1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-10 05:18:36 +03:00
lvm2/lib/metadata/lv_manip.c

2635 lines
64 KiB
C

/*
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004-2007 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "lib.h"
#include "metadata.h"
#include "locking.h"
#include "pv_map.h"
#include "lvm-string.h"
#include "toolcontext.h"
#include "lv_alloc.h"
#include "pv_alloc.h"
#include "display.h"
#include "segtype.h"
#include "archiver.h"
#include "activate.h"
struct lv_names {
const char *old;
const char *new;
};
int add_seg_to_segs_using_this_lv(struct logical_volume *lv,
struct lv_segment *seg)
{
struct seg_list *sl;
list_iterate_items(sl, &lv->segs_using_this_lv) {
if (sl->seg == seg) {
sl->count++;
return 1;
}
}
log_very_verbose("Adding %s:%" PRIu32 " as an user of %s",
seg->lv->name, seg->le, lv->name);
if (!(sl = dm_pool_zalloc(lv->vg->cmd->mem, sizeof(*sl)))) {
log_error("Failed to allocate segment list");
return 0;
}
sl->count = 1;
sl->seg = seg;
list_add(&lv->segs_using_this_lv, &sl->list);
return 1;
}
int remove_seg_from_segs_using_this_lv(struct logical_volume *lv,
struct lv_segment *seg)
{
struct seg_list *sl;
list_iterate_items(sl, &lv->segs_using_this_lv) {
if (sl->seg != seg)
continue;
if (sl->count > 1)
sl->count--;
else {
log_very_verbose("%s:%" PRIu32 " is no longer a user "
"of %s", seg->lv->name, seg->le,
lv->name);
list_del(&sl->list);
}
return 1;
}
return 0;
}
/*
* This is a function specialized for the common case where there is
* only one segment which uses the LV.
* e.g. the LV is a layer inserted by insert_layer_for_lv().
*
* In general, walk through lv->segs_using_this_lv.
*/
struct lv_segment *get_only_segment_using_this_lv(struct logical_volume *lv)
{
struct seg_list *sl;
if (list_size(&lv->segs_using_this_lv) != 1) {
log_error("%s is expected to have only one segment using it, "
"while it has %d", lv->name,
list_size(&lv->segs_using_this_lv));
return NULL;
}
sl = list_item(list_first(&lv->segs_using_this_lv), struct seg_list);
if (sl->count != 1) {
log_error("%s is expected to have only one segment using it, "
"while %s:%" PRIu32 " uses it %d times",
lv->name, sl->seg->lv->name, sl->seg->le, sl->count);
return NULL;
}
return sl->seg;
}
/*
* PVs used by a segment of an LV
*/
struct seg_pvs {
struct list list;
struct list pvs; /* struct pv_list */
uint32_t le;
uint32_t len;
};
static struct seg_pvs *_find_seg_pvs_by_le(struct list *list, uint32_t le)
{
struct seg_pvs *spvs;
list_iterate_items(spvs, list)
if (le >= spvs->le && le < spvs->le + spvs->len)
return spvs;
return NULL;
}
/*
* Find first unused LV number.
*/
uint32_t find_free_lvnum(struct logical_volume *lv)
{
int lvnum_used[MAX_RESTRICTED_LVS + 1];
uint32_t i = 0;
struct lv_list *lvl;
int lvnum;
memset(&lvnum_used, 0, sizeof(lvnum_used));
list_iterate_items(lvl, &lv->vg->lvs) {
lvnum = lvnum_from_lvid(&lvl->lv->lvid);
if (lvnum <= MAX_RESTRICTED_LVS)
lvnum_used[lvnum] = 1;
}
while (lvnum_used[i])
i++;
/* FIXME What if none are free? */
return i;
}
/*
* All lv_segments get created here.
*/
struct lv_segment *alloc_lv_segment(struct dm_pool *mem,
const struct segment_type *segtype,
struct logical_volume *lv,
uint32_t le, uint32_t len,
uint32_t status,
uint32_t stripe_size,
struct logical_volume *log_lv,
uint32_t area_count,
uint32_t area_len,
uint32_t chunk_size,
uint32_t region_size,
uint32_t extents_copied)
{
struct lv_segment *seg;
uint32_t areas_sz = area_count * sizeof(*seg->areas);
if (!(seg = dm_pool_zalloc(mem, sizeof(*seg))))
return_NULL;
if (!(seg->areas = dm_pool_zalloc(mem, areas_sz))) {
dm_pool_free(mem, seg);
return_NULL;
}
if (!segtype) {
log_error("alloc_lv_segment: Missing segtype.");
return NULL;
}
seg->segtype = segtype;
seg->lv = lv;
seg->le = le;
seg->len = len;
seg->status = status;
seg->stripe_size = stripe_size;
seg->area_count = area_count;
seg->area_len = area_len;
seg->chunk_size = chunk_size;
seg->region_size = region_size;
seg->extents_copied = extents_copied;
seg->log_lv = log_lv;
list_init(&seg->tags);
if (log_lv && !attach_mirror_log(seg, log_lv))
return_NULL;
return seg;
}
struct lv_segment *alloc_snapshot_seg(struct logical_volume *lv,
uint32_t status, uint32_t old_le_count)
{
struct lv_segment *seg;
const struct segment_type *segtype;
segtype = get_segtype_from_string(lv->vg->cmd, "snapshot");
if (!segtype) {
log_error("Failed to find snapshot segtype");
return NULL;
}
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem, segtype, lv, old_le_count,
lv->le_count - old_le_count, status, 0,
NULL, 0, lv->le_count - old_le_count,
0, 0, 0))) {
log_error("Couldn't allocate new snapshot segment.");
return NULL;
}
list_add(&lv->segments, &seg->list);
lv->status |= VIRTUAL;
return seg;
}
void release_lv_segment_area(struct lv_segment *seg, uint32_t s,
uint32_t area_reduction)
{
if (seg_type(seg, s) == AREA_UNASSIGNED)
return;
if (seg_type(seg, s) == AREA_PV) {
if (release_pv_segment(seg_pvseg(seg, s), area_reduction) &&
seg->area_len == area_reduction)
seg_type(seg, s) = AREA_UNASSIGNED;
return;
}
if (seg_lv(seg, s)->status & MIRROR_IMAGE) {
lv_reduce(seg_lv(seg, s), area_reduction);
return;
}
if (area_reduction == seg->area_len) {
log_very_verbose("Remove %s:%" PRIu32 "[%" PRIu32 "] from "
"the top of LV %s:%" PRIu32,
seg->lv->name, seg->le, s,
seg_lv(seg, s)->name, seg_le(seg, s));
remove_seg_from_segs_using_this_lv(seg_lv(seg, s), seg);
seg_lv(seg, s) = NULL;
seg_le(seg, s) = 0;
seg_type(seg, s) = AREA_UNASSIGNED;
}
}
/*
* Move a segment area from one segment to another
*/
int move_lv_segment_area(struct lv_segment *seg_to, uint32_t area_to,
struct lv_segment *seg_from, uint32_t area_from)
{
struct physical_volume *pv;
struct logical_volume *lv;
uint32_t pe, le;
switch (seg_type(seg_from, area_from)) {
case AREA_PV:
pv = seg_pv(seg_from, area_from);
pe = seg_pe(seg_from, area_from);
release_lv_segment_area(seg_from, area_from,
seg_from->area_len);
release_lv_segment_area(seg_to, area_to, seg_to->area_len);
if (!set_lv_segment_area_pv(seg_to, area_to, pv, pe))
return_0;
break;
case AREA_LV:
lv = seg_lv(seg_from, area_from);
le = seg_le(seg_from, area_from);
release_lv_segment_area(seg_from, area_from,
seg_from->area_len);
release_lv_segment_area(seg_to, area_to, seg_to->area_len);
if (!set_lv_segment_area_lv(seg_to, area_to, lv, le, 0))
return_0;
break;
case AREA_UNASSIGNED:
release_lv_segment_area(seg_to, area_to, seg_to->area_len);
}
return 1;
}
/*
* Link part of a PV to an LV segment.
*/
int set_lv_segment_area_pv(struct lv_segment *seg, uint32_t area_num,
struct physical_volume *pv, uint32_t pe)
{
seg->areas[area_num].type = AREA_PV;
if (!(seg_pvseg(seg, area_num) =
assign_peg_to_lvseg(pv, pe, seg->area_len, seg, area_num)))
return_0;
return 1;
}
/*
* Link one LV segment to another. Assumes sizes already match.
*/
int set_lv_segment_area_lv(struct lv_segment *seg, uint32_t area_num,
struct logical_volume *lv, uint32_t le,
uint32_t flags)
{
log_very_verbose("Stack %s:%" PRIu32 "[%" PRIu32 "] on LV %s:%" PRIu32,
seg->lv->name, seg->le, area_num, lv->name, le);
seg->areas[area_num].type = AREA_LV;
seg_lv(seg, area_num) = lv;
seg_le(seg, area_num) = le;
lv->status |= flags;
if (!add_seg_to_segs_using_this_lv(lv, seg))
return_0;
return 1;
}
/*
* Prepare for adding parallel areas to an existing segment.
