64_C(0);
return freespace;
}
int vg_set_mda_copies(struct volume_group *vg, uint32_t mda_copies)
{
vg->mda_copies = mda_copies;
/* FIXME Use log_verbose when this is due to specific cmdline request. */
log_debug_metadata("Setting mda_copies to %"PRIu32" for VG %s",
mda_copies, vg->name);
return 1;
}
char *vg_profile_dup(const struct volume_group *vg)
{
const char *profile_name = vg->profile ? vg->profile->name : "";
return dm_pool_strdup(vg->vgmem, profile_name);
}
static int _recalc_extents(uint32_t *extents, const char *desc1,
const char *desc2, uint32_t old_extent_size,
uint32_t new_extent_size)
{
uint64_t size = (uint64_t) old_extent_size * (*extents);
if (size % new_extent_size) {
log_error("New size %" PRIu64 " for %s%s not an exact number "
"of new extents.", size, desc1, desc2);
return 0;
}
size /= new_extent_size;
if (size > MAX_EXTENT_COUNT) {
log_error("New extent count %" PRIu64 " for %s%s exceeds "
"32 bits.", size, desc1, desc2);
return 0;
}
*extents = (uint32_t) size;
return 1;
}
int vg_check_new_extent_size(const struct format_type *fmt, uint32_t new_extent_size)
{
if (!new_extent_size) {
log_error("Physical extent size may not be zero");
return 0;
}
if ((fmt->features & FMT_NON_POWER2_EXTENTS)) {
if (!is_power_of_2(new_extent_size) &&
(new_extent_size % MIN_NON_POWER2_EXTENT_SIZE)) {
log_error("Physical Extent size must be a multiple of %s when not a power of 2.",
display_size(fmt->cmd, (uint64_t) MIN_NON_POWER2_EXTENT_SIZE));
return 0;
}
return 1;
}
/* Apply original format1 restrictions */
if (!is_power_of_2(new_extent_size)) {
log_error("Metadata format only supports Physical Extent sizes that are powers of 2.");
return 0;
}
if (new_extent_size > MAX_PE_SIZE || new_extent_size < MIN_PE_SIZE) {
log_error("Extent size must be between %s and %s",
display_size(fmt->cmd, (uint64_t) MIN_PE_SIZE),
display_size(fmt->cmd, (uint64_t) MAX_PE_SIZE));
return 0;
}
if (new_extent_size % MIN_PE_SIZE) {
log_error("Extent size must be multiple of %s",
display_size(fmt->cmd, (uint64_t) MIN_PE_SIZE));
return 0;
}
return 1;
}
int vg_set_extent_size(struct volume_group *vg, uint32_t new_extent_size)
{
uint32_t old_extent_size = vg->extent_size;
struct pv_list *pvl;
struct lv_list *lvl;
struct physical_volume *pv;
struct logical_volume *lv;
struct lv_segment *seg;
struct pv_segment *pvseg;
uint32_t s;
if (!vg_is_resizeable(vg)) {
log_error("Volume group \"%s\" must be resizeable "
"to change PE size", vg->name);
return 0;
}
if (new_extent_size == vg->extent_size)
return 1;
if (!vg_check_new_extent_size(vg->fid->fmt, new_extent_size))
return_0;
if (new_extent_size > vg->extent_size) {
if ((uint64_t) vg_size(vg) % new_extent_size) {
/* FIXME Adjust used PV sizes instead */
log_error("New extent size is not a perfect fit");
return 0;
}
}
vg->extent_size = new_extent_size;
if (vg->fid->fmt->ops->vg_setup &&
!vg->fid->fmt->ops->vg_setup(vg->fid, vg))
return_0;
if (!_recalc_extents(&vg->extent_count, vg->name, "", old_extent_size,
new_extent_size))
return_0;
if (!_recalc_extents(&vg->free_count, vg->name, " free space",
old_extent_size, new_extent_size))
return_0;
/* foreach PV */
dm_list_iterate_items(pvl, &vg->pvs) {
pv = pvl->pv;
pv->pe_size = new_extent_size;
if (!_recalc_extents(&pv->pe_count, pv_dev_name(pv), "",
old_extent_size, new_extent_size))
return_0;
if (!_recalc_extents(&pv->pe_alloc_count, pv_dev_name(pv),
" allocated space", old_extent_size, new_extent_size))
return_0;
/* foreach free PV Segment */
