mirror of
git://sourceware.org/git/lvm2.git
synced 2024-12-31 21:18:26 +03:00
4b6e3b5e5e
Introduce a new parameter called "approx_alloc" that is set when the desired size of a new LV is specified in percentage terms. If set, the allocation code tries to get as much space as it can but does not fail if can at least get some. One of the practical implications is that users can now specify 100%FREE when creating RAID LVs, like this: ~> lvcreate --type raid5 -i 2 -l 100%FREE -n lv vg
1835 lines
48 KiB
C
1835 lines
48 KiB
C
/*
|
|
* Copyright (C) 2011 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* This file is part of LVM2.
|
|
*
|
|
* This copyrighted material is made available to anyone wishing to use,
|
|
* modify, copy, or redistribute it subject to the terms and conditions
|
|
* of the GNU Lesser General Public License v.2.1.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include "lib.h"
|
|
#include "metadata.h"
|
|
#include "toolcontext.h"
|
|
#include "segtype.h"
|
|
#include "display.h"
|
|
#include "activate.h"
|
|
#include "lv_alloc.h"
|
|
#include "lvm-string.h"
|
|
|
|
static int _lv_is_raid_with_tracking(const struct logical_volume *lv,
|
|
struct logical_volume **tracking)
|
|
{
|
|
uint32_t s;
|
|
struct lv_segment *seg;
|
|
|
|
*tracking = NULL;
|
|
seg = first_seg(lv);
|
|
|
|
if (!(lv->status & RAID))
|
|
return 0;
|
|
|
|
for (s = 0; s < seg->area_count; s++)
|
|
if (lv_is_visible(seg_lv(seg, s)) &&
|
|
!(seg_lv(seg, s)->status & LVM_WRITE))
|
|
*tracking = seg_lv(seg, s);
|
|
|
|
|
|
return *tracking ? 1 : 0;
|
|
}
|
|
|
|
int lv_is_raid_with_tracking(const struct logical_volume *lv)
|
|
{
|
|
struct logical_volume *tracking;
|
|
|
|
return _lv_is_raid_with_tracking(lv, &tracking);
|
|
}
|
|
|
|
uint32_t lv_raid_image_count(const struct logical_volume *lv)
|
|
{
|
|
struct lv_segment *seg = first_seg(lv);
|
|
|
|
if (!seg_is_raid(seg))
|
|
return 1;
|
|
|
|
return seg->area_count;
|
|
}
|
|
|
|
static int _activate_sublv_preserving_excl(struct logical_volume *top_lv,
|
|
struct logical_volume *sub_lv)
|
|
{
|
|
struct cmd_context *cmd = top_lv->vg->cmd;
|
|
|
|
/* If top RAID was EX, use EX */
|
|
if (lv_is_active_exclusive_locally(top_lv)) {
|
|
if (!activate_lv_excl_local(cmd, sub_lv))
|
|
return_0;
|
|
} else {
|
|
if (!activate_lv(cmd, sub_lv))
|
|
return_0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* _raid_in_sync
|
|
* @lv
|
|
*
|
|
* _raid_in_sync works for all types of RAID segtypes, as well
|
|
* as 'mirror' segtype. (This is because 'lv_raid_percent' is
|
|
* simply a wrapper around 'lv_mirror_percent'.
|
|
*
|
|
* Returns: 1 if in-sync, 0 otherwise.
|
|
*/
|
|
static int _raid_in_sync(struct logical_volume *lv)
|
|
{
|
|
percent_t sync_percent;
|
|
|
|
if (!lv_raid_percent(lv, &sync_percent)) {
|
|
log_error("Unable to determine sync status of %s/%s.",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
return (sync_percent == PERCENT_100) ? 1 : 0;
|
|
}
|
|
|
|
/*
|
|
* _raid_remove_top_layer
|
|
* @lv
|
|
* @removal_list
|
|
*
|
|
* Remove top layer of RAID LV in order to convert to linear.
|
|
* This function makes no on-disk changes. The residual LVs
|
|
* returned in 'removal_list' must be freed by the caller.
|
|
*
|
|
* Returns: 1 on succes, 0 on failure
|
|
*/
|
|
static int _raid_remove_top_layer(struct logical_volume *lv,
|
|
struct dm_list *removal_list)
|
|
{
|
|
struct lv_list *lvl_array, *lvl;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
|
|
if (!seg_is_mirrored(seg)) {
|
|
log_error(INTERNAL_ERROR
|
|
"Unable to remove RAID layer from segment type %s",
|
|
seg->segtype->ops->name(seg));
|
|
return 0;
|
|
}
|
|
|
|
if (seg->area_count != 1) {
|
|
log_error(INTERNAL_ERROR
|
|
"Unable to remove RAID layer when there"
|
|
" is more than one sub-lv");
|
|
return 0;
|
|
}
|
|
|
|
lvl_array = dm_pool_alloc(lv->vg->vgmem, 2 * sizeof(*lvl));
|
|
if (!lvl_array) {
|
|
log_error("Memory allocation failed.");
|
|
return 0;
|
|
}
|
|
|
|
/* Add last metadata area to removal_list */
|
|
lvl_array[0].lv = seg_metalv(seg, 0);
|
|
lv_set_visible(seg_metalv(seg, 0));
|
|
if (!remove_seg_from_segs_using_this_lv(seg_metalv(seg, 0), seg))
|
|
return_0;
|
|
seg_metatype(seg, 0) = AREA_UNASSIGNED;
|
|
dm_list_add(removal_list, &(lvl_array[0].list));
|
|
|
|
/* Remove RAID layer and add residual LV to removal_list*/
|
|
seg_lv(seg, 0)->status &= ~RAID_IMAGE;
|
|
lv_set_visible(seg_lv(seg, 0));
|
|
lvl_array[1].lv = seg_lv(seg, 0);
|
|
dm_list_add(removal_list, &(lvl_array[1].list));
|
|
|
|
if (!remove_layer_from_lv(lv, seg_lv(seg, 0)))
|
|
return_0;
|
|
|
|
lv->status &= ~(MIRRORED | RAID);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* _clear_lv
|
|
* @lv
|
|
*
|
|
* If LV is active:
|
|
* clear first block of device
|
|
* otherwise:
|
|
* activate, clear, deactivate
|
|
*
|
|
* Returns: 1 on success, 0 on failure
|
|
*/
|
|
static int _clear_lv(struct logical_volume *lv)
|
|
{
|
|
int was_active = lv_is_active_locally(lv);
|
|
|
|
if (test_mode())
|
|
return 1;
|
|
|
|
lv->status |= LV_TEMPORARY;
|
|
if (!was_active && !activate_lv_local(lv->vg->cmd, lv)) {
|
|
log_error("Failed to activate localy %s for clearing",
|
|
lv->name);
|
|
return 0;
|
|
}
|
|
lv->status &= ~LV_TEMPORARY;
|
|
|
|
log_verbose("Clearing metadata area of %s/%s",
|
|
lv->vg->name, lv->name);
|
|
/*
|
|
* Rather than wiping lv->size, we can simply
|
|
* wipe the first sector to remove the superblock of any previous
|
|
* RAID devices. It is much quicker.
|
|
*/
|
|
if (!wipe_lv(lv, (struct wipe_params) { .do_zero = 1, .zero_sectors = 1 })) {
|
|
log_error("Failed to zero %s", lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!was_active && !deactivate_lv(lv->vg->cmd, lv)) {
|
|
log_error("Failed to deactivate %s", lv->name);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Makes on-disk metadata changes */
|
|
static int _clear_lvs(struct dm_list *lv_list)
|
|
{
|
|
struct lv_list *lvl;
|
|
struct volume_group *vg = NULL;
|
|
|
|
if (dm_list_empty(lv_list)) {
|
|
log_debug_metadata(INTERNAL_ERROR "Empty list of LVs given for clearing");
|
|
return 1;
|
|
}
|
|
|
|
dm_list_iterate_items(lvl, lv_list) {
|
|
if (!lv_is_visible(lvl->lv)) {
|
|
log_error(INTERNAL_ERROR
|
|
"LVs must be set visible before clearing");
|
|
return 0;
|
|
}
|
|
vg = lvl->lv->vg;
|
|
}
|
|
|
|
/*
|
|
* FIXME: only vg_[write|commit] if LVs are not already written
|
|
* as visible in the LVM metadata (which is never the case yet).