*/
static int _lv_segment_add_areas(struct logical_volume *lv,
struct lv_segment *seg,
uint32_t new_area_count)
{
struct lv_segment_area *newareas;
uint32_t areas_sz = new_area_count * sizeof(*newareas);
if (!(newareas = dm_pool_zalloc(lv->vg->cmd->mem, areas_sz)))
return_0;
memcpy(newareas, seg->areas, seg->area_count * sizeof(*seg->areas));
seg->areas = newareas;
seg->area_count = new_area_count;
return 1;
}
/*
* Reduce the size of an lv_segment. New size can be zero.
*/
static int _lv_segment_reduce(struct lv_segment *seg, uint32_t reduction)
{
uint32_t area_reduction, s;
/* Caller must ensure exact divisibility */
if (seg_is_striped(seg)) {
if (reduction % seg->area_count) {
log_error("Segment extent reduction %" PRIu32
"not divisible by #stripes %" PRIu32,
reduction, seg->area_count);
return 0;
}
area_reduction = (reduction / seg->area_count);
} else
area_reduction = reduction;
for (s = 0; s < seg->area_count; s++)
release_lv_segment_area(seg, s, area_reduction);
seg->len -= reduction;
seg->area_len -= area_reduction;
return 1;
}
/*
* Entry point for all LV reductions in size.
*/
static int _lv_reduce(struct logical_volume *lv, uint32_t extents, int delete)
{
struct lv_list *lvl;
struct lv_segment *seg;
uint32_t count = extents;
uint32_t reduction;
list_iterate_back_items(seg, &lv->segments) {
if (!count)
break;
if (seg->len <= count) {
/* remove this segment completely */
/* FIXME Check this is safe */
if (seg->log_lv && !lv_remove(seg->log_lv))
return_0;
list_del(&seg->list);
reduction = seg->len;
} else
reduction = count;
if (!_lv_segment_reduce(seg, reduction))
return_0;
count -= reduction;
}
lv->le_count -= extents;
lv->size = (uint64_t) lv->le_count * lv->vg->extent_size;
if (!delete)
return 1;
/* Remove the LV if it is now empty */
if (!lv->le_count) {
if (!(lvl = find_lv_in_vg(lv->vg, lv->name)))
return_0;
list_del(&lvl->list);
lv->vg->lv_count--;
} else if (lv->vg->fid->fmt->ops->lv_setup &&
!lv->vg->fid->fmt->ops->lv_setup(lv->vg->fid, lv))
return_0;
return 1;
}
/*
* Empty an LV.
*/
int lv_empty(struct logical_volume *lv)
{
return _lv_reduce(lv, lv->le_count, 0);
}
/*
* Empty an LV and add error segment.
*/
int replace_lv_with_error_segment(struct logical_volume *lv)
{
uint32_t len = lv->le_count;
if (!lv_empty(lv))
return_0;
if (!lv_add_virtual_segment(lv, 0, len,
get_segtype_from_string(lv->vg->cmd,
"error")))
return_0;
return 1;
}
/*
* Remove given number of extents from LV.
*/
int lv_reduce(struct logical_volume *lv, uint32_t extents)
{
return _lv_reduce(lv, extents, 1);
}
/*
* Completely remove an LV.
*/
int lv_remove(struct logical_volume *lv)
{
if (!lv_reduce(lv, lv->le_count))
return_0;
return 1;
}
/*
* A set of contiguous physical extents allocated
*/
struct alloced_area {
struct list list;
struct physical_volume *pv;
uint32_t pe;
uint32_t len;
};
/*
* Details of an allocation attempt
*/
struct alloc_handle {
struct cmd_context *cmd;
struct dm_pool *mem;
alloc_policy_t alloc; /* Overall policy */
uint32_t area_count; /* Number of parallel areas */
uint32_t area_multiple; /* seg->len = area_len * area_multiple */
uint32_t log_count; /* Number of parallel 1-extent logs */
uint32_t total_area_len; /* Total number of parallel extents */
struct list *parallel_areas; /* PVs to avoid */
struct alloced_area log_area; /* Extent used for log */
struct list alloced_areas[0]; /* Lists of areas in each stripe */
};
static uint32_t calc_area_multiple(const struct segment_type *segtype,
const uint32_t area_count)
{
if (!segtype_is_striped(segtype) || !area_count)
return 1;
return area_count;
}
/*
* Preparation for a specific allocation attempt
*/
static struct alloc_handle *_alloc_init(struct cmd_context *cmd,
struct dm_pool *mem,
const struct segment_type *segtype,
alloc_policy_t alloc,
uint32_t mirrors,
uint32_t stripes,
uint32_t log_count,
struct list *parallel_areas)
{
struct alloc_handle *ah;
uint32_t s, area_count;
if (stripes > 1 && mirrors > 1) {
log_error("Striped mirrors are not supported yet");
return NULL;
}
if (log_count && stripes > 1) {
log_error("Can't mix striping with a mirror log yet.");
return NULL;
}
if (segtype_is_virtual(segtype))
area_count = 0;
else if (mirrors > 1)
area_count = mirrors;
else
area_count = stripes;
if (!(ah = dm_pool_zalloc(mem, sizeof(*ah) + sizeof(ah->alloced_areas[0]) * area_count))) {
log_error("allocation handle allocation failed");
return NULL;
}
if (segtype_is_virtual(segtype))
return ah;
ah->cmd = cmd;
if (!(ah->mem = dm_pool_create("allocation", 1024))) {
log_error("allocation pool creation failed");
return NULL;
}
ah->area_count = area_count;
ah->log_count = log_count;
ah->alloc = alloc;
ah->area_multiple = calc_area_multiple(segtype, area_count);
for (s = 0; s < ah->area_count; s++)
list_init(&ah->alloced_areas[s]);
ah->parallel_areas = parallel_areas;
return ah;
}
void alloc_destroy(struct alloc_handle *ah)
{
if (ah->mem)
dm_pool_destroy(ah->mem);
}
static int _log_parallel_areas(struct dm_pool *mem, struct list *parallel_areas)
{
struct seg_pvs *spvs;
struct pv_list *pvl;
char *pvnames;
if (!parallel_areas)
return 1;
if (!dm_pool_begin_object(mem, 256)) {
log_error("dm_pool_begin_object failed");
return 0;
}
list_iterate_items(spvs, parallel_areas) {
list_iterate_items(pvl, &spvs->pvs) {
if (!dm_pool_grow_object(mem, pv_dev_name(pvl->pv), strlen(pv_dev_name(pvl->pv)))) {
log_error("dm_pool_grow_object failed");
dm_pool_abandon_object(mem);
return 0;
}
if (!dm_pool_grow_object(mem, " ", 1)) {
log_error("dm_pool_grow_object failed");
dm_pool_abandon_object(mem);
return 0;
}
}
if (!dm_pool_grow_object(mem, "\0", 1)) {
log_error("dm_pool_grow_object failed");
dm_pool_abandon_object(mem);
return 0;
}
pvnames = dm_pool_end_object(mem);
log_debug("Parallel PVs at LE %" PRIu32 " length %" PRIu32 ": %s",
spvs->le, spvs->len, pvnames);
dm_pool_free(mem, pvnames);
}
return 1;
}
static int _setup_alloced_segment(struct logical_volume *lv, uint32_t status,
uint32_t area_count,
uint32_t stripe_size,
const struct segment_type *segtype,
struct alloced_area *aa,
uint32_t region_size,
struct logical_volume *log_lv __attribute((unused)))
{
uint32_t s, extents, area_multiple;
struct lv_segment *seg;
area_multiple = calc_area_multiple(segtype, area_count);
/* log_lv gets set up elsehere */
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem, segtype, lv,
lv->le_count,
aa[0].len * area_multiple,
status, stripe_size, NULL,
area_count,
aa[0].len, 0u, region_size, 0u))) {
log_error("Couldn't allocate new LV segment.");
return 0;
}
for (s = 0; s < area_count; s++)
if (!set_lv_segment_area_pv(seg, s, aa[s].pv, aa[s].pe))
return_0;
list_add(&lv->segments, &seg->list);
extents = aa[0].len * area_multiple;
lv->le_count += extents;
lv->size += (uint64_t) extents *lv->vg->extent_size;
if (segtype_is_mirrored(segtype))
lv->status |= MIRRORED;
return 1;
}
static int _setup_alloced_segments(struct logical_volume *lv,
struct list *alloced_areas,
uint32_t area_count,
uint32_t status,
uint32_t stripe_size,
const struct segment_type *segtype,
uint32_t region_size,
struct logical_volume *log_lv)
{
struct alloced_area *aa;
list_iterate_items(aa, &alloced_areas[0]) {
if (!_setup_alloced_segment(lv, status, area_count,
stripe_size, segtype, aa,
region_size, log_lv))
return_0;
}
return 1;
}
/*
* This function takes a list of pv_areas and adds them to allocated_areas.
* If the complete area is not needed then it gets split.
* The part used is removed from the pv_map so it can't be allocated twice.