dm_list_iterate_items(pvseg, &pv->segments) {
if (pvseg_is_allocated(pvseg))
continue;
if (!_recalc_extents(&pvseg->pe, pv_dev_name(pv),
" PV segment start", old_extent_size,
new_extent_size))
return_0;
if (!_recalc_extents(&pvseg->len, pv_dev_name(pv),
" PV segment length", old_extent_size,
new_extent_size))
return_0;
}
}
/* foreach LV */
dm_list_iterate_items(lvl, &vg->lvs) {
lv = lvl->lv;
if (!_recalc_extents(&lv->le_count, lv->name, "", old_extent_size,
new_extent_size))
return_0;
dm_list_iterate_items(seg, &lv->segments) {
if (!_recalc_extents(&seg->le, lv->name,
" segment start", old_extent_size,
new_extent_size))
return_0;
if (!_recalc_extents(&seg->len, lv->name,
" segment length", old_extent_size,
new_extent_size))
return_0;
if (!_recalc_extents(&seg->area_len, lv->name,
" area length", old_extent_size,
new_extent_size))
return_0;
if (!_recalc_extents(&seg->extents_copied, lv->name,
" extents moved", old_extent_size,
new_extent_size))
return_0;
/* foreach area */
for (s = 0; s < seg->area_count; s++) {
switch (seg_type(seg, s)) {
case AREA_PV:
if (!_recalc_extents
(&seg_pe(seg, s),
lv->name,
" pvseg start", old_extent_size,
new_extent_size))
return_0;
if (!_recalc_extents
(&seg_pvseg(seg, s)->len,
lv->name,
" pvseg length", old_extent_size,
new_extent_size))
return_0;
break;
case AREA_LV:
if (!_recalc_extents
(&seg_le(seg, s), lv->name,
" area start", old_extent_size,
new_extent_size))
return_0;
break;
case AREA_UNASSIGNED:
log_error("Unassigned area %u found in "
"segment", s);
return 0;
}
}
}
}
return 1;
}
int vg_set_max_lv(struct volume_group *vg, uint32_t max_lv)
{
if (!vg_is_resizeable(vg)) {
log_error("Volume group \"%s\" must be resizeable "
"to change MaxLogicalVolume", vg->name);
return 0;
}
if (!(vg->fid->fmt->features & FMT_UNLIMITED_VOLS)) {
if (!max_lv)
max_lv = 255;
else if (max_lv > 255) {
log_error("MaxLogicalVolume limit is 255");
return 0;
}
}
if (max_lv && max_lv < vg_visible_lvs(vg)) {
log_error("MaxLogicalVolume is less than the current number "
"%d of LVs for %s", vg_visible_lvs(vg),
vg->name);
return 0;
}
vg->max_lv = max_lv;
return 1;
}
int vg_set_max_pv(struct volume_group *vg, uint32_t max_pv)
{
if (!vg_is_resizeable(vg)) {
log_error("Volume group \"%s\" must be resizeable "
"to change MaxPhysicalVolumes", vg->name);
return 0;
}
if (!(vg->fid->fmt->features & FMT_UNLIMITED_VOLS)) {
if (!max_pv)
max_pv = 255;
else if (max_pv > 255) {
log_error("MaxPhysicalVolume limit is 255");
return 0;
}
}
if (max_pv && max_pv < vg->pv_count) {
log_error("MaxPhysicalVolumes is less than the current number "
"%d of PVs for \"%s\"", vg->pv_count,
vg->name);
return 0;
}
vg->max_pv = max_pv;
return 1;
}
int vg_set_alloc_policy(struct volume_group *vg, alloc_policy_t alloc)
{
if (alloc == ALLOC_INHERIT) {
log_error("Volume Group allocation policy cannot inherit "
"from anything");
return 0;
}
if (alloc == vg->alloc)
return 1;
vg->alloc = alloc;
return 1;
}
/*
* Setting the cluster attribute marks active volumes exclusive.
*
* FIXME: resolve logic with reacquiring proper top-level LV locks
* and we likely can't giveup DLM locks for active LVs...
*/
int vg_set_clustered(struct volume_group *vg, int clustered)
{
struct lv_list *lvl;
int fail = 0;
if (vg_is_clustered(vg) &&
locking_is_clustered() &&
locking_supports_remote_queries() &&
!clustered) {
/*
* If the volume is locally active but not exclusively
* we cannot determine when other nodes also use
* locally active (CR lock), so refuse conversion.