|
|
*/
|
|
if (!vg || !vg_write(vg) || !vg_commit(vg))
|
|
return_0;
|
|
|
|
dm_list_iterate_items(lvl, lv_list)
|
|
if (!_clear_lv(lvl->lv))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* _shift_and_rename_image_components
|
|
* @seg: Top-level RAID segment
|
|
*
|
|
* Shift all higher indexed segment areas down to fill in gaps where
|
|
* there are 'AREA_UNASSIGNED' areas and rename data/metadata LVs so
|
|
* that their names match their new index. When finished, set
|
|
* seg->area_count to new reduced total.
|
|
*
|
|
* Returns: 1 on success, 0 on failure
|
|
*/
|
|
static int _shift_and_rename_image_components(struct lv_segment *seg)
|
|
{
|
|
int len;
|
|
char *shift_name;
|
|
uint32_t s, missing;
|
|
struct cmd_context *cmd = seg->lv->vg->cmd;
|
|
|
|
/*
|
|
* All LVs must be properly named for their index before
|
|
* shifting begins. (e.g. Index '0' must contain *_rimage_0 and
|
|
* *_rmeta_0. Index 'n' must contain *_rimage_n and *_rmeta_n.)
|
|
*/
|
|
|
|
if (!seg_is_raid(seg))
|
|
return_0;
|
|
|
|
if (seg->area_count > 10) {
|
|
/*
|
|
* FIXME: Handling more would mean I'd have
|
|
* to handle double digits
|
|
*/
|
|
log_error("Unable handle arrays with more than 10 devices");
|
|
return 0;
|
|
}
|
|
|
|
log_very_verbose("Shifting images in %s", seg->lv->name);
|
|
|
|
for (s = 0, missing = 0; s < seg->area_count; s++) {
|
|
if (seg_type(seg, s) == AREA_UNASSIGNED) {
|
|
if (seg_metatype(seg, s) != AREA_UNASSIGNED) {
|
|
log_error(INTERNAL_ERROR "Metadata segment area"
|
|
" #%d should be AREA_UNASSIGNED", s);
|
|
return 0;
|
|
}
|
|
missing++;
|
|
continue;
|
|
}
|
|
if (!missing)
|
|
continue;
|
|
|
|
log_very_verbose("Shifting %s and %s by %u",
|
|
seg_metalv(seg, s)->name,
|
|
seg_lv(seg, s)->name, missing);
|
|
|
|
/* Alter rmeta name */
|
|
shift_name = dm_pool_strdup(cmd->mem, seg_metalv(seg, s)->name);
|
|
if (!shift_name) {
|
|
log_error("Memory allocation failed.");
|
|
return 0;
|
|
}
|
|
len = strlen(shift_name) - 1;
|
|
shift_name[len] -= missing;
|
|
seg_metalv(seg, s)->name = shift_name;
|
|
|
|
/* Alter rimage name */
|
|
shift_name = dm_pool_strdup(cmd->mem, seg_lv(seg, s)->name);
|
|
if (!shift_name) {
|
|
log_error("Memory allocation failed.");
|
|
return 0;
|
|
}
|
|
len = strlen(shift_name) - 1;
|
|
shift_name[len] -= missing;
|
|
seg_lv(seg, s)->name = shift_name;
|
|
|
|
seg->areas[s - missing] = seg->areas[s];
|
|
seg->meta_areas[s - missing] = seg->meta_areas[s];
|
|
}
|
|
|
|
seg->area_count -= missing;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Create an LV of specified type. Set visible after creation.
|
|
* This function does not make metadata changes.
|
|
*/
|
|
static int _alloc_image_component(struct logical_volume *lv,
|
|
const char *alt_base_name,
|
|
struct alloc_handle *ah, uint32_t first_area,
|
|
uint64_t type, struct logical_volume **new_lv)
|
|
{
|
|
uint64_t status;
|
|
size_t len = strlen(lv->name) + 32;
|
|
char img_name[len];
|
|
const char *base_name = (alt_base_name) ? alt_base_name : lv->name;
|
|
struct logical_volume *tmp_lv;
|
|
const struct segment_type *segtype;
|
|
|
|
if (type == RAID_META) {
|
|
if (dm_snprintf(img_name, len, "%s_rmeta_%%d", base_name) < 0)
|
|
return_0;
|
|
} else if (type == RAID_IMAGE) {
|
|
if (dm_snprintf(img_name, len, "%s_rimage_%%d", base_name) < 0)
|
|
return_0;
|
|
} else {
|
|
log_error(INTERNAL_ERROR
|
|
"Bad type provided to _alloc_raid_component");
|
|
return 0;
|
|
}
|
|
|
|
if (!ah) {
|
|
log_error(INTERNAL_ERROR
|
|
"Stand-alone %s area allocation not implemented",
|
|
(type == RAID_META) ? "metadata" : "data");
|
|
return 0;
|
|
}
|
|
|
|
status = LVM_READ | LVM_WRITE | LV_REBUILD | type;
|
|
tmp_lv = lv_create_empty(img_name, NULL, status, ALLOC_INHERIT, lv->vg);
|
|
if (!tmp_lv) {
|
|
log_error("Failed to allocate new raid component, %s", img_name);
|
|
return 0;
|
|
}
|
|
|
|
segtype = get_segtype_from_string(lv->vg->cmd, "striped");
|
|
if (!lv_add_segment(ah, first_area, 1, tmp_lv, segtype, 0, status, 0)) {
|
|
log_error("Failed to add segment to LV, %s", img_name);
|
|
return 0;
|
|
}
|
|
|
|
lv_set_visible(tmp_lv);
|
|
*new_lv = tmp_lv;
|
|
return 1;
|
|
}
|
|
|
|
static int _alloc_image_components(struct logical_volume *lv,
|
|
struct dm_list *pvs, uint32_t count,
|
|
struct dm_list *new_meta_lvs,
|
|
struct dm_list *new_data_lvs)
|
|
{
|
|
uint32_t s;
|
|
uint32_t region_size;
|
|
uint32_t extents;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
const struct segment_type *segtype;
|
|
struct alloc_handle *ah;
|
|
struct dm_list *parallel_areas;
|
|
struct logical_volume *tmp_lv;
|
|
struct lv_list *lvl_array;
|
|
|
|
lvl_array = dm_pool_alloc(lv->vg->vgmem,
|
|
sizeof(*lvl_array) * count * 2);
|
|
if (!lvl_array)
|
|
return_0;
|
|
|
|
if (!(parallel_areas = build_parallel_areas_from_lv(lv, 0)))
|
|
return_0;
|
|
|
|
if (seg_is_linear(seg))
|
|
region_size = get_default_region_size(lv->vg->cmd);
|
|
else
|
|
region_size = seg->region_size;
|
|
|
|
if (seg_is_raid(seg))
|
|
segtype = seg->segtype;
|
|
else if (!(segtype = get_segtype_from_string(lv->vg->cmd, "raid1")))
|
|
return_0;
|
|
|
|
/*
|
|
* The number of extents is based on the RAID type. For RAID1,
|
|
* each of the rimages is the same size - 'le_count'. However
|
|
* for RAID 4/5/6, the stripes add together (NOT including the parity
|
|
* devices) to equal 'le_count'. Thus, when we are allocating
|
|
* individual devies, we must specify how large the individual device
|
|
* is along with the number we want ('count').
|
|
*/
|
|
extents = (segtype->parity_devs) ?
|
|
(lv->le_count / (seg->area_count - segtype->parity_devs)) :
|
|
lv->le_count;
|
|
|
|
if (!(ah = allocate_extents(lv->vg, NULL, segtype, 0, count, count,
|
|
region_size, extents, pvs,
|
|
lv->alloc, 0, parallel_areas)))
|
|
return_0;
|
|
|
|
for (s = 0; s < count; s++) {
|
|
/*
|
|
* The allocation areas are grouped together. First
|
|
* come the rimage allocated areas, then come the metadata
|
|
* allocated areas. Thus, the metadata areas are pulled
|
|
* from 's + count'.