*/
static int _alloc_parallel_area(struct alloc_handle *ah, uint32_t needed,
struct pv_area **areas,
uint32_t *ix, struct pv_area *log_area)
{
uint32_t area_len, remaining;
uint32_t s;
struct alloced_area *aa;
remaining = needed - *ix;
area_len = remaining / ah->area_multiple;
/* Reduce area_len to the smallest of the areas */
for (s = 0; s < ah->area_count; s++)
if (area_len > areas[s]->count)
area_len = areas[s]->count;
if (!(aa = dm_pool_alloc(ah->mem, sizeof(*aa) *
(ah->area_count + (log_area ? 1 : 0))))) {
log_error("alloced_area allocation failed");
return 0;
}
for (s = 0; s < ah->area_count; s++) {
aa[s].pv = areas[s]->map->pv;
aa[s].pe = areas[s]->start;
aa[s].len = area_len;
list_add(&ah->alloced_areas[s], &aa[s].list);
}
ah->total_area_len += area_len;
for (s = 0; s < ah->area_count; s++)
consume_pv_area(areas[s], area_len);
if (log_area) {
ah->log_area.pv = log_area->map->pv;
ah->log_area.pe = log_area->start;
ah->log_area.len = MIRROR_LOG_SIZE; /* FIXME Calculate & check this */
consume_pv_area(log_area, ah->log_area.len);
}
*ix += area_len * ah->area_multiple;
return 1;
}
/*
* Call fn for each AREA_PV used by the LV segment at lv:le of length *max_seg_len.
* If any constituent area contains more than one segment, max_seg_len is
* reduced to cover only the first.
* fn should return 0 on error, 1 to continue scanning or >1 to terminate without error.
* In the last case, this function passes on the return code.
*/
static int _for_each_pv(struct cmd_context *cmd, struct logical_volume *lv,
uint32_t le, uint32_t len, uint32_t *max_seg_len,
uint32_t first_area, uint32_t max_areas,
int top_level_area_index,
int only_single_area_segments,
int (*fn)(struct cmd_context *cmd,
struct pv_segment *peg, uint32_t s,
void *data),
void *data)
{
struct lv_segment *seg;
uint32_t s;
uint32_t remaining_seg_len, area_len, area_multiple;
int r = 1;
if (!(seg = find_seg_by_le(lv, le))) {
log_error("Failed to find segment for %s extent %" PRIu32,
lv->name, le);
return 0;
}
/* Remaining logical length of segment */
remaining_seg_len = seg->len - (le - seg->le);
if (remaining_seg_len > len)
remaining_seg_len = len;
if (max_seg_len && *max_seg_len > remaining_seg_len)
*max_seg_len = remaining_seg_len;
area_multiple = calc_area_multiple(seg->segtype, seg->area_count);
area_len = remaining_seg_len / area_multiple ? : 1;
for (s = first_area;
s < seg->area_count && (!max_areas || s <= max_areas);
s++) {
if (seg_type(seg, s) == AREA_LV) {
if (!(r = _for_each_pv(cmd, seg_lv(seg, s),
seg_le(seg, s) +
(le - seg->le) / area_multiple,
area_len, max_seg_len,
only_single_area_segments ? 0 : 0,
only_single_area_segments ? 1U : 0U,
top_level_area_index != -1 ? top_level_area_index : (int) s,
only_single_area_segments, fn,
data)))
stack;
} else if (seg_type(seg, s) == AREA_PV)
if (!(r = fn(cmd, seg_pvseg(seg, s), top_level_area_index != -1 ? (uint32_t) top_level_area_index : s, data)))
stack;
if (r != 1)
return r;
}
/* FIXME only_single_area_segments used as workaround to skip log LV - needs new param? */
if (!only_single_area_segments && seg_is_mirrored(seg) && seg->log_lv) {
if (!(r = _for_each_pv(cmd, seg->log_lv, 0, MIRROR_LOG_SIZE,
NULL, 0, 0, 0, only_single_area_segments,
fn, data)))
stack;
if (r != 1)
return r;
}
/* FIXME Add snapshot cow LVs etc. */
return 1;
}
static int _comp_area(const void *l, const void *r)
{
const struct pv_area *lhs = *((const struct pv_area **) l);
const struct pv_area *rhs = *((const struct pv_area **) r);
if (lhs->count < rhs->count)
return 1;
else if (lhs->count > rhs->count)
return -1;
return 0;
}
/*
* Search for pvseg that matches condition
*/
struct pv_match {
int (*condition)(struct pv_segment *pvseg, struct pv_area *pva);
struct pv_area **areas;
struct pv_area *pva;
uint32_t areas_size;
int s; /* Area index of match */
};
/*
* Is PV area on the same PV?
*/
static int _is_same_pv(struct pv_segment *pvseg, struct pv_area *pva)
{
if (pvseg->pv != pva->map->pv)
return 0;
return 1;
}
/*
* Is PV area contiguous to PV segment?
*/
static int _is_contiguous(struct pv_segment *pvseg, struct pv_area *pva)
{
if (pvseg->pv != pva->map->pv)
return 0;
if (pvseg->pe + pvseg->len != pva->start)
return 0;
return 1;
}
static int _is_condition(struct cmd_context *cmd __attribute((unused)),
struct pv_segment *pvseg, uint32_t s,
void *data)
{
struct pv_match *pvmatch = data;
if (!pvmatch->condition(pvseg, pvmatch->pva))
return 1; /* Continue */
if (s >= pvmatch->areas_size)
return 1;
pvmatch->areas[s] = pvmatch->pva;
return 2; /* Finished */
}
/*
* Is pva on same PV as any existing areas?
*/
static int _check_cling(struct cmd_context *cmd,
struct lv_segment *prev_lvseg, struct pv_area *pva,
struct pv_area **areas, uint32_t areas_size)
{
struct pv_match pvmatch;
int r;
pvmatch.condition = _is_same_pv;
pvmatch.areas = areas;
pvmatch.areas_size = areas_size;
pvmatch.pva = pva;
/* FIXME Cope with stacks by flattening */
if (!(r = _for_each_pv(cmd, prev_lvseg->lv,
prev_lvseg->le + prev_lvseg->len - 1, 1, NULL,
0, 0, -1, 1,
_is_condition, &pvmatch)))
stack;
if (r != 2)
return 0;
return 1;
}
/*
* Is pva contiguous to any existing areas or on the same PV?
*/
static int _check_contiguous(struct cmd_context *cmd,
struct lv_segment *prev_lvseg, struct pv_area *pva,
struct pv_area **areas, uint32_t areas_size)
{
struct pv_match pvmatch;
int r;
pvmatch.condition = _is_contiguous;
pvmatch.areas = areas;
pvmatch.areas_size = areas_size;
pvmatch.pva = pva;
/* FIXME Cope with stacks by flattening */
if (!(r = _for_each_pv(cmd, prev_lvseg->lv,
prev_lvseg->le + prev_lvseg->len - 1, 1, NULL,
0, 0, -1, 1,
_is_condition, &pvmatch)))
stack;
if (r != 2)
return 0;
return 1;
}
/*
* Choose sets of parallel areas to use, respecting any constraints.
*/
static int _find_parallel_space(struct alloc_handle *ah, alloc_policy_t alloc,
struct list *pvms, struct pv_area **areas,
uint32_t areas_size, unsigned can_split,
struct lv_segment *prev_lvseg,
uint32_t *allocated, uint32_t needed)
{
struct pv_map *pvm;
struct pv_area *pva;
struct pv_list *pvl;
unsigned already_found_one = 0;
unsigned contiguous = 0, cling = 0, preferred_count = 0;
unsigned ix;
unsigned ix_offset = 0; /* Offset for non-preferred allocations */
uint32_t max_parallel; /* Maximum extents to allocate */
uint32_t next_le;
struct seg_pvs *spvs;
struct list *parallel_pvs;
uint32_t free_pes;
/* Is there enough total space? */
free_pes = pv_maps_size(pvms);
if (needed - *allocated > free_pes) {
log_error("Insufficient free space: %" PRIu32 " extents needed,"
" but only %" PRIu32 " available",
needed - *allocated, free_pes);
return 0;
}
/* FIXME Select log PV appropriately if there isn't one yet */
/* Are there any preceding segments we must follow on from? */
if (prev_lvseg) {
ix_offset = prev_lvseg->area_count;
if ((alloc == ALLOC_CONTIGUOUS))
contiguous = 1;
else if ((alloc == ALLOC_CLING))
cling = 1;
else
ix_offset = 0;
}
/* FIXME This algorithm needs a lot of cleaning up! */
/* FIXME anywhere doesn't find all space yet */
/* ix_offset holds the number of allocations that must be contiguous */
/* ix holds the number of areas found on other PVs */
do {
ix = 0;
preferred_count = 0;
parallel_pvs = NULL;
max_parallel = needed;
/*
* If there are existing parallel PVs, avoid them and reduce
* the maximum we can allocate in one go accordingly.
