mirror of
git://sourceware.org/git/lvm2.git
synced 2025-01-09 01:18:39 +03:00
ba7ff96faf
The fact that vg repair is implemented as a part of vg read has led to a messy and complicated implementation of vg_read, and limited and uncontrolled repair capability. This splits read and repair apart. Summary ------- - take all kinds of various repairs out of vg_read - vg_read no longer writes anything - vg_read now simply reads and returns vg metadata - vg_read ignores bad or old copies of metadata - vg_read proceeds with a single good copy of metadata - improve error checks and handling when reading - keep track of bad (corrupt) copies of metadata in lvmcache - keep track of old (seqno) copies of metadata in lvmcache - keep track of outdated PVs in lvmcache - vg_write will do basic repairs - new command vgck --updatemetdata will do all repairs Details ------- - In scan, do not delete dev from lvmcache if reading/processing fails; the dev is still present, and removing it makes it look like the dev is not there. Records are now kept about the problems with each PV so they be fixed/repaired in the appropriate places. - In scan, record a bad mda on failure, and delete the mda from mda in use list so it will not be used by vg_read or vg_write, only by repair. - In scan, succeed if any good mda on a device is found, instead of failing if any is bad. The bad/old copies of metadata should not interfere with normal usage while good copies can be used. - In scan, add a record of old mdas in lvmcache for later, do not repair them while reading, and do not let them prevent us from finding and using a good copy of metadata from elsewhere. One result is that "inconsistent metadata" is no longer a read error, but instead a record in lvmcache that can be addressed separate from the read. - Treat a dev with no good mdas like a dev with no mdas, which is an existing case we already handle. - Don't use a fake vg "handle" for returning an error from vg_read, or the vg_read_error function for getting that error number; just return null if the vg cannot be read or used, and an error_flags arg with flags set for the specific kind of error (which can be used later for determining the kind of repair.) - Saving an original copy of the vg metadata, for purposes of reverting a write, is now done explicitly in vg_read instead of being hidden in the vg_make_handle function. - When a vg is not accessible due to "access restrictions" but is otherwise fine, return the vg through the new error_vg arg so that process_each_pv can skip the PVs in the VG while processing. (This is a temporary accomodation for the way process_each_pv tracks which devs have been looked at, and can be dropped later when process_each_pv implementation dev tracking is changed.) - vg_read does not try to fix or recover a vg, but now just reads the metadata, checks access restrictions and returns it. (Checking access restrictions might be better done outside of vg_read, but this is a later improvement.) - _vg_read now simply makes one attempt to read metadata from each mda, and uses the most recent copy to return to the caller in the form of a 'vg' struct. (bad mdas were excluded during the scan and are not retried) (old mdas were not excluded during scan and are retried here) - vg_read uses _vg_read to get the latest copy of metadata from mdas, and then makes various checks against it to produce warnings, and to check if VG access is allowed (access restrictions include: writable, foreign, shared, clustered, missing pvs). - Things that were previously silently/automatically written by vg_read that are now done by vg_write, based on the records made in lvmcache during the scan and read: . clearing the missing flag . updating old copies of metadata . clearing outdated pvs . updating pv header flags - Bad/corrupt metadata are now repaired; they were not before. Test changes ------------ - A read command no longer writes the VG to repair it, so add a write command to do a repair. (inconsistent-metadata, unlost-pv) - When a missing PV is removed from a VG, and then the device is enabled again, vgck --updatemetadata is needed to clear the outdated PV before it can be used again, where it wasn't before. (lvconvert-repair-policy, lvconvert-repair-raid, lvconvert-repair, mirror-vgreduce-removemissing, pv-ext-flags, unlost-pv) Reading bad/old metadata ------------------------ - "bad metadata": the mda_header or metadata text has invalid fields or can't be parsed by lvm. This is a form of corruption that would not be caused by known failure scenarios. A checksum error is typically included among the errors reported. - "old metadata": a valid copy of the metadata that has a smaller seqno than other copies of the metadata. This can happen if the device failed, or io failed, or lvm failed while commiting new metadata to all the metadata areas. Old metadata on a PV that has been removed from the VG is the "outdated" case below. When a VG has some PVs with bad/old metadata, lvm can simply ignore the bad/old copies, and use a good copy. This is why there are multiple copies of the metadata -- so it's available even when some of the copies cannot be used. The bad/old copies do not have to be repaired before the VG can be used (the repair can happen later.) A PV with no good copies of the metadata simply falls back to being treated like a PV with no mdas; a common and harmless configuration. When bad/old metadata exists, lvm warns the user about it, and suggests repairing it using a new metadata repair command. Bad metadata in particular is something that users will want to investigate