|
|
*/
|
|
if (!_alloc_image_component(lv, NULL, ah, s + count,
|
|
RAID_META, &tmp_lv))
|
|
return_0;
|
|
lvl_array[s + count].lv = tmp_lv;
|
|
dm_list_add(new_meta_lvs, &(lvl_array[s + count].list));
|
|
|
|
if (!_alloc_image_component(lv, NULL, ah, s,
|
|
RAID_IMAGE, &tmp_lv))
|
|
return_0;
|
|
lvl_array[s].lv = tmp_lv;
|
|
dm_list_add(new_data_lvs, &(lvl_array[s].list));
|
|
}
|
|
alloc_destroy(ah);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* _alloc_rmeta_for_lv
|
|
* @lv
|
|
*
|
|
* Allocate a RAID metadata device for the given LV (which is or will
|
|
* be the associated RAID data device). The new metadata device must
|
|
* be allocated from the same PV(s) as the data device.
|
|
*/
|
|
static int _alloc_rmeta_for_lv(struct logical_volume *data_lv,
|
|
struct logical_volume **meta_lv)
|
|
{
|
|
struct dm_list allocatable_pvs;
|
|
struct alloc_handle *ah;
|
|
struct lv_segment *seg = first_seg(data_lv);
|
|
char *p, base_name[strlen(data_lv->name) + 1];
|
|
|
|
dm_list_init(&allocatable_pvs);
|
|
|
|
if (!seg_is_linear(seg)) {
|
|
log_error(INTERNAL_ERROR "Unable to allocate RAID metadata "
|
|
"area for non-linear LV, %s", data_lv->name);
|
|
return 0;
|
|
}
|
|
|
|
sprintf(base_name, "%s", data_lv->name);
|
|
if ((p = strstr(base_name, "_mimage_")))
|
|
*p = '\0';
|
|
|
|
if (!get_pv_list_for_lv(data_lv->vg->cmd->mem,
|
|
data_lv, &allocatable_pvs)) {
|
|
log_error("Failed to build list of PVs for %s/%s",
|
|
data_lv->vg->name, data_lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!(ah = allocate_extents(data_lv->vg, NULL, seg->segtype, 0, 1, 0,
|
|
seg->region_size,
|
|
1 /*RAID_METADATA_AREA_LEN*/,
|
|
&allocatable_pvs, data_lv->alloc, 0, NULL)))
|
|
return_0;
|
|
|
|
if (!_alloc_image_component(data_lv, base_name, ah, 0,
|
|
RAID_META, meta_lv))
|
|
return_0;
|
|
|
|
alloc_destroy(ah);
|
|
return 1;
|
|
}
|
|
|
|
static int _raid_add_images(struct logical_volume *lv,
|
|
uint32_t new_count, struct dm_list *pvs)
|
|
{
|
|
int rebuild_flag_cleared = 0;
|
|
uint32_t s;
|
|
uint32_t old_count = lv_raid_image_count(lv);
|
|
uint32_t count = new_count - old_count;
|
|
uint64_t status_mask = -1;
|
|
struct cmd_context *cmd = lv->vg->cmd;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
struct dm_list meta_lvs, data_lvs;
|
|
struct lv_list *lvl;
|
|
struct lv_segment_area *new_areas;
|
|
|
|
if (lv->status & LV_NOTSYNCED) {
|
|
log_error("Can't add image to out-of-sync RAID LV:"
|
|
" use 'lvchange --resync' first.");
|
|
return 0;
|
|
}
|
|
|
|
if (!_raid_in_sync(lv)) {
|
|
log_error("Can't add image to RAID LV that"
|
|
" is still initializing.");
|
|
return 0;
|
|
}
|
|
|
|
dm_list_init(&meta_lvs); /* For image addition */
|
|
dm_list_init(&data_lvs); /* For image addition */
|
|
|
|
/*
|
|
* If the segtype is linear, then we must allocate a metadata
|
|
* LV to accompany it.
|
|
*/
|
|
if (seg_is_linear(seg)) {
|
|
/* A complete resync will be done, no need to mark each sub-lv */
|
|
status_mask = ~(LV_REBUILD);
|
|
|
|
if (!(lvl = dm_pool_alloc(lv->vg->vgmem, sizeof(*lvl)))) {
|
|
log_error("Memory allocation failed");
|
|
return 0;
|
|
}
|
|
|
|
if (!_alloc_rmeta_for_lv(lv, &lvl->lv))
|
|
return_0;
|
|
|
|
dm_list_add(&meta_lvs, &lvl->list);
|
|
} else if (!seg_is_raid(seg)) {
|
|
log_error("Unable to add RAID images to %s of segment type %s",
|
|
lv->name, seg->segtype->ops->name(seg));
|
|
return 0;
|
|
} else if (!_raid_in_sync(lv)) {
|
|
log_error("Unable to add RAID images until %s is in-sync",
|
|
lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!_alloc_image_components(lv, pvs, count, &meta_lvs, &data_lvs)) {
|
|
log_error("Failed to allocate new image components");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If linear, we must correct data LV names. They are off-by-one
|
|
* because the linear volume hasn't taken its proper name of "_rimage_0"
|
|
* yet. This action must be done before '_clear_lvs' because it
|
|
* commits the LVM metadata before clearing the LVs.
|
|
*/
|
|
if (seg_is_linear(seg)) {
|
|
char *name;
|
|
size_t len;
|
|
struct dm_list *l;
|
|
struct lv_list *lvl_tmp;
|
|
|
|
dm_list_iterate(l, &data_lvs) {
|
|
if (l == dm_list_last(&data_lvs)) {
|
|
lvl = dm_list_item(l, struct lv_list);
|
|
len = strlen(lv->name) + strlen("_rimage_XXX");
|
|
if (!(name = dm_pool_alloc(lv->vg->vgmem, len))) {
|
|
log_error("Failed to allocate rimage name.");
|
|
return 0;
|
|
}
|
|
sprintf(name, "%s_rimage_%u", lv->name, count);
|
|
lvl->lv->name = name;
|
|
continue;
|
|
}
|
|
lvl = dm_list_item(l, struct lv_list);
|
|
lvl_tmp = dm_list_item(l->n, struct lv_list);
|
|
lvl->lv->name = lvl_tmp->lv->name;
|
|
}
|
|
}
|
|
|
|
/* Metadata LVs must be cleared before being added to the array */
|
|
if (!_clear_lvs(&meta_lvs))
|
|
goto fail;
|
|
|
|
if (seg_is_linear(seg)) {
|
|
first_seg(lv)->status |= RAID_IMAGE;
|
|
if (!insert_layer_for_lv(lv->vg->cmd, lv,
|
|
RAID | LVM_READ | LVM_WRITE,
|
|
"_rimage_0"))
|
|
return_0;
|
|
|
|
lv->status |= RAID;
|
|
seg = first_seg(lv);
|
|
seg_lv(seg, 0)->status |= RAID_IMAGE | LVM_READ | LVM_WRITE;
|
|
seg->region_size = get_default_region_size(lv->vg->cmd);
|
|
|
|
/* MD's bitmap is limited to tracking 2^21 regions */
|
|
while (seg->region_size < (lv->size / (1 << 21))) {
|
|
seg->region_size *= 2;
|
|
log_very_verbose("Setting RAID1 region_size to %uS",
|
|
seg->region_size);
|
|
}
|
|
seg->segtype = get_segtype_from_string(lv->vg->cmd, "raid1");
|
|
if (!seg->segtype)
|
|
return_0;
|
|
}
|
|
/*
|
|
FIXME: It would be proper to activate the new LVs here, instead of having
|
|
them activated by the suspend. However, this causes residual device nodes
|
|
to be left for these sub-lvs.