*/
if (ah->parallel_areas) {
next_le = (prev_lvseg ? prev_lvseg->le + prev_lvseg->len : 0) + *allocated / ah->area_multiple;
list_iterate_items(spvs, ah->parallel_areas) {
if (next_le >= spvs->le + spvs->len)
continue;
if (max_parallel > (spvs->le + spvs->len) * ah->area_multiple)
max_parallel = (spvs->le + spvs->len) * ah->area_multiple;
parallel_pvs = &spvs->pvs;
break;
}
}
/*
* Put the smallest area of each PV that is at least the
* size we need into areas array. If there isn't one
* that fits completely and we're allowed more than one
* LV segment, then take the largest remaining instead.
*/
list_iterate_items(pvm, pvms) {
if (list_empty(&pvm->areas))
continue; /* Next PV */
if (alloc != ALLOC_ANYWHERE) {
/* Don't allocate onto the log pv */
if (ah->log_count &&
pvm->pv == ah->log_area.pv)
continue; /* Next PV */
/* Avoid PVs used by existing parallel areas */
if (parallel_pvs)
list_iterate_items(pvl, parallel_pvs)
if (pvm->pv == pvl->pv)
goto next_pv;
}
already_found_one = 0;
/* First area in each list is the largest */
list_iterate_items(pva, &pvm->areas) {
if (contiguous) {
if (prev_lvseg &&
_check_contiguous(ah->cmd,
prev_lvseg,
pva, areas,
areas_size)) {
preferred_count++;
goto next_pv;
}
continue;
}
if (cling) {
if (prev_lvseg &&
_check_cling(ah->cmd,
prev_lvseg,
pva, areas,
areas_size)) {
preferred_count++;
}
goto next_pv;
}
/* Is it big enough on its own? */
if (pva->count * ah->area_multiple <
max_parallel - *allocated &&
((!can_split && !ah->log_count) ||
(already_found_one &&
!(alloc == ALLOC_ANYWHERE))))
goto next_pv;
if (!already_found_one ||
alloc == ALLOC_ANYWHERE) {
ix++;
already_found_one = 1;
}
areas[ix + ix_offset - 1] = pva;
goto next_pv;
}
next_pv:
if (ix >= areas_size)
break;
}
if ((contiguous || cling) && (preferred_count < ix_offset))
break;
/* Only allocate log_area the first time around */
if (ix + ix_offset < ah->area_count +
((ah->log_count && !ah->log_area.len) ?
ah->log_count : 0))
/* FIXME With ALLOC_ANYWHERE, need to split areas */
break;
/* sort the areas so we allocate from the biggest */
if (ix > 1)
qsort(areas + ix_offset, ix, sizeof(*areas),
_comp_area);
/* First time around, use smallest area as log_area */
/* FIXME decide which PV to use at top of function instead */
if (!_alloc_parallel_area(ah, max_parallel, areas,
allocated,
(ah->log_count && !ah->log_area.len) ?
*(areas + ix_offset + ix - 1) :
NULL))
return_0;
} while (!contiguous && *allocated != needed && can_split);
return 1;
}
/*
* Allocate several segments, each the same size, in parallel.
* If mirrored_pv and mirrored_pe are supplied, it is used as
* the first area, and additional areas are allocated parallel to it.
*/
static int _allocate(struct alloc_handle *ah,
struct volume_group *vg,
struct logical_volume *lv,
uint32_t new_extents,
unsigned can_split,
struct list *allocatable_pvs)
{
struct pv_area **areas;
uint32_t allocated = lv ? lv->le_count : 0;
uint32_t old_allocated;
struct lv_segment *prev_lvseg = NULL;
int r = 0;
struct list *pvms;
uint32_t areas_size;
alloc_policy_t alloc;
if (allocated >= new_extents && !ah->log_count) {
log_error("_allocate called with no work to do!");
return 1;
}
if (ah->alloc == ALLOC_CONTIGUOUS)
can_split = 0;
if (lv && !list_empty(&lv->segments))
prev_lvseg = list_item(list_last(&lv->segments),
struct lv_segment);
/*
* Build the sets of available areas on the pv's.
*/
if (!(pvms = create_pv_maps(ah->mem, vg, allocatable_pvs)))
return_0;
if (!_log_parallel_areas(ah->mem, ah->parallel_areas))
stack;
areas_size = list_size(pvms);
if (areas_size < ah->area_count + ah->log_count) {
if (ah->alloc != ALLOC_ANYWHERE) {
log_error("Not enough PVs with free space available "
"for parallel allocation.");
log_error("Consider --alloc anywhere if desperate.");
return 0;
}
areas_size = ah->area_count + ah->log_count;
}
/* Upper bound if none of the PVs in prev_lvseg is in pvms */
/* FIXME Work size out properly */
if (prev_lvseg)
areas_size += prev_lvseg->area_count;
/* Allocate an array of pv_areas to hold the largest space on each PV */
if (!(areas = dm_malloc(sizeof(*areas) * areas_size))) {
log_err("Couldn't allocate areas array.");
return 0;
}
/* Attempt each defined allocation policy in turn */
for (alloc = ALLOC_CONTIGUOUS; alloc < ALLOC_INHERIT; alloc++) {
old_allocated = allocated;
if (!_find_parallel_space(ah, alloc, pvms, areas,
areas_size, can_split,
prev_lvseg, &allocated, new_extents))
goto_out;
if ((allocated == new_extents) || (ah->alloc == alloc) ||
(!can_split && (allocated != old_allocated)))
break;
}
if (allocated != new_extents) {
log_error("Insufficient suitable %sallocatable extents "
"for logical volume %s: %u more required",
can_split ? "" : "contiguous ",
lv ? lv->name : "",
(new_extents - allocated) * ah->area_count
/ ah->area_multiple);
goto out;
}
if (ah->log_count && !ah->log_area.len) {
log_error("Insufficient extents for log allocation "
"for logical volume %s.",
lv ? lv->name : "");
goto out;
}
r = 1;
out:
dm_free(areas);
return r;
}
int lv_add_virtual_segment(struct logical_volume *lv, uint32_t status,
uint32_t extents, const struct segment_type *segtype)
{
struct lv_segment *seg;
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem, segtype, lv,
lv->le_count, extents, status, 0,
NULL, 0, extents, 0, 0, 0))) {
log_error("Couldn't allocate new zero segment.");
return 0;
}
list_add(&lv->segments, &seg->list);
lv->le_count += extents;
lv->size += (uint64_t) extents *lv->vg->extent_size;
lv->status |= VIRTUAL;
return 1;
}
/*
* Entry point for all extent allocations.
*/
struct alloc_handle *allocate_extents(struct volume_group *vg,
struct logical_volume *lv,
const struct segment_type *segtype,
uint32_t stripes,
uint32_t mirrors, uint32_t log_count,
uint32_t extents,
struct list *allocatable_pvs,
alloc_policy_t alloc,
struct list *parallel_areas)
{
struct alloc_handle *ah;
if (segtype_is_virtual(segtype)) {
log_error("allocate_extents does not handle virtual segments");
return NULL;
}
if (vg->fid->fmt->ops->segtype_supported &&
!vg->fid->fmt->ops->segtype_supported(vg->fid, segtype)) {
log_error("Metadata format (%s) does not support required "
"LV segment type (%s).", vg->fid->fmt->name,
segtype->name);
log_error("Consider changing the metadata format by running "
"vgconvert.");
return NULL;
}
if (alloc == ALLOC_INHERIT)
alloc = vg->alloc;
if (!(ah = _alloc_init(vg->cmd, vg->cmd->mem, segtype, alloc, mirrors,
stripes, log_count, parallel_areas)))
return_NULL;
if (!segtype_is_virtual(segtype) &&
!_allocate(ah, vg, lv, (lv ? lv->le_count : 0) + extents,
1, allocatable_pvs)) {
alloc_destroy(ah);
return_NULL;
}
return ah;
}
/*
* Add new segments to an LV from supplied list of areas.
*/
int lv_add_segment(struct alloc_handle *ah,
uint32_t first_area, uint32_t num_areas,
struct logical_volume *lv,
const struct segment_type *segtype,
uint32_t stripe_size,
uint32_t status,
uint32_t region_size,
struct logical_volume *log_lv)
{
if (!segtype) {
log_error("Missing segtype in lv_add_segment().");
return 0;
}
if (segtype_is_virtual(segtype)) {
log_error("lv_add_segment cannot handle virtual segments");
return 0;
}
if (!_setup_alloced_segments(lv, &ah->alloced_areas[first_area],
num_areas, status,
stripe_size, segtype,
region_size, log_lv))
return_0;
if ((segtype->flags & SEG_CAN_SPLIT) && !lv_merge_segments(lv)) {
log_err("Couldn't merge segments after extending "
"logical volume.");
return 0;
}
if (lv->vg->fid->fmt->ops->lv_setup &&
!lv->vg->fid->fmt->ops->lv_setup(lv->vg->fid, lv))
return_0;
return 1;
}
/*
* "mirror" segment type doesn't support split.
* So, when adding mirrors to linear LV segment, first split it,
* then convert it to "mirror" and add areas.