*/
dm_list_iterate_items(lvl, &vg->lvs)
if ((lv_lock_holder(lvl->lv) == lvl->lv) &&
lv_is_active(lvl->lv) &&
!lv_is_active_exclusive_locally(lvl->lv)) {
/* Show all non-local-exclusively active LVs
* this includes i.e. clustered mirrors */
log_error("Can't change cluster attribute with "
"active logical volume %s.",
display_lvname(lvl->lv));
fail = 1;
}
if (fail) {
log_print_unless_silent("Conversion is supported only for "
"locally exclusive volumes.");
return 0;
}
}
if (clustered)
vg->status |= CLUSTERED;
else
vg->status &= ~CLUSTERED;
log_debug_metadata("Setting volume group %s as %sclustered.",
vg->name, clustered ? "" : "not " );
return 1;
}
/* The input string has already been validated. */
int vg_set_system_id(struct volume_group *vg, const char *system_id)
{
if (!system_id || !*system_id) {
vg->system_id = NULL;
return 1;
}
if (systemid_on_pvs(vg)) {
log_error("Metadata format %s does not support this type of system ID.",
vg->fid->fmt->name);
return 0;
}
if (!(vg->system_id = dm_pool_strdup(vg->vgmem, system_id))) {
log_error("Failed to allocate memory for system_id in vg_set_system_id.");
return 0;
}
if (vg->lvm1_system_id)
*vg->lvm1_system_id = '\0';
return 1;
}
int vg_set_lock_type(struct volume_group *vg, const char *lock_type)
{
if (!lock_type)
lock_type = "none";
if (!(vg->lock_type = dm_pool_strdup(vg->vgmem, lock_type))) {
log_error("vg_set_lock_type %s no mem", lock_type);
return 0;
}
return 1;
}
char *vg_attr_dup(struct dm_pool *mem, const struct volume_group *vg)
{
char *repstr;
if (!(repstr = dm_pool_zalloc(mem, 7))) {
log_error("dm_pool_alloc failed");
return NULL;
}
repstr[0] = (vg->status & LVM_WRITE) ? 'w' : 'r';
repstr[1] = (vg_is_resizeable(vg)) ? 'z' : '-';
repstr[2] = (vg_is_exported(vg)) ? 'x' : '-';
repstr[3] = (vg_missing_pv_count(vg)) ? 'p' : '-';
repstr[4] = alloc_policy_char(vg->alloc);
if (vg_is_clustered(vg))
repstr[5] = 'c';
else if (is_lockd_type(vg->lock_type))
repstr[5] = 's';
else
repstr[5] = '-';
return repstr;
}
int vgreduce_single(struct cmd_context *cmd, struct volume_group *vg,
struct physical_volume *pv, int commit)
{
struct pv_list *pvl;
struct volume_group *orphan_vg = NULL;
int r = 0;
const char *name = pv_dev_name(pv);
if (!vg) {
log_error(INTERNAL_ERROR "VG is NULL.");
return r;
}
if (pv_pe_alloc_count(pv)) {
log_error("Physical volume \"%s\" still in use", name);
return r;
}
if (vg->pv_count == 1) {
log_error("Can't remove final physical volume \"%s\" from "
"volume group \"%s\"", name, vg->name);
return r;
}
if (!lock_vol(cmd, VG_ORPHANS, LCK_VG_WRITE, NULL)) {
log_error("Can't get lock for orphan PVs");
return r;
}
pvl = find_pv_in_vg(vg, name);
if (!archive(vg))
goto_bad;
log_verbose("Removing \"%s\" from volume group \"%s\"", name, vg->name);
if (pvl)
del_pvl_from_vgs(vg, pvl);
pv->vg_name = vg->fid->fmt->orphan_vg_name;
pv->status = ALLOCATABLE_PV;
if (!dev_get_size(pv_dev(pv), &pv->size)) {
log_error("%s: Couldn't get size.", pv_dev_name(pv));
goto bad;
}
vg->free_count -= pv_pe_count(pv) - pv_pe_alloc_count(pv);
vg->extent_count -= pv_pe_count(pv);
orphan_vg = vg_read_for_update(cmd, vg->fid->fmt->orphan_vg_name,
NULL, 0, 0);
if (vg_read_error(orphan_vg))
goto bad;
if (!vg_split_mdas(cmd, vg, orphan_vg) || !vg->pv_count) {
log_error("Cannot remove final metadata area on \"%s\" from \"%s\"",
name, vg->name);
goto bad;
}
/*
* Only write out the needed changes if so requested by caller.
*/
if (commit) {
if (!vg_write(vg) || !vg_commit(vg)) {
log_error("Removal of physical volume \"%s\" from "
"\"%s\" failed", name, vg->name);
goto bad;
}
if (!pv_write(cmd, pv, 0)) {
log_error("Failed to clear metadata from physical "
"volume \"%s\" "
"after removal from \"%s\"", name, vg->name);
goto bad;
}
backup(vg);
log_print_unless_silent("Removed \"%s\" from volume group \"%s\"",
name, vg->name);
}
r = 1;
bad:
/* If we are committing here or we had an error then we will free fid */
if (pvl && (commit || r != 1))
free_pv_fid(pvl->pv);
unlock_and_release_vg(cmd, orphan_vg, VG_ORPHANS);
return r;
}