|
|
dm_list_iterate_items(lvl, &meta_lvs)
|
|
if (!do_correct_activate(lv, lvl->lv))
|
|
return_0;
|
|
dm_list_iterate_items(lvl, &data_lvs)
|
|
if (!do_correct_activate(lv, lvl->lv))
|
|
return_0;
|
|
*/
|
|
/* Expand areas array */
|
|
if (!(new_areas = dm_pool_zalloc(lv->vg->cmd->mem,
|
|
new_count * sizeof(*new_areas))))
|
|
goto fail;
|
|
memcpy(new_areas, seg->areas, seg->area_count * sizeof(*seg->areas));
|
|
seg->areas = new_areas;
|
|
|
|
/* Expand meta_areas array */
|
|
if (!(new_areas = dm_pool_zalloc(lv->vg->cmd->mem,
|
|
new_count * sizeof(*new_areas))))
|
|
goto fail;
|
|
if (seg->meta_areas)
|
|
memcpy(new_areas, seg->meta_areas,
|
|
seg->area_count * sizeof(*seg->meta_areas));
|
|
seg->meta_areas = new_areas;
|
|
seg->area_count = new_count;
|
|
|
|
/* Add extra meta area when converting from linear */
|
|
s = (old_count == 1) ? 0 : old_count;
|
|
|
|
/* Set segment areas for metadata sub_lvs */
|
|
dm_list_iterate_items(lvl, &meta_lvs) {
|
|
log_debug_metadata("Adding %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
lvl->lv->status &= status_mask;
|
|
first_seg(lvl->lv)->status &= status_mask;
|
|
if (!set_lv_segment_area_lv(seg, s, lvl->lv, 0,
|
|
lvl->lv->status)) {
|
|
log_error("Failed to add %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
goto fail;
|
|
}
|
|
s++;
|
|
}
|
|
|
|
s = old_count;
|
|
|
|
/* Set segment areas for data sub_lvs */
|
|
dm_list_iterate_items(lvl, &data_lvs) {
|
|
log_debug_metadata("Adding %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
lvl->lv->status &= status_mask;
|
|
first_seg(lvl->lv)->status &= status_mask;
|
|
if (!set_lv_segment_area_lv(seg, s, lvl->lv, 0,
|
|
lvl->lv->status)) {
|
|
log_error("Failed to add %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
goto fail;
|
|
}
|
|
s++;
|
|
}
|
|
|
|
/*
|
|
* FIXME: Failure handling during these points is harder.
|
|
*/
|
|
dm_list_iterate_items(lvl, &meta_lvs)
|
|
lv_set_hidden(lvl->lv);
|
|
dm_list_iterate_items(lvl, &data_lvs)
|
|
lv_set_hidden(lvl->lv);
|
|
|
|
if (!vg_write(lv->vg)) {
|
|
log_error("Failed to write changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!suspend_lv_origin(cmd, lv)) {
|
|
log_error("Failed to suspend %s/%s before committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!vg_commit(lv->vg)) {
|
|
log_error("Failed to commit changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!resume_lv_origin(cmd, lv)) {
|
|
log_error("Failed to resume %s/%s after committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Now that the 'REBUILD' has made its way to the kernel, we must
|
|
* remove the flag so that the individual devices are not rebuilt
|
|
* upon every activation.
|
|
*/
|
|
seg = first_seg(lv);
|
|
for (s = 0; s < seg->area_count; s++) {
|
|
if ((seg_lv(seg, s)->status & LV_REBUILD) ||
|
|
(seg_metalv(seg, s)->status & LV_REBUILD)) {
|
|
seg_metalv(seg, s)->status &= ~LV_REBUILD;
|
|
seg_lv(seg, s)->status &= ~LV_REBUILD;
|
|
rebuild_flag_cleared = 1;
|
|
}
|
|
}
|
|
if (rebuild_flag_cleared &&
|
|
(!vg_write(lv->vg) || !vg_commit(lv->vg))) {
|
|
log_error("Failed to clear REBUILD flag for %s/%s components",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
|
|
fail:
|
|
/* Cleanly remove newly-allocated LVs that failed insertion attempt */
|
|
|
|
dm_list_iterate_items(lvl, &meta_lvs)
|
|
if (!lv_remove(lvl->lv))
|
|
return_0;
|
|
dm_list_iterate_items(lvl, &data_lvs)
|
|
if (!lv_remove(lvl->lv))
|
|
return_0;
|
|
return_0;
|
|
}
|
|
|
|
/*
|
|
* _extract_image_components
|
|
* @seg
|
|
* @idx: The index in the areas array to remove
|
|
* @extracted_rmeta: The displaced metadata LV
|
|
* @extracted_rimage: The displaced data LV
|
|
*
|
|
* This function extracts the image components - setting the respective
|
|
* 'extracted' pointers. It appends '_extracted' to the LVs' names, so that
|
|
* there are not future conflicts. It does /not/ commit the results.
|
|
* (IOW, erroring-out requires no unwinding of operations.)
|
|
*
|
|
* This function does /not/ attempt to:
|
|
* 1) shift the 'areas' or 'meta_areas' arrays.
|
|
* The '[meta_]areas' are left as AREA_UNASSIGNED.
|
|
* 2) Adjust the seg->area_count
|
|
* 3) Name the extracted LVs appropriately (appends '_extracted' to names)
|
|
* These actions must be performed by the caller.
|
|
*
|
|
* Returns: 1 on success, 0 on failure
|
|
*/
|
|
static int _extract_image_components(struct lv_segment *seg, uint32_t idx,
|
|
struct logical_volume **extracted_rmeta,
|
|
struct logical_volume **extracted_rimage)
|
|
{
|
|
int len;
|
|
char *tmp_name;
|
|
struct volume_group *vg = seg->lv->vg;
|
|
struct logical_volume *data_lv = seg_lv(seg, idx);
|
|
struct logical_volume *meta_lv = seg_metalv(seg, idx);
|
|
|
|
log_very_verbose("Extracting image components %s and %s from %s",
|
|
data_lv->name, meta_lv->name, seg->lv->name);
|
|
|
|
data_lv->status &= ~RAID_IMAGE;
|
|
meta_lv->status &= ~RAID_META;
|
|
lv_set_visible(data_lv);
|
|
lv_set_visible(meta_lv);
|
|
|
|
/* release removes data and meta areas */
|
|
if (!remove_seg_from_segs_using_this_lv(data_lv, seg) ||
|
|
!remove_seg_from_segs_using_this_lv(meta_lv, seg))
|
|
return_0;
|
|
|
|
seg_type(seg, idx) = AREA_UNASSIGNED;
|
|
seg_metatype(seg, idx) = AREA_UNASSIGNED;
|
|
|
|
len = strlen(meta_lv->name) + strlen("_extracted") + 1;
|
|
tmp_name = dm_pool_alloc(vg->vgmem, len);
|
|
if (!tmp_name)
|
|
return_0;
|
|
sprintf(tmp_name, "%s_extracted", meta_lv->name);
|
|
meta_lv->name = tmp_name;
|
|
|
|
len = strlen(data_lv->name) + strlen("_extracted") + 1;
|
|
tmp_name = dm_pool_alloc(vg->vgmem, len);
|
|
if (!tmp_name)
|
|
return_0;
|
|
sprintf(tmp_name, "%s_extracted", data_lv->name);
|
|
data_lv->name = tmp_name;
|
|
|
|
*extracted_rmeta = meta_lv;
|
|
*extracted_rimage = data_lv;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* _raid_extract_images
|
|
* @lv
|
|
* @new_count: The absolute count of images (e.g. '2' for a 2-way mirror)
|
|
* @target_pvs: The list of PVs that are candidates for removal
|
|
* @shift: If set, use _shift_and_rename_image_components().
|
|
* Otherwise, leave the [meta_]areas as AREA_UNASSIGNED and
|
|
* seg->area_count unchanged.
|
|
* @extracted_[meta|data]_lvs: The LVs removed from the array. If 'shift'
|
|
* is set, then there will likely be name conflicts.
|
|
*
|
|
* This function extracts _both_ portions of the indexed image. It
|
|
* does /not/ commit the results. (IOW, erroring-out requires no unwinding
|
|
* of operations.)
|
|
*
|
|
* Returns: 1 on success, 0 on failure
|
|
*/
|
|
static int _raid_extract_images(struct logical_volume *lv, uint32_t new_count,
|
|
struct dm_list *target_pvs, int shift,
|
|
struct dm_list *extracted_meta_lvs,
|
|
struct dm_list *extracted_data_lvs)
|
|
{
|
|
int ss, s, extract, lvl_idx = 0;
|
|
struct lv_list *lvl_array;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
struct logical_volume *rmeta_lv, *rimage_lv;
|
|
struct segment_type *error_segtype;
|
|
|
|
extract = seg->area_count - new_count;
|
|
log_verbose("Extracting %u %s from %s/%s", extract,
|
|
(extract > 1) ? "images" : "image",
|
|
lv->vg->name, lv->name);
|
|
|
|
lvl_array = dm_pool_alloc(lv->vg->vgmem,
|
|
sizeof(*lvl_array) * extract * 2);
|
|
if (!lvl_array)
|
|
return_0;
|
|
|
|
error_segtype = get_segtype_from_string(lv->vg->cmd, "error");
|
|
|
|
/*
|
|
* We make two passes over the devices.