*/
static struct lv_segment *_convert_seg_to_mirror(struct lv_segment *seg,
uint32_t region_size,
struct logical_volume *log_lv)
{
struct lv_segment *newseg;
uint32_t s;
if (!seg_is_striped(seg)) {
log_error("Can't convert non-striped segment to mirrored.");
return NULL;
}
if (seg->area_count > 1) {
log_error("Can't convert striped segment with multiple areas "
"to mirrored.");
return NULL;
}
if (!(newseg = alloc_lv_segment(seg->lv->vg->cmd->mem,
get_segtype_from_string(seg->lv->vg->cmd, "mirror"),
seg->lv, seg->le, seg->len,
seg->status, seg->stripe_size,
log_lv,
seg->area_count, seg->area_len,
seg->chunk_size, region_size,
seg->extents_copied))) {
log_error("Couldn't allocate converted LV segment");
return NULL;
}
for (s = 0; s < seg->area_count; s++)
if (!move_lv_segment_area(newseg, s, seg, s))
return_NULL;
list_add(&seg->list, &newseg->list);
list_del(&seg->list);
return newseg;
}
/*
* Add new areas to mirrored segments
*/
int lv_add_mirror_areas(struct alloc_handle *ah,
struct logical_volume *lv, uint32_t le,
uint32_t region_size)
{
struct alloced_area *aa;
struct lv_segment *seg;
uint32_t current_le = le;
uint32_t s, old_area_count, new_area_count;
list_iterate_items(aa, &ah->alloced_areas[0]) {
if (!(seg = find_seg_by_le(lv, current_le))) {
log_error("Failed to find segment for %s extent %"
PRIu32, lv->name, current_le);
return 0;
}
/* Allocator assures aa[0].len <= seg->area_len */
if (aa[0].len < seg->area_len) {
if (!lv_split_segment(lv, seg->le + aa[0].len)) {
log_error("Failed to split segment at %s "
"extent %" PRIu32, lv->name, le);
return 0;
}
}
if (!seg_is_mirrored(seg) &&
(!(seg = _convert_seg_to_mirror(seg, region_size, NULL))))
return_0;
old_area_count = seg->area_count;
new_area_count = old_area_count + ah->area_count;
if (!_lv_segment_add_areas(lv, seg, new_area_count))
return_0;
for (s = 0; s < ah->area_count; s++) {
if (!set_lv_segment_area_pv(seg, s + old_area_count,
aa[s].pv, aa[s].pe))
return_0;
}
current_le += seg->area_len;
}
lv->status |= MIRRORED;
if (lv->vg->fid->fmt->ops->lv_setup &&
!lv->vg->fid->fmt->ops->lv_setup(lv->vg->fid, lv))
return_0;
return 1;
}
/*
* Add mirror image LVs to mirrored segments
*/
int lv_add_mirror_lvs(struct logical_volume *lv,
struct logical_volume **sub_lvs,
uint32_t num_extra_areas,
uint32_t status, uint32_t region_size)
{
struct lv_segment *seg;
uint32_t old_area_count, new_area_count;
uint32_t m;
struct segment_type *mirror_segtype;
seg = first_seg(lv);
if (list_size(&lv->segments) != 1 || seg_type(seg, 0) != AREA_LV) {
log_error("Mirror layer must be inserted before adding mirrors");
return_0;
}
mirror_segtype = get_segtype_from_string(lv->vg->cmd, "mirror");
if (seg->segtype != mirror_segtype)
if (!(seg = _convert_seg_to_mirror(seg, region_size, NULL)))
return_0;
if (region_size && region_size != seg->region_size) {
log_error("Conflicting region_size");
return 0;
}
old_area_count = seg->area_count;
new_area_count = old_area_count + num_extra_areas;
if (!_lv_segment_add_areas(lv, seg, new_area_count)) {
log_error("Failed to allocate widened LV segment for %s.",
lv->name);
return 0;
}
for (m = 0; m < old_area_count; m++)
seg_lv(seg, m)->status |= status;
for (m = old_area_count; m < new_area_count; m++) {
if (!set_lv_segment_area_lv(seg, m, sub_lvs[m - old_area_count],
0, status))
return_0;
sub_lvs[m - old_area_count]->status &= ~VISIBLE_LV;
}
lv->status |= MIRRORED;
return 1;
}
/*
* Turn an empty LV into a mirror log.
*/
int lv_add_log_segment(struct alloc_handle *ah, struct logical_volume *log_lv)
{
struct lv_segment *seg;
if (list_size(&log_lv->segments)) {
log_error("Log segments can only be added to an empty LV");
return 0;
}
if (!(seg = alloc_lv_segment(log_lv->vg->cmd->mem,
get_segtype_from_string(log_lv->vg->cmd,
"striped"),
log_lv, 0, ah->log_area.len, MIRROR_LOG,
0, NULL, 1, ah->log_area.len, 0, 0, 0))) {
log_error("Couldn't allocate new mirror log segment.");
return 0;
}
if (!set_lv_segment_area_pv(seg, 0, ah->log_area.pv, ah->log_area.pe))
return_0;
list_add(&log_lv->segments, &seg->list);
log_lv->le_count += ah->log_area.len;
log_lv->size += (uint64_t) log_lv->le_count * log_lv->vg->extent_size;
if (log_lv->vg->fid->fmt->ops->lv_setup &&
!log_lv->vg->fid->fmt->ops->lv_setup(log_lv->vg->fid, log_lv))
return_0;
return 1;
}
static int _lv_extend_mirror(struct alloc_handle *ah,
struct logical_volume *lv,
uint32_t extents, uint32_t first_area)
{
struct lv_segment *seg;
uint32_t m, s;
seg = first_seg(lv);
for (m = first_area, s = 0; s < seg->area_count; s++) {
if (is_temporary_mirror_layer(seg_lv(seg, s))) {
if (!_lv_extend_mirror(ah, seg_lv(seg, s), extents, m))
return_0;
m += lv_mirror_count(seg_lv(seg, s));
continue;
}
if (!lv_add_segment(ah, m++, 1, seg_lv(seg, s),
get_segtype_from_string(lv->vg->cmd,
"striped"),
0, 0, 0, NULL)) {
log_error("Aborting. Failed to extend %s.",
seg_lv(seg, s)->name);
return 0;
}
}
seg->area_len += extents;
seg->len += extents;
lv->le_count += extents;
lv->size += (uint64_t) extents *lv->vg->extent_size;
return 1;
}
/*
* Entry point for single-step LV allocation + extension.
*/
int lv_extend(struct logical_volume *lv,
const struct segment_type *segtype,
uint32_t stripes, uint32_t stripe_size,
uint32_t mirrors, uint32_t extents,
struct physical_volume *mirrored_pv __attribute((unused)),
uint32_t mirrored_pe __attribute((unused)),
uint32_t status, struct list *allocatable_pvs,
alloc_policy_t alloc)
{
int r = 1;
struct alloc_handle *ah;
if (segtype_is_virtual(segtype))
return lv_add_virtual_segment(lv, status, extents, segtype);
if (!(ah = allocate_extents(lv->vg, lv, segtype, stripes, mirrors, 0,
extents, allocatable_pvs, alloc, NULL)))
return_0;
if (mirrors < 2) {
if (!lv_add_segment(ah, 0, ah->area_count, lv, segtype, stripe_size,
status, 0, NULL))
goto_out;
} else {
if (!_lv_extend_mirror(ah, lv, extents, 0))
return_0;
}
out:
alloc_destroy(ah);
return r;
}
/*
* Minimal LV renaming function.
* Metadata transaction should be made by caller.
* Assumes new_name is allocated from cmd->mem pool.
*/
static int _rename_single_lv(struct logical_volume *lv, char *new_name)
{
struct volume_group *vg = lv->vg;
if (find_lv_in_vg(vg, new_name)) {
log_error("Logical volume \"%s\" already exists in "
"volume group \"%s\"", new_name, vg->name);
return 0;
}
if (lv->status & LOCKED) {
log_error("Cannot rename locked LV %s", lv->name);
return 0;
}
lv->name = new_name;
return 1;
}
/*
* Rename sub LV.
* 'lv_name_old' and 'lv_name_new' are old and new names of the main LV.
*/
static int _rename_sub_lv(struct cmd_context *cmd,
struct logical_volume *lv,
const char *lv_name_old, const char *lv_name_new)
{
char *suffix, *new_name;
size_t len;
/*
* A sub LV name starts with lv_name_old + '_'.
* The suffix follows lv_name_old and includes '_'.
*/
len = strlen(lv_name_old);
if (strncmp(lv->name, lv_name_old, len) || lv->name[len] != '_') {
log_error("Cannot rename \"%s\": name format not recognized "
"for internal LV \"%s\"",
lv_name_old, lv->name);
return 0;
}
suffix = lv->name + len;
/*
* Compose a new name for sub lv:
* e.g. new name is "lvol1_mlog"
* if the sub LV is "lvol0_mlog" and
* a new name for main LV is "lvol1"
*/
len = strlen(lv_name_new) + strlen(suffix) + 1;
new_name = dm_pool_alloc(cmd->mem, len);
if (!new_name) {
log_error("Failed to allocate space for new name");
return 0;
}
if (!dm_snprintf(new_name, len, "%s%s", lv_name_new, suffix)) {
log_error("Failed to create new name");
return 0;
}
/* Rename it */
return _rename_single_lv(lv, new_name);
}
/* Callback for _for_each_sub_lv */
static int _rename_cb(struct cmd_context *cmd, struct logical_volume *lv,
void *data)
{
struct lv_names *lv_names = (struct lv_names *) data;
return _rename_sub_lv(cmd, lv, lv_names->old, lv_names->new);
}
/*
* Loop down sub LVs and call "func" for each.