|
|
* - The first pass we look for error LVs
|
|
* - The second pass we look for PVs that match target_pvs
|
|
*/
|
|
for (ss = (seg->area_count * 2) - 1; (ss >= 0) && extract; ss--) {
|
|
s = ss % seg->area_count;
|
|
|
|
if (ss / seg->area_count) {
|
|
/* Conditions for first pass */
|
|
if ((first_seg(seg_lv(seg, s))->segtype != error_segtype) &&
|
|
(first_seg(seg_metalv(seg, s))->segtype != error_segtype))
|
|
continue;
|
|
|
|
if (target_pvs && !dm_list_empty(target_pvs) &&
|
|
(target_pvs != &lv->vg->pvs)) {
|
|
/*
|
|
* User has supplied a list of PVs, but we
|
|
* cannot honor that list because error LVs
|
|
* must come first.
|
|
*/
|
|
log_error("%s has components with error targets"
|
|
" that must be removed first: %s",
|
|
lv->name, seg_lv(seg, s)->name);
|
|
|
|
log_error("Try removing the PV list and rerun"
|
|
" the command.");
|
|
return 0;
|
|
}
|
|
log_debug("LVs with error segments to be removed: %s %s",
|
|
seg_metalv(seg, s)->name, seg_lv(seg, s)->name);
|
|
} else {
|
|
/* Conditions for second pass */
|
|
if (!target_pvs || !lv_is_on_pvs(seg_lv(seg, s), target_pvs) ||
|
|
!lv_is_on_pvs(seg_metalv(seg, s), target_pvs))
|
|
continue;
|
|
|
|
if (!_raid_in_sync(lv) &&
|
|
(!seg_is_mirrored(seg) || (s == 0))) {
|
|
log_error("Unable to extract %sRAID image"
|
|
" while RAID array is not in-sync",
|
|
seg_is_mirrored(seg) ? "primary " : "");
|
|
return 0;
|
|
}
|
|
}
|
|
if (!_extract_image_components(seg, s, &rmeta_lv, &rimage_lv)) {
|
|
log_error("Failed to extract %s from %s",
|
|
seg_lv(seg, s)->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (shift && !_shift_and_rename_image_components(seg)) {
|
|
log_error("Failed to shift and rename image components");
|
|
return 0;
|
|
}
|
|
|
|
lvl_array[lvl_idx].lv = rmeta_lv;
|
|
lvl_array[lvl_idx + 1].lv = rimage_lv;
|
|
dm_list_add(extracted_meta_lvs, &(lvl_array[lvl_idx++].list));
|
|
dm_list_add(extracted_data_lvs, &(lvl_array[lvl_idx++].list));
|
|
|
|
extract--;
|
|
}
|
|
if (extract) {
|
|
log_error("Unable to extract enough images to satisfy request");
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _raid_remove_images(struct logical_volume *lv,
|
|
uint32_t new_count, struct dm_list *pvs)
|
|
{
|
|
struct dm_list removal_list;
|
|
struct lv_list *lvl;
|
|
|
|
dm_list_init(&removal_list);
|
|
|
|
if (!_raid_extract_images(lv, new_count, pvs, 1,
|
|
&removal_list, &removal_list)) {
|
|
log_error("Failed to extract images from %s/%s",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/* Convert to linear? */
|
|
if (new_count == 1) {
|
|
if (!_raid_remove_top_layer(lv, &removal_list)) {
|
|
log_error("Failed to remove RAID layer"
|
|
" after linear conversion");
|
|
return 0;
|
|
}
|
|
lv->status &= ~(LV_NOTSYNCED | LV_WRITEMOSTLY);
|
|
first_seg(lv)->writebehind = 0;
|
|
}
|
|
|
|
if (!vg_write(lv->vg)) {
|
|
log_error("Failed to write changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!suspend_lv(lv->vg->cmd, lv)) {
|
|
log_error("Failed to suspend %s/%s before committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!vg_commit(lv->vg)) {
|
|
log_error("Failed to commit changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We activate the extracted sub-LVs first so they are renamed
|
|
* and won't conflict with the remaining (possibly shifted)
|
|
* sub-LVs.
|
|
*/
|
|
dm_list_iterate_items(lvl, &removal_list) {
|
|
if (!activate_lv_excl_local(lv->vg->cmd, lvl->lv)) {
|
|
log_error("Failed to resume extracted LVs");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (!resume_lv(lv->vg->cmd, lv)) {
|
|
log_error("Failed to resume %s/%s after committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Eliminate the extracted LVs
|
|
*/
|
|
sync_local_dev_names(lv->vg->cmd);
|
|
if (!dm_list_empty(&removal_list)) {
|
|
dm_list_iterate_items(lvl, &removal_list) {
|
|
if (!deactivate_lv(lv->vg->cmd, lvl->lv))
|
|
return_0;
|
|
if (!lv_remove(lvl->lv))
|
|
return_0;
|
|
}
|
|
|
|
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
|
|
return_0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* lv_raid_change_image_count
|
|
* @lv
|
|
* @new_count: The absolute count of images (e.g. '2' for a 2-way mirror)
|
|
* @pvs: The list of PVs that are candidates for removal (or empty list)
|
|
*
|
|
* RAID arrays have 'images' which are composed of two parts, they are:
|
|
* - 'rimage': The data/parity holding portion
|
|
* - 'rmeta' : The metadata holding portion (i.e. superblock/bitmap area)
|
|
* This function adds or removes _both_ portions of the image and commits
|
|
* the results.
|
|
*
|
|
* Returns: 1 on success, 0 on failure
|
|
*/
|
|
int lv_raid_change_image_count(struct logical_volume *lv,
|
|
uint32_t new_count, struct dm_list *pvs)
|
|
{
|
|
uint32_t old_count = lv_raid_image_count(lv);
|
|
|
|
if (old_count == new_count) {
|
|
log_warn("%s/%s already has image count of %d.",
|
|
lv->vg->name, lv->name, new_count);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* LV must be either in-active or exclusively active
|
|
*/
|
|
if (lv_is_active(lv) && vg_is_clustered(lv->vg) &&
|
|
!lv_is_active_exclusive_locally(lv)) {
|
|
log_error("%s/%s must be active exclusive locally to"
|
|
" perform this operation.", lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (old_count > new_count)
|
|
return _raid_remove_images(lv, new_count, pvs);
|
|
|
|
return _raid_add_images(lv, new_count, pvs);
|
|
}
|
|
|
|
int lv_raid_split(struct logical_volume *lv, const char *split_name,
|
|
uint32_t new_count, struct dm_list *splittable_pvs)
|
|
{
|
|
struct lv_list *lvl;
|
|
struct dm_list removal_list, data_list;
|
|
struct cmd_context *cmd = lv->vg->cmd;
|
|
uint32_t old_count = lv_raid_image_count(lv);
|
|
struct logical_volume *tracking;
|
|
struct dm_list tracking_pvs;
|
|
|
|
dm_list_init(&removal_list);
|
|
dm_list_init(&data_list);
|
|
|
|
if ((old_count - new_count) != 1) {
|
|
log_error("Unable to split more than one image from %s/%s",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!seg_is_mirrored(first_seg(lv)) ||
|
|
!strcmp(first_seg(lv)->segtype->name, "raid10")) {
|
|
log_error("Unable to split logical volume of segment type, %s",
|
|
first_seg(lv)->segtype->ops->name(first_seg(lv)));
|
|
return 0;
|
|
}
|
|
|
|
if (find_lv_in_vg(lv->vg, split_name)) {
|
|
log_error("Logical Volume \"%s\" already exists in %s",
|
|
split_name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!_raid_in_sync(lv)) {
|
|
log_error("Unable to split %s/%s while it is not in-sync.",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We only allow a split while there is tracking if it is to
|
|
* complete the split of the tracking sub-LV
|
|
*/
|
|
if (_lv_is_raid_with_tracking(lv, &tracking)) {
|
|
if (!lv_is_on_pvs(tracking, splittable_pvs)) {
|
|
log_error("Unable to split additional image from %s "
|
|
"while tracking changes for %s",
|
|
lv->name, tracking->name);
|
|
return 0;
|
|
} else {
|
|
/* Ensure we only split the tracking image */
|
|
dm_list_init(&tracking_pvs);
|
|
splittable_pvs = &tracking_pvs;
|
|
if (!get_pv_list_for_lv(tracking->vg->cmd->mem,
|
|
tracking, splittable_pvs))
|
|
return_0;
|
|
}
|
|
}
|
|
|
|
if (!_raid_extract_images(lv, new_count, splittable_pvs, 1,
|
|
&removal_list, &data_list)) {
|
|
log_error("Failed to extract images from %s/%s",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/* Convert to linear? */
|
|
if ((new_count == 1) && !_raid_remove_top_layer(lv, &removal_list)) {
|
|
log_error("Failed to remove RAID layer after linear conversion");
|
|
return 0;
|
|
}
|
|
|
|
/* Get first item */
|
|
dm_list_iterate_items(lvl, &data_list)
|
|
break;
|
|
|
|
lvl->lv->name = split_name;
|
|
|
|
if (!vg_write(lv->vg)) {
|
|
log_error("Failed to write changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!suspend_lv(cmd, lv)) {
|
|
log_error("Failed to suspend %s/%s before committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!vg_commit(lv->vg)) {
|
|
log_error("Failed to commit changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* First activate the newly split LV and LVs on the removal list.
|
|
* This is necessary so that there are no name collisions due to
|
|
* the original RAID LV having possibly had sub-LVs that have been
|
|
* shifted and renamed.
|
|
*/
|
|
if (!activate_lv_excl_local(cmd, lvl->lv))
|
|
return_0;
|
|
dm_list_iterate_items(lvl, &removal_list)
|
|
if (!activate_lv_excl_local(cmd, lvl->lv))
|
|
return_0;
|
|
|
|
if (!resume_lv(lv->vg->cmd, lv)) {
|
|
log_error("Failed to resume %s/%s after committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Eliminate the residual LVs
|
|
*/
|
|
dm_list_iterate_items(lvl, &removal_list) {
|
|
if (!deactivate_lv(cmd, lvl->lv))
|
|
return_0;
|
|
|
|
if (!lv_remove(lvl->lv))
|
|
return_0;
|
|
}
|
|
|
|
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* lv_raid_split_and_track
|
|
* @lv
|
|
* @splittable_pvs
|
|
*
|
|
* Only allows a single image to be split while tracking. The image
|
|
* never actually leaves the mirror. It is simply made visible. This
|
|
* action triggers two things: 1) users are able to access the (data) image
|
|
* and 2) lower layers replace images marked with a visible flag with
|
|
* error targets.
|
|
*
|
|
* Returns: 1 on success, 0 on error
|
|
*/
|
|
int lv_raid_split_and_track(struct logical_volume *lv,
|
|
struct dm_list *splittable_pvs)
|
|
{
|
|
int s;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
|
|
if (!seg_is_mirrored(seg)) {
|
|
log_error("Unable to split images from non-mirrored RAID");
|
|
return 0;
|
|
}
|
|
|
|
if (!_raid_in_sync(lv)) {
|
|
log_error("Unable to split image from %s/%s while not in-sync",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/* Cannot track two split images at once */
|
|
if (lv_is_raid_with_tracking(lv)) {
|
|
log_error("Cannot track more than one split image at a time");
|
|
return 0;
|
|
}
|
|
|
|
for (s = seg->area_count - 1; s >= 0; s--) {
|
|
if (!lv_is_on_pvs(seg_lv(seg, s), splittable_pvs))
|
|
continue;
|
|
lv_set_visible(seg_lv(seg, s));
|
|
seg_lv(seg, s)->status &= ~LVM_WRITE;
|
|
break;
|
|
}
|
|
|
|
if (s >= (int) seg->area_count) {
|
|
log_error("Unable to find image to satisfy request");
|
|
return 0;
|
|
}
|
|
|
|
if (!vg_write(lv->vg)) {
|
|
log_error("Failed to write changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!suspend_lv(lv->vg->cmd, lv)) {
|
|
log_error("Failed to suspend %s/%s before committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!vg_commit(lv->vg)) {
|
|
log_error("Failed to commit changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
log_print_unless_silent("%s split from %s for read-only purposes.",
|
|
seg_lv(seg, s)->name, lv->name);
|
|
|
|
/* Resume original LV */
|
|
if (!resume_lv(lv->vg->cmd, lv)) {
|
|
log_error("Failed to resume %s/%s after committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/* Activate the split (and tracking) LV */
|
|
if (!_activate_sublv_preserving_excl(lv, seg_lv(seg, s)))
|
|
return 0;
|
|
|
|
log_print_unless_silent("Use 'lvconvert --merge %s/%s' to merge back into %s",
|
|
lv->vg->name, seg_lv(seg, s)->name, lv->name);
|
|
return 1;
|
|
}
|
|
|
|
int lv_raid_merge(struct logical_volume *image_lv)
|
|
{
|
|
uint32_t s;
|
|
char *p, *lv_name;
|
|
struct lv_list *lvl;
|
|
struct logical_volume *lv;
|
|
struct logical_volume *meta_lv = NULL;
|
|
struct lv_segment *seg;
|
|
struct volume_group *vg = image_lv->vg;
|
|
|
|
lv_name = dm_pool_strdup(vg->vgmem, image_lv->name);
|
|
if (!lv_name)
|
|
return_0;
|
|
|
|
if (!(p = strstr(lv_name, "_rimage_"))) {
|
|
log_error("Unable to merge non-mirror image %s/%s",
|
|
vg->name, image_lv->name);
|
|
return 0;
|
|
}
|
|
*p = '\0'; /* lv_name is now that of top-level RAID */
|
|
|
|
if (image_lv->status & LVM_WRITE) {
|
|
log_error("%s/%s is not read-only - refusing to merge",
|
|
vg->name, image_lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!(lvl = find_lv_in_vg(vg, lv_name))) {
|
|
log_error("Unable to find containing RAID array for %s/%s",
|
|
vg->name, image_lv->name);
|
|
return 0;
|
|
}
|
|
lv = lvl->lv;
|
|
seg = first_seg(lv);
|
|
for (s = 0; s < seg->area_count; s++) {
|
|
if (seg_lv(seg, s) == image_lv) {
|
|
meta_lv = seg_metalv(seg, s);
|
|
}
|
|
}
|
|
if (!meta_lv)
|
|
return_0;
|
|
|
|
if (!deactivate_lv(vg->cmd, meta_lv)) {
|
|
log_error("Failed to deactivate %s", meta_lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!deactivate_lv(vg->cmd, image_lv)) {
|
|
log_error("Failed to deactivate %s/%s before merging",
|
|
vg->name, image_lv->name);
|
|
return 0;
|
|
}
|
|
lv_set_hidden(image_lv);
|
|
image_lv->status |= (lv->status & LVM_WRITE);
|
|
image_lv->status |= RAID_IMAGE;
|
|
|
|
if (!vg_write(vg)) {
|
|
log_error("Failed to write changes to %s in %s",
|
|
lv->name, vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!suspend_lv(vg->cmd, lv)) {
|
|
log_error("Failed to suspend %s/%s before committing changes",
|
|
vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!vg_commit(vg)) {
|
|
log_error("Failed to commit changes to %s in %s",
|
|
lv->name, vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!resume_lv(vg->cmd, lv)) {
|
|
log_error("Failed to resume %s/%s after committing changes",
|
|
vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
log_print_unless_silent("%s/%s successfully merged back into %s/%s",
|
|
vg->name, image_lv->name, vg->name, lv->name);
|
|
return 1;
|
|
}
|
|
|
|
static int _convert_mirror_to_raid1(struct logical_volume *lv,
|
|
const struct segment_type *new_segtype)
|
|
{
|
|
uint32_t s;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
struct lv_list lvl_array[seg->area_count], *lvl;
|
|
struct dm_list meta_lvs;
|
|
struct lv_segment_area *meta_areas;
|
|
|
|
dm_list_init(&meta_lvs);
|
|
|
|
if (!_raid_in_sync(lv)) {
|
|
log_error("Unable to convert %s/%s while it is not in-sync",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
meta_areas = dm_pool_zalloc(lv->vg->vgmem,
|
|
lv_mirror_count(lv) * sizeof(*meta_areas));
|
|
if (!meta_areas) {
|
|
log_error("Failed to allocate memory");
|
|
return 0;
|
|
}
|
|
|
|
for (s = 0; s < seg->area_count; s++) {
|
|
log_debug_metadata("Allocating new metadata LV for %s",
|
|
seg_lv(seg, s)->name);
|
|
if (!_alloc_rmeta_for_lv(seg_lv(seg, s), &(lvl_array[s].lv))) {
|
|
log_error("Failed to allocate metadata LV for %s in %s",
|
|
seg_lv(seg, s)->name, lv->name);
|
|
return 0;
|
|
}
|
|
dm_list_add(&meta_lvs, &(lvl_array[s].list));
|
|
}
|
|
|
|