* "func" is responsible to log necessary information on failure.
*/
static int _for_each_sub_lv(struct cmd_context *cmd, struct logical_volume *lv,
int (*func)(struct cmd_context *cmd,
struct logical_volume *lv,
void *data),
void *data)
{
struct lv_segment *seg;
uint32_t s;
list_iterate_items(seg, &lv->segments) {
if (seg->log_lv && !func(cmd, seg->log_lv, data))
return 0;
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_LV)
continue;
if (!func(cmd, seg_lv(seg, s), data))
return 0;
if (!_for_each_sub_lv(cmd, seg_lv(seg, s), func, data))
return 0;
}
}
return 1;
}
/*
* Core of LV renaming routine.
* VG must be locked by caller.
*/
int lv_rename(struct cmd_context *cmd, struct logical_volume *lv,
const char *new_name)
{
struct volume_group *vg = lv->vg;
struct lv_names lv_names;
/* rename is not allowed on sub LVs */
if (!lv_is_visible(lv)) {
log_error("Cannot rename internal LV \"%s\".", lv->name);
return 0;
}
if (find_lv_in_vg(vg, new_name)) {
log_error("Logical volume \"%s\" already exists in "
"volume group \"%s\"", new_name, vg->name);
return 0;
}
if (lv->status & LOCKED) {
log_error("Cannot rename locked LV %s", lv->name);
return 0;
}
if (!archive(vg))
return 0;
/* rename sub LVs */
lv_names.old = lv->name;
lv_names.new = new_name;
if (!_for_each_sub_lv(cmd, lv, _rename_cb, (void *) &lv_names))
return 0;
/* rename main LV */
if (!(lv->name = dm_pool_strdup(cmd->mem, new_name))) {
log_error("Failed to allocate space for new name");
return 0;
}
log_verbose("Writing out updated volume group");
if (!vg_write(vg))
return 0;
backup(vg);
if (!suspend_lv(cmd, lv)) {
stack;
vg_revert(vg);
return 0;
}
if (!vg_commit(vg)) {
stack;
resume_lv(cmd, lv);
return 0;
}
resume_lv(cmd, lv);
return 1;
}
char *generate_lv_name(struct volume_group *vg, const char *format,
char *buffer, size_t len)
{
struct lv_list *lvl;
int high = -1, i;
list_iterate_items(lvl, &vg->lvs) {
if (sscanf(lvl->lv->name, format, &i) != 1)
continue;
if (i > high)
high = i;
}
if (dm_snprintf(buffer, len, format, high + 1) < 0)
return NULL;
return buffer;
}
/*
* Create a new empty LV.
*/
struct logical_volume *lv_create_empty(const char *name,
union lvid *lvid,
uint32_t status,
alloc_policy_t alloc,
int import,
struct volume_group *vg)
{
struct format_instance *fi = vg->fid;
struct cmd_context *cmd = vg->cmd;
struct lv_list *ll = NULL;
struct logical_volume *lv;
char dname[NAME_LEN];
if (vg->max_lv && (vg->max_lv == vg->lv_count)) {
log_error("Maximum number of logical volumes (%u) reached "
"in volume group %s", vg->max_lv, vg->name);
return NULL;
}
if (strstr(name, "%d") &&
!(name = generate_lv_name(vg, name, dname, sizeof(dname)))) {
log_error("Failed to generate unique name for the new "
"logical volume");
return NULL;
}
if (!import)
log_verbose("Creating logical volume %s", name);
if (!(ll = dm_pool_zalloc(cmd->mem, sizeof(*ll))) ||
!(ll->lv = dm_pool_zalloc(cmd->mem, sizeof(*ll->lv)))) {
log_error("lv_list allocation failed");
if (ll)
dm_pool_free(cmd->mem, ll);
return NULL;
}
lv = ll->lv;
lv->vg = vg;
if (!(lv->name = dm_pool_strdup(cmd->mem, name))) {
log_error("lv name strdup failed");
if (ll)
dm_pool_free(cmd->mem, ll);
return NULL;
}
lv->status = status;
lv->alloc = alloc;
lv->read_ahead = vg->cmd->default_settings.read_ahead;
lv->major = -1;
lv->minor = -1;
lv->size = UINT64_C(0);
lv->le_count = 0;
lv->snapshot = NULL;
list_init(&lv->snapshot_segs);
list_init(&lv->segments);
list_init(&lv->tags);
list_init(&lv->segs_using_this_lv);
if (lvid)
lv->lvid = *lvid;
if (fi->fmt->ops->lv_setup && !fi->fmt->ops->lv_setup(fi, lv)) {
if (ll)
dm_pool_free(cmd->mem, ll);
return_NULL;
}
if (!import)
vg->lv_count++;
list_add(&vg->lvs, &ll->list);
return lv;
}
static int _add_pvs(struct cmd_context *cmd, struct pv_segment *peg,
uint32_t s __attribute((unused)), void *data)
{
struct seg_pvs *spvs = (struct seg_pvs *) data;
struct pv_list *pvl;
/* Don't add again if it's already on list. */
list_iterate_items(pvl, &spvs->pvs)
if (pvl->pv == peg->pv)
return 1;
if (!(pvl = dm_pool_alloc(cmd->mem, sizeof(*pvl)))) {
log_error("pv_list allocation failed");
return 0;
}
pvl->pv = peg->pv;
list_add(&spvs->pvs, &pvl->list);
return 1;
}
/*
* Construct list of segments of LVs showing which PVs they use.
*/
struct list *build_parallel_areas_from_lv(struct cmd_context *cmd,
struct logical_volume *lv)
{
struct list *parallel_areas;
struct seg_pvs *spvs;
uint32_t current_le = 0;
if (!(parallel_areas = dm_pool_alloc(cmd->mem, sizeof(*parallel_areas)))) {
log_error("parallel_areas allocation failed");
return NULL;
}
list_init(parallel_areas);
do {
if (!(spvs = dm_pool_zalloc(cmd->mem, sizeof(*spvs)))) {
log_error("allocation failed");
return NULL;
}
list_init(&spvs->pvs);
spvs->le = current_le;
spvs->len = lv->le_count - current_le;
list_add(parallel_areas, &spvs->list);
/* Find next segment end */
/* FIXME Unnecessary nesting! */
if (!_for_each_pv(cmd, lv, current_le, spvs->len, &spvs->len,
0, 0, -1, 0, _add_pvs, (void *) spvs))
return_NULL;
current_le = spvs->le + spvs->len;
} while (current_le < lv->le_count);
/* FIXME Merge adjacent segments with identical PV lists (avoids need for contiguous allocation attempts between successful allocations) */
return parallel_areas;
}
int lv_remove_single(struct cmd_context *cmd, struct logical_volume *lv,
const force_t force)
{
struct volume_group *vg;
struct lvinfo info;
struct logical_volume *origin = NULL;
vg = lv->vg;
if (!vg_check_status(vg, LVM_WRITE))
return 0;
if (lv_is_origin(lv)) {
log_error("Can't remove logical volume \"%s\" under snapshot",
lv->name);
return 0;
}
if (lv->status & MIRROR_IMAGE) {
log_error("Can't remove logical volume %s used by a mirror",
lv->name);
return 0;
}
if (lv->status & MIRROR_LOG) {
log_error("Can't remove logical volume %s used as mirror log",
lv->name);
return 0;
}
if (lv->status & LOCKED) {
log_error("Can't remove locked LV %s", lv->name);
return 0;
}
/* FIXME Ensure not referred to by another existing LVs */
if (lv_info(cmd, lv, &info, 1, 0)) {
if (info.open_count) {
log_error("Can't remove open logical volume \"%s\"",
lv->name);
return 0;
}
/*
* Check for confirmation prompts in the following cases:
* 1) Clustered VG, and some remote nodes have the LV active
* 2) Non-clustered VG, but LV active locally
*/
if ((vg_status(vg) & CLUSTERED) && !activate_lv_excl(cmd, lv) &&
(force == PROMPT)) {
if (yes_no_prompt("Logical volume \"%s\" is active on other "
"cluster nodes. Really remove? [y/n]: ",
lv->name) == 'n') {
log_print("Logical volume \"%s\" not removed",
lv->name);
return 0;
}
} else if (info.exists && (force == PROMPT)) {
if (yes_no_prompt("Do you really want to remove active "
"logical volume \"%s\"? [y/n]: ",
lv->name) == 'n') {
log_print("Logical volume \"%s\" not removed",
lv->name);
return 0;
}
}
}
if (!archive(vg))
return 0;
/* FIXME Snapshot commit out of sequence if it fails after here? */
if (!deactivate_lv(cmd, lv)) {
log_error("Unable to deactivate logical volume \"%s\"",
lv->name);
return 0;
}
if (lv_is_cow(lv)) {
origin = origin_from_cow(lv);
log_verbose("Removing snapshot %s", lv->name);
if (!vg_remove_snapshot(lv))
return_0;
}
log_verbose("Releasing logical volume \"%s\"", lv->name);
if (!lv_remove(lv)) {
log_error("Error releasing logical volume \"%s\"", lv->name);
return 0;
}
/* store it on disks */
if (!vg_write(vg))
return 0;
backup(vg);
if (!vg_commit(vg))
return 0;
/* If no snapshots left, reload without -real. */
if (origin && !lv_is_origin(origin)) {
if (!suspend_lv(cmd, origin))
log_error("Failed to refresh %s without snapshot.", origin->name);
else if (!resume_lv(cmd, origin))
log_error("Failed to resume %s.", origin->name);
}
log_print("Logical volume \"%s\" successfully removed", lv->name);
return 1;
}
/*
* insert_layer_for_segments_on_pv() inserts a layer segment for a segment area.