log_debug_metadata("Clearing newly allocated metadata LVs");
|
|
if (!_clear_lvs(&meta_lvs)) {
|
|
log_error("Failed to initialize metadata LVs");
|
|
return 0;
|
|
}
|
|
|
|
if (seg->log_lv) {
|
|
log_debug_metadata("Removing mirror log, %s", seg->log_lv->name);
|
|
if (!remove_mirror_log(lv->vg->cmd, lv, NULL, 0)) {
|
|
log_error("Failed to remove mirror log");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
seg->meta_areas = meta_areas;
|
|
s = 0;
|
|
|
|
dm_list_iterate_items(lvl, &meta_lvs) {
|
|
log_debug_metadata("Adding %s to %s", lvl->lv->name, lv->name);
|
|
|
|
/* Images are known to be in-sync */
|
|
lvl->lv->status &= ~LV_REBUILD;
|
|
first_seg(lvl->lv)->status &= ~LV_REBUILD;
|
|
lv_set_hidden(lvl->lv);
|
|
|
|
if (!set_lv_segment_area_lv(seg, s, lvl->lv, 0,
|
|
lvl->lv->status)) {
|
|
log_error("Failed to add %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
return 0;
|
|
}
|
|
s++;
|
|
}
|
|
|
|
for (s = 0; s < seg->area_count; s++) {
|
|
char *new_name;
|
|
|
|
new_name = dm_pool_zalloc(lv->vg->vgmem,
|
|
strlen(lv->name) +
|
|
strlen("_rimage_XXn"));
|
|
if (!new_name) {
|
|
log_error("Failed to rename mirror images");
|
|
return 0;
|
|
}
|
|
|
|
sprintf(new_name, "%s_rimage_%u", lv->name, s);
|
|
log_debug_metadata("Renaming %s to %s", seg_lv(seg, s)->name, new_name);
|
|
seg_lv(seg, s)->name = new_name;
|
|
seg_lv(seg, s)->status &= ~MIRROR_IMAGE;
|
|
seg_lv(seg, s)->status |= RAID_IMAGE;
|
|
}
|
|
init_mirror_in_sync(1);
|
|
|
|
log_debug_metadata("Setting new segtype for %s", lv->name);
|
|
seg->segtype = new_segtype;
|
|
lv->status &= ~MIRRORED;
|
|
lv->status |= RAID;
|
|
seg->status |= RAID;
|
|
|
|
if (!vg_write(lv->vg)) {
|
|
log_error("Failed to write changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!suspend_lv(lv->vg->cmd, lv)) {
|
|
log_error("Failed to suspend %s/%s before committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!vg_commit(lv->vg)) {
|
|
log_error("Failed to commit changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!resume_lv(lv->vg->cmd, lv)) {
|
|
log_error("Failed to resume %s/%s after committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* lv_raid_reshape
|
|
* @lv
|
|
* @new_segtype
|
|
*
|
|
* Convert an LV from one RAID type (or 'mirror' segtype) to another.
|
|
*
|
|
* Returns: 1 on success, 0 on failure
|
|
*/
|
|
int lv_raid_reshape(struct logical_volume *lv,
|
|
const struct segment_type *new_segtype)
|
|
{
|
|
struct lv_segment *seg = first_seg(lv);
|
|
|
|
if (!new_segtype) {
|
|
log_error(INTERNAL_ERROR "New segtype not specified");
|
|
return 0;
|
|
}
|
|
|
|
if (vg_is_clustered(lv->vg) && !lv_is_active_exclusive_locally(lv)) {
|
|
log_error("%s/%s must be active exclusive locally to"
|
|
" perform this operation.", lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!strcmp(seg->segtype->name, "mirror") &&
|
|
(!strcmp(new_segtype->name, "raid1")))
|
|
return _convert_mirror_to_raid1(lv, new_segtype);
|
|
|
|
log_error("Converting the segment type for %s/%s from %s to %s"
|
|
" is not yet supported.", lv->vg->name, lv->name,
|
|
seg->segtype->ops->name(seg), new_segtype->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* lv_raid_replace
|
|
* @lv
|
|
* @remove_pvs
|
|
* @allocate_pvs
|
|
*
|
|
* Replace the specified PVs.
|
|
*/
|
|
int lv_raid_replace(struct logical_volume *lv,
|
|
struct dm_list *remove_pvs,
|
|
struct dm_list *allocate_pvs)
|
|
{
|
|
uint32_t s, sd, match_count = 0;
|
|
struct dm_list old_lvs;
|
|
struct dm_list new_meta_lvs, new_data_lvs;
|
|
struct lv_segment *raid_seg = first_seg(lv);
|
|
struct lv_list *lvl;
|
|
char *tmp_names[raid_seg->area_count * 2];
|
|
|
|
dm_list_init(&old_lvs);
|
|
dm_list_init(&new_meta_lvs);
|
|
dm_list_init(&new_data_lvs);
|
|
|
|
if (lv->status & PARTIAL_LV)
|
|
lv->vg->cmd->partial_activation = 1;
|
|
|
|
if (!lv_is_active_exclusive_locally(lv)) {
|
|
log_error("%s/%s must be active %sto perform this operation.",
|
|
lv->vg->name, lv->name,
|
|
vg_is_clustered(lv->vg) ? "exclusive locally " : "");
|
|
return 0;
|
|
}
|
|
|
|
if (!mirror_in_sync() && !_raid_in_sync(lv)) {
|
|
log_error("Unable to replace devices in %s/%s while it is"
|
|
" not in-sync.", lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* How many sub-LVs are being removed?
|
|
*/
|
|
for (s = 0; s < raid_seg->area_count; s++) {
|
|
if ((seg_type(raid_seg, s) == AREA_UNASSIGNED) ||
|
|
(seg_metatype(raid_seg, s) == AREA_UNASSIGNED)) {
|
|
log_error("Unable to replace RAID images while the "
|
|
"array has unassigned areas");
|
|
return 0;
|
|
}
|
|
|
|
if (lv_is_virtual(seg_lv(raid_seg, s)) ||
|
|
lv_is_virtual(seg_metalv(raid_seg, s)) ||
|
|
lv_is_on_pvs(seg_lv(raid_seg, s), remove_pvs) ||
|
|
lv_is_on_pvs(seg_metalv(raid_seg, s), remove_pvs))
|
|
match_count++;
|
|
}
|
|
|
|
if (!match_count) {
|
|
log_verbose("%s/%s does not contain devices specified"
|
|
" for replacement", lv->vg->name, lv->name);
|
|
return 1;
|
|
} else if (match_count == raid_seg->area_count) {
|
|
log_error("Unable to remove all PVs from %s/%s at once.",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
} else if (raid_seg->segtype->parity_devs &&
|
|
(match_count > raid_seg->segtype->parity_devs)) {
|
|
log_error("Unable to replace more than %u PVs from (%s) %s/%s",
|
|
raid_seg->segtype->parity_devs,
|
|
raid_seg->segtype->ops->name(raid_seg),
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
} else if (!strcmp(raid_seg->segtype->name, "raid10")) {
|
|
uint32_t i, rebuilds_per_group = 0;
|
|
/* FIXME: We only support 2-way mirrors in RAID10 currently */
|
|
uint32_t copies = 2;
|
|
|
|
for (i = 0; i < raid_seg->area_count * copies; i++) {
|
|
s = i % raid_seg->area_count;
|
|
if (!(i % copies))
|
|
rebuilds_per_group = 0;
|
|
if (lv_is_on_pvs(seg_lv(raid_seg, s), remove_pvs) ||
|
|
lv_is_on_pvs(seg_metalv(raid_seg, s), remove_pvs) ||
|
|
lv_is_virtual(seg_lv(raid_seg, s)) ||
|
|
lv_is_virtual(seg_metalv(raid_seg, s)))
|
|
rebuilds_per_group++;
|
|
if (rebuilds_per_group >= copies) {
|
|
log_error("Unable to replace all the devices "
|
|
"in a RAID10 mirror group.");
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate the new image components first
|
|
* - This makes it easy to avoid all currently used devs
|
|
* - We can immediately tell if there is enough space
|
|
*
|
|
* - We need to change the LV names when we insert them.