* However, layer modification could split the underlying layer segment.
* This function splits the parent area according to keep the 1:1 relationship
* between the parent area and the underlying layer segment.
* Since the layer LV might have other layers below, build_parallel_areas()
* is used to find the lowest-level segment boundaries.
*/
static int _split_parent_area(struct lv_segment *seg, uint32_t s,
struct list *layer_seg_pvs)
{
uint32_t parent_area_len, parent_le, layer_le;
uint32_t area_multiple;
struct seg_pvs *spvs;
if (seg_is_striped(seg))
area_multiple = seg->area_count;
else
area_multiple = 1;
parent_area_len = seg->area_len;
parent_le = seg->le;
layer_le = seg_le(seg, s);
while (parent_area_len > 0) {
/* Find the layer segment pointed at */
if (!(spvs = _find_seg_pvs_by_le(layer_seg_pvs, layer_le))) {
log_error("layer segment for %s:%" PRIu32 " not found",
seg->lv->name, parent_le);
return 0;
}
if (spvs->le != layer_le) {
log_error("Incompatible layer boundary: "
"%s:%" PRIu32 "[%" PRIu32 "] on %s:%" PRIu32,
seg->lv->name, parent_le, s,
seg_lv(seg, s)->name, layer_le);
return 0;
}
if (spvs->len < parent_area_len) {
parent_le += spvs->len * area_multiple;
if (!lv_split_segment(seg->lv, parent_le))
return_0;
}
parent_area_len -= spvs->len;
layer_le += spvs->len;
}
return 1;
}
/*
* Split the parent LV segments if the layer LV below it is splitted.
*/
int split_parent_segments_for_layer(struct cmd_context *cmd,
struct logical_volume *layer_lv)
{
struct lv_list *lvl;
struct logical_volume *parent_lv;
struct lv_segment *seg;
uint32_t s;
struct list *parallel_areas;
if (!(parallel_areas = build_parallel_areas_from_lv(cmd, layer_lv)))
return_0;
/* Loop through all LVs except itself */
list_iterate_items(lvl, &layer_lv->vg->lvs) {
parent_lv = lvl->lv;
if (parent_lv == layer_lv)
continue;
/* Find all segments that point at the layer LV */
list_iterate_items(seg, &parent_lv->segments) {
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_LV ||
seg_lv(seg, s) != layer_lv)
continue;
if (!_split_parent_area(seg, s, parallel_areas))
return_0;
}
}
}
return 1;
}
/* Remove a layer from the LV */
int remove_layers_for_segments(struct cmd_context *cmd,
struct logical_volume *lv,
struct logical_volume *layer_lv,
uint32_t status_mask, struct list *lvs_changed)
{
struct lv_segment *seg, *lseg;
uint32_t s;
int lv_changed = 0;
struct lv_list *lvl;
log_very_verbose("Removing layer %s for segments of %s",
layer_lv->name, lv->name);
/* Find all segments that point at the temporary mirror */
list_iterate_items(seg, &lv->segments) {
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_LV ||
seg_lv(seg, s) != layer_lv)
continue;
/* Find the layer segment pointed at */
if (!(lseg = find_seg_by_le(layer_lv, seg_le(seg, s)))) {
log_error("Layer segment found: %s:%" PRIu32,
layer_lv->name, seg_le(seg, s));
return 0;
}
/* Check the segment params are compatible */
if (!seg_is_striped(lseg) || lseg->area_count != 1) {
log_error("Layer is not linear: %s:%" PRIu32,
layer_lv->name, lseg->le);
return 0;
}
if ((lseg->status & status_mask) != status_mask) {
log_error("Layer status does not match: "
"%s:%" PRIu32 " status: 0x%x/0x%x",
layer_lv->name, lseg->le,
lseg->status, status_mask);
return 0;
}
if (lseg->le != seg_le(seg, s) ||
lseg->area_len != seg->area_len) {
log_error("Layer boundary mismatch: "
"%s:%" PRIu32 "-%" PRIu32 " on "
"%s:%" PRIu32 " / "
"%" PRIu32 "-%" PRIu32 " / ",
lv->name, seg->le, seg->area_len,
layer_lv->name, seg_le(seg, s),
lseg->le, lseg->area_len);
return 0;
}
if (!move_lv_segment_area(seg, s, lseg, 0))
return_0;
/* Replace mirror with error segment */
if (!(lseg->segtype =
get_segtype_from_string(lv->vg->cmd, "error"))) {
log_error("Missing error segtype");
return 0;
}
lseg->area_count = 0;
/* First time, add LV to list of LVs affected */
if (!lv_changed && lvs_changed) {
if (!(lvl = dm_pool_alloc(cmd->mem, sizeof(*lvl)))) {
log_error("lv_list alloc failed");
return 0;
}
lvl->lv = lv;
list_add(lvs_changed, &lvl->list);
lv_changed = 1;
}
}
}
if (lv_changed && !lv_merge_segments(lv))
stack;
return 1;
}
/* Remove a layer */
int remove_layers_for_segments_all(struct cmd_context *cmd,
struct logical_volume *layer_lv,
uint32_t status_mask,
struct list *lvs_changed)
{
struct lv_list *lvl;
struct logical_volume *lv1;
/* Loop through all LVs except the temporary mirror */
list_iterate_items(lvl, &layer_lv->vg->lvs) {
lv1 = lvl->lv;
if (lv1 == layer_lv)
continue;
if (!remove_layers_for_segments(cmd, lv1, layer_lv,
status_mask, lvs_changed))
return_0;
}
if (!lv_empty(layer_lv))
return_0;
return 1;
}
static int _move_lv_segments(struct logical_volume *lv_to,
struct logical_volume *lv_from,
uint32_t set_status, uint32_t reset_status)
{
struct lv_segment *seg;
list_iterate_items(seg, &lv_to->segments) {
if (seg->origin) {
log_error("Can't move snapshot segment");
return 0;
}
}
lv_to->segments = lv_from->segments;
lv_to->segments.n->p = &lv_to->segments;
lv_to->segments.p->n = &lv_to->segments;
list_iterate_items(seg, &lv_to->segments) {
seg->lv = lv_to;
seg->status &= ~reset_status;
seg->status |= set_status;
}
list_init(&lv_from->segments);
lv_to->le_count = lv_from->le_count;
lv_to->size = lv_from->size;
lv_from->le_count = 0;
lv_from->size = 0;
return 1;
}
/* Remove a layer from the LV */
int remove_layer_from_lv(struct logical_volume *lv,
struct logical_volume *layer_lv)
{
struct logical_volume *parent;
struct lv_segment *parent_seg;
struct segment_type *segtype;
log_very_verbose("Removing layer %s for %s", layer_lv->name, lv->name);
if (!(parent_seg = get_only_segment_using_this_lv(layer_lv))) {
log_error("Failed to find layer %s in %s",
layer_lv->name, lv->name);
return 0;
}
parent = parent_seg->lv;
/*
* Before removal, the layer should be cleaned up,
* i.e. additional segments and areas should have been removed.
*/
if (list_size(&parent->segments) != 1 ||
parent_seg->area_count != 1 ||
seg_type(parent_seg, 0) != AREA_LV ||
layer_lv != seg_lv(parent_seg, 0) ||
parent->le_count != layer_lv->le_count)
return_0;
if (!lv_empty(parent))
return_0;
if (!_move_lv_segments(parent, layer_lv, 0, 0))
return_0;
/* Replace the empty layer with error segment */
segtype = get_segtype_from_string(lv->vg->cmd, "error");
if (!lv_add_virtual_segment(layer_lv, 0, parent->le_count, segtype))
return_0;
return 1;
}
/*
* Create and insert a linear LV "above" lv_where.
* After the insertion, a new LV named lv_where->name + suffix is created
* and all segments of lv_where is moved to the new LV.
* lv_where will have a single segment which maps linearly to the new LV.