|
|
*/
|
|
try_again:
|
|
if (!_alloc_image_components(lv, allocate_pvs, match_count,
|
|
&new_meta_lvs, &new_data_lvs)) {
|
|
log_error("Failed to allocate replacement images for %s/%s",
|
|
lv->vg->name, lv->name);
|
|
|
|
/*
|
|
* If this is a repair, then try to
|
|
* do better than all-or-nothing
|
|
*/
|
|
if (match_count > 1) {
|
|
log_error("Attempting replacement of %u devices"
|
|
" instead of %u", match_count - 1, match_count);
|
|
match_count--;
|
|
|
|
/*
|
|
* Since we are replacing some but not all of the bad
|
|
* devices, we must set partial_activation
|
|
*/
|
|
lv->vg->cmd->partial_activation = 1;
|
|
goto try_again;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove the old images
|
|
* - If we did this before the allocate, we wouldn't have to rename
|
|
* the allocated images, but it'd be much harder to avoid the right
|
|
* PVs during allocation.
|
|
*/
|
|
if (!_raid_extract_images(lv, raid_seg->area_count - match_count,
|
|
remove_pvs, 0,
|
|
&old_lvs, &old_lvs)) {
|
|
log_error("Failed to remove the specified images from %s/%s",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Now that they are extracted and visible, make the system aware
|
|
* of their new names.
|
|
*/
|
|
dm_list_iterate_items(lvl, &old_lvs)
|
|
if (!activate_lv_excl_local(lv->vg->cmd, lvl->lv))
|
|
return_0;
|
|
|
|
/*
|
|
* Skip metadata operation normally done to clear the metadata sub-LVs.
|
|
*
|
|
* The LV_REBUILD flag is set on the new sub-LVs,
|
|
* so they will be rebuilt and we don't need to clear the metadata dev.
|
|
*/
|
|
|
|
for (s = 0; s < raid_seg->area_count; s++) {
|
|
tmp_names[s] = NULL;
|
|
sd = s + raid_seg->area_count;
|
|
tmp_names[sd] = NULL;
|
|
|
|
if ((seg_type(raid_seg, s) == AREA_UNASSIGNED) &&
|
|
(seg_metatype(raid_seg, s) == AREA_UNASSIGNED)) {
|
|
/* Adjust the new metadata LV name */
|
|
lvl = dm_list_item(dm_list_first(&new_meta_lvs),
|
|
struct lv_list);
|
|
dm_list_del(&lvl->list);
|
|
tmp_names[s] = dm_pool_alloc(lv->vg->vgmem,
|
|
strlen(lvl->lv->name) + 1);
|
|
if (!tmp_names[s])
|
|
return_0;
|
|
if (dm_snprintf(tmp_names[s], strlen(lvl->lv->name) + 1,
|
|
"%s_rmeta_%u", lv->name, s) < 0)
|
|
return_0;
|
|
if (!set_lv_segment_area_lv(raid_seg, s, lvl->lv, 0,
|
|
lvl->lv->status)) {
|
|
log_error("Failed to add %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
return 0;
|
|
}
|
|
lv_set_hidden(lvl->lv);
|
|
|
|
/* Adjust the new data LV name */
|
|
lvl = dm_list_item(dm_list_first(&new_data_lvs),
|
|
struct lv_list);
|
|
dm_list_del(&lvl->list);
|
|
tmp_names[sd] = dm_pool_alloc(lv->vg->vgmem,
|
|
strlen(lvl->lv->name) + 1);
|
|
if (!tmp_names[sd])
|
|
return_0;
|
|
if (dm_snprintf(tmp_names[sd], strlen(lvl->lv->name) + 1,
|
|
"%s_rimage_%u", lv->name, s) < 0)
|
|
return_0;
|
|
if (!set_lv_segment_area_lv(raid_seg, s, lvl->lv, 0,
|
|
lvl->lv->status)) {
|
|
log_error("Failed to add %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
return 0;
|
|
}
|
|
lv_set_hidden(lvl->lv);
|
|
}
|
|
}
|
|
|
|
if (!vg_write(lv->vg)) {
|
|
log_error("Failed to write changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!suspend_lv_origin(lv->vg->cmd, lv)) {
|
|
log_error("Failed to suspend %s/%s before committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!vg_commit(lv->vg)) {
|
|
log_error("Failed to commit changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!resume_lv_origin(lv->vg->cmd, lv)) {
|
|
log_error("Failed to resume %s/%s after committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
dm_list_iterate_items(lvl, &old_lvs) {
|
|
if (!deactivate_lv(lv->vg->cmd, lvl->lv))
|
|
return_0;
|
|
if (!lv_remove(lvl->lv))
|
|
return_0;
|
|
}
|
|
|
|
/* Update new sub-LVs to correct name and clear REBUILD flag */
|
|
for (s = 0; s < raid_seg->area_count; s++) {
|
|
sd = s + raid_seg->area_count;
|
|
if (tmp_names[s] && tmp_names[sd]) {
|
|
seg_metalv(raid_seg, s)->name = tmp_names[s];
|
|
seg_lv(raid_seg, s)->name = tmp_names[sd];
|
|
seg_metalv(raid_seg, s)->status &= ~LV_REBUILD;
|
|
seg_lv(raid_seg, s)->status &= ~LV_REBUILD;
|
|
}
|
|
}
|
|
|
|
if (!vg_write(lv->vg)) {
|
|
log_error("Failed to write changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!suspend_lv_origin(lv->vg->cmd, lv)) {
|
|
log_error("Failed to suspend %s/%s before committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!vg_commit(lv->vg)) {
|
|
log_error("Failed to commit changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!resume_lv_origin(lv->vg->cmd, lv)) {
|
|
log_error("Failed to resume %s/%s after committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int lv_raid_remove_missing(struct logical_volume *lv)
|
|
{
|
|
uint32_t s;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
struct cmd_context *cmd = lv->vg->cmd;
|
|
|
|
if (!(lv->status & PARTIAL_LV)) {
|
|
log_error(INTERNAL_ERROR "%s/%s is not a partial LV",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
log_debug("Attempting to remove missing devices from %s LV, %s",
|
|
seg->segtype->ops->name(seg), lv->name);
|
|
|
|
/*
|
|
* FIXME: Make sure # of compromised components will not affect RAID
|
|
*/
|
|
|
|
for (s = 0; s < seg->area_count; s++) {
|
|
if (!(seg_lv(seg, s)->status & PARTIAL_LV) &&
|
|
!(seg_metalv(seg, s)->status & PARTIAL_LV))
|
|
continue;
|
|
|
|
log_debug("Replacing %s and %s segments with error target",
|
|
seg_lv(seg, s)->name, seg_metalv(seg, s)->name);
|
|
if (!replace_lv_with_error_segment(seg_lv(seg, s))) {
|
|
log_error("Failed to replace %s/%s's extents"
|
|
" with error target", lv->vg->name,
|
|
seg_lv(seg, s)->name);
|
|
return 0;
|
|
}
|
|
if (!replace_lv_with_error_segment(seg_metalv(seg, s))) {
|
|
log_error("Failed to replace %s/%s's extents"
|
|
" with error target", lv->vg->name,
|
|
seg_metalv(seg, s)->name);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (!vg_write(lv->vg)) {
|
|
log_error("Failed to write changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!suspend_lv(cmd, lv)) {
|
|
log_error("Failed to suspend %s/%s before committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!vg_commit(lv->vg)) {
|
|
log_error("Failed to commit changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!resume_lv(cmd, lv))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|