*/
struct logical_volume *insert_layer_for_lv(struct cmd_context *cmd,
struct logical_volume *lv_where,
uint32_t status,
const char *layer_suffix)
{
struct logical_volume *layer_lv;
char *name;
size_t len;
struct segment_type *segtype;
struct lv_segment *mapseg;
if (!(segtype = get_segtype_from_string(cmd, "striped")))
return_NULL;
/* create an empty layer LV */
len = strlen(lv_where->name) + 32;
if (!(name = alloca(len))) {
log_error("layer name allocation failed. "
"Remove new LV and retry.");
return NULL;
}
if (dm_snprintf(name, len, "%s%s", lv_where->name, layer_suffix) < 0) {
log_error("layer name allocation failed. "
"Remove new LV and retry.");
return NULL;
}
if (!(layer_lv = lv_create_empty(name, NULL, LVM_READ | LVM_WRITE,
ALLOC_INHERIT, 0, lv_where->vg))) {
log_error("Creation of layer LV failed");
return NULL;
}
log_very_verbose("Inserting layer %s for %s",
layer_lv->name, lv_where->name);
if (!_move_lv_segments(layer_lv, lv_where, 0, 0))
return_NULL;
/* allocate a new linear segment */
if (!(mapseg = alloc_lv_segment(cmd->mem, segtype,
lv_where, 0, layer_lv->le_count,
status, 0, NULL, 1, layer_lv->le_count,
0, 0, 0)))
return_NULL;
/* map the new segment to the original underlying are */
if (!set_lv_segment_area_lv(mapseg, 0, layer_lv, 0, 0))
return_NULL;
/* add the new segment to the layer LV */
list_add(&lv_where->segments, &mapseg->list);
lv_where->le_count = layer_lv->le_count;
lv_where->size = lv_where->le_count * lv_where->vg->extent_size;
return layer_lv;
}
/*
* Extend and insert a linear layer LV beneath the source segment area.
*/
static int _extend_layer_lv_for_segment(struct logical_volume *layer_lv,
struct lv_segment *seg, uint32_t s,
uint32_t status)
{
struct lv_segment *mapseg;
struct segment_type *segtype;
struct physical_volume *src_pv = seg_pv(seg, s);
uint32_t src_pe = seg_pe(seg, s);
if (seg_type(seg, s) != AREA_PV && seg_type(seg, s) != AREA_LV)
return_0;
if (!(segtype = get_segtype_from_string(layer_lv->vg->cmd, "striped")))
return_0;
/* FIXME Incomplete message? Needs more context */
log_very_verbose("Inserting %s:%" PRIu32 "-%" PRIu32 " of %s/%s",
pv_dev_name(src_pv),
src_pe, src_pe + seg->area_len - 1,
seg->lv->vg->name, seg->lv->name);
/* allocate a new segment */
if (!(mapseg = alloc_lv_segment(layer_lv->vg->cmd->mem, segtype,
layer_lv, layer_lv->le_count,
seg->area_len, status, 0,
NULL, 1, seg->area_len, 0, 0, 0)))
return_0;
/* map the new segment to the original underlying are */
if (!move_lv_segment_area(mapseg, 0, seg, s))
return_0;
/* add the new segment to the layer LV */
list_add(&layer_lv->segments, &mapseg->list);
layer_lv->le_count += seg->area_len;
layer_lv->size += seg->area_len * layer_lv->vg->extent_size;
/* map the original area to the new segment */
if (!set_lv_segment_area_lv(seg, s, layer_lv, mapseg->le, 0))
return_0;
return 1;
}
/*
* Match the segment area to PEs in the pvl
* (the segment area boundary should be aligned to PE ranges by
* _adjust_layer_segments() so that there is no partial overlap.)
*/
static int _match_seg_area_to_pe_range(struct lv_segment *seg, uint32_t s,
struct pv_list *pvl)
{
struct pe_range *per;
uint32_t pe_start, per_end;
if (!pvl)
return 1;
if (seg_type(seg, s) != AREA_PV || seg_dev(seg, s) != pvl->pv->dev)
return 0;
pe_start = seg_pe(seg, s);
/* Do these PEs match to any of the PEs in pvl? */
list_iterate_items(per, pvl->pe_ranges) {
per_end = per->start + per->count - 1;
if ((pe_start < per->start) || (pe_start > per_end))
continue;
/* FIXME Missing context in this message - add LV/seg details */
log_debug("Matched PE range %s:%" PRIu32 "-%" PRIu32 " against "
"%s %" PRIu32 " len %" PRIu32, dev_name(pvl->pv->dev),
per->start, per_end, dev_name(seg_dev(seg, s)),
seg_pe(seg, s), seg->area_len);
return 1;
}
return 0;
}
/*
* For each segment in lv_where that uses a PV in pvl directly,
* split the segment if it spans more than one underlying PV.
*/
static int _align_segment_boundary_to_pe_range(struct logical_volume *lv_where,
struct pv_list *pvl)
{
struct lv_segment *seg;
struct pe_range *per;
uint32_t pe_start, pe_end, per_end, stripe_multiplier, s;
if (!pvl)
return 1;
/* Split LV segments to match PE ranges */
list_iterate_items(seg, &lv_where->segments) {
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_PV ||
seg_dev(seg, s) != pvl->pv->dev)
continue;
/* Do these PEs match with the condition? */
list_iterate_items(per, pvl->pe_ranges) {
pe_start = seg_pe(seg, s);
pe_end = pe_start + seg->area_len - 1;
per_end = per->start + per->count - 1;
/* No overlap? */
if ((pe_end < per->start) ||
(pe_start > per_end))
continue;
if (seg_is_striped(seg))
stripe_multiplier = seg->area_count;
else
stripe_multiplier = 1;
if ((per->start != pe_start &&
per->start > pe_start) &&
!lv_split_segment(lv_where, seg->le +
(per->start - pe_start) *
stripe_multiplier))
return_0;
if ((per_end != pe_end &&
per_end < pe_end) &&
!lv_split_segment(lv_where, seg->le +
(per_end - pe_start + 1) *
stripe_multiplier))
return_0;
}
}
}
return 1;
}
/*
* Scan lv_where for segments on a PV in pvl, and for each one found
* append a linear segment to lv_layer and insert it between the two.
*
* If pvl is empty, a layer is placed under the whole of lv_where.
* If the layer is inserted, lv_where is added to lvs_changed.
*/
int insert_layer_for_segments_on_pv(struct cmd_context *cmd,
struct logical_volume *lv_where,
struct logical_volume *layer_lv,
uint32_t status,
struct pv_list *pvl,
struct list *lvs_changed)
{
struct lv_segment *seg;
struct lv_list *lvl;
int lv_used = 0;
uint32_t s;
log_very_verbose("Inserting layer %s for segments of %s on %s",
layer_lv->name, lv_where->name,
pvl ? pv_dev_name(pvl->pv) : "any");
if (!_align_segment_boundary_to_pe_range(lv_where, pvl))
return_0;
/* Work through all segments on the supplied PV */
list_iterate_items(seg, &lv_where->segments) {
for (s = 0; s < seg->area_count; s++) {
if (!_match_seg_area_to_pe_range(seg, s, pvl))
continue;
/* First time, add LV to list of LVs affected */
if (!lv_used && lvs_changed) {
if (!(lvl = dm_pool_alloc(cmd->mem, sizeof(*lvl)))) {
log_error("lv_list alloc failed");
return 0;
}
lvl->lv = lv_where;
list_add(lvs_changed, &lvl->list);
lv_used = 1;
}
if (!_extend_layer_lv_for_segment(layer_lv, seg, s,
status)) {
log_error("Failed to insert segment in layer "
"LV %s under %s:%" PRIu32 "-%" PRIu32,
layer_lv->name, lv_where->name,
seg->le, seg->le + seg->len);
return 0;
}
}
}
return 1;
}
/*
* Initialize the LV with 'value'.
*/
int set_lv(struct cmd_context *cmd, struct logical_volume *lv,
uint64_t sectors, int value)
{
struct device *dev;
char *name;
/*
* FIXME:
* <clausen> also, more than 4k
* <clausen> say, reiserfs puts it's superblock 32k in, IIRC
* <ejt_> k, I'll drop a fixme to that effect
* (I know the device is at least 4k, but not 32k)
*/
if (!(name = dm_pool_alloc(cmd->mem, PATH_MAX))) {
log_error("Name allocation failed - device not cleared");
return 0;
}
if (dm_snprintf(name, PATH_MAX, "%s%s/%s", cmd->dev_dir,
lv->vg->name, lv->name) < 0) {
log_error("Name too long - device not cleared (%s)", lv->name);
return 0;
}
log_verbose("Clearing start of logical volume \"%s\"", lv->name);
if (!(dev = dev_cache_get(name, NULL))) {
log_error("%s: not found: device not cleared", name);
return 0;
}
if (!dev_open_quiet(dev))
return_0;
dev_set(dev, UINT64_C(0),
sectors ? (size_t) sectors << SECTOR_SHIFT : (size_t) 4096,
value);
dev_flush(dev);
dev_close_immediate(dev);
return 1;
}