and repair themselves, since it should not happen and may indicate some other problem that needs to be fixed. PVs with bad/old metadata are not the same as missing devices. Missing devices will block various kinds of VG modification or activation, but bad/old metadata will not. Previously, lvm would attempt to repair bad/old metadata whenever it was read. This was unnecessary since lvm does not require every copy of the metadata to be used. It would also hide potential problems that should be investigated by the user. It was also dangerous in cases where the VG was on shared storage. The user is now allowed to investigate potential problems and decide how and when to repair them. Repairing bad/old metadata -------------------------- When label scan sees bad metadata in an mda, that mda is removed from the lvmcache info->mdas list. This means that vg_read will skip it, and not attempt to read/process it again. If it was the only in-use mda on a PV, that PV is treated like a PV with no mdas. It also means that vg_write will also skip the bad mda, and not attempt to write new metadata to it. The only way to repair bad metadata is with the metadata repair command. When label scan sees old metadata in an mda, that mda is kept in the lvmcache info->mdas list. This means that vg_read will read/process it again, and likely see the same mismatch with the other copies of the metadata. Like the label_scan, the vg_read will simply ignore the old copy of the metadata and use the latest copy. If the command is modifying the vg (e.g. lvcreate), then vg_write, which writes new metadata to every mda on info->mdas, will write the new metadata to the mda that had the old version. If successful, this will resolve the old metadata problem (without needing to run a metadata repair command.) Outdated PVs ------------ An outdated PV is a PV that has an old copy of VG metadata that shows it is a member of the VG, but the latest copy of the VG metadata does not include this PV. This happens if the PV is disconnected, vgreduce --removemissing is run to remove the PV from the VG, then the PV is reconnected. In this case, the outdated PV needs have its outdated metadata removed and the PV used flag needs to be cleared. This repair will be done by the subsequent repair command. It is also done if vgremove is run on the VG. MISSING PVs ----------- When a device is missing, most commands will refuse to modify the VG. This is the simple case. More complicated is when a command is allowed to modify the VG while it is missing a device. When a VG is written while a device is missing for one of it's PVs, the VG metadata is written to disk with the MISSING flag on the PV with the missing device. When the VG is next used, it is treated as if the PV with the MISSING flag still has a missing device, even if that device has reappeared. If all LVs that were using a PV with the MISSING flag are removed or repaired so that the MISSING PV is no longer used, then the next time the VG metadata is written, the MISSING flag will be dropped. Alternative methods of clearing the MISSING flag are: vgreduce --removemissing will remove PVs with missing devices, or PVs with the MISSING flag where the device has reappeared. vgextend --restoremissing will clear the MISSING flag on PVs where the device has reappeared, allowing the VG to be used normally. This must be done with caution since the reappeared device may have old data that is inconsistent with data on other PVs. Bad mda repair -------------- The new command: vgck --updatemetadata VG first uses vg_write to repair old metadata, and other basic issues mentioned above (old metadata, outdated PVs, pv_header flags, MISSING_PV flags). It will also go further and repair bad metadata: . text metadata that has a bad checksum . text metadata that is not parsable . corrupt mda_header checksum and version fields (To keep a clean diff, #if 0 is added around functions that are replaced by new code. These commented functions are removed by the following commit.)
1491 lines
40 KiB
C
1491 lines
40 KiB
C
/*
|
|
* Copyright (C) 2002-2004 Sistina Software, Inc. All rights reserved.
|
|
* Copyright (C) 2004-2007 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* This file is part of LVM2.
|
|
*
|
|
* This copyrighted material is made available to anyone wishing to use,
|
|
* modify, copy, or redistribute it subject to the terms and conditions
|
|
* of the GNU Lesser General Public License v.2.1.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "base/memory/zalloc.h"
|
|
#include "lib/misc/lib.h"
|
|
#include "lib/label/label.h"
|
|
#include "lib/misc/crc.h"
|
|
#include "lib/mm/xlate.h"
|
|
#include "lib/cache/lvmcache.h"
|
|
#include "lib/device/bcache.h"
|
|
#include "lib/commands/toolcontext.h"
|
|
#include "lib/activate/activate.h"
|
|
#include "lib/label/hints.h"
|
|
#include "lib/metadata/metadata.h"
|
|
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <sys/types.h>
|
|
|
|
/* FIXME Allow for larger labels? Restricted to single sector currently */
|
|
|
|
static uint64_t _current_bcache_size_bytes;
|
|
|
|
/*
|
|
* Internal labeller struct.
|
|
*/
|
|
struct labeller_i {
|
|
struct dm_list list;
|
|
|
|
struct labeller *l;
|
|
char name[0];
|
|
};
|
|
|
|
static struct dm_list _labellers;
|
|
|
|
static struct labeller_i *_alloc_li(const char *name, struct labeller *l)
|
|
{
|
|
struct labeller_i *li;
|
|
size_t len;
|
|
|
|
len = sizeof(*li) + strlen(name) + 1;
|
|
|
|
if (!(li = malloc(len))) {
|
|
log_error("Couldn't allocate memory for labeller list object.");
|
|
return NULL;
|
|
}
|
|
|
|
li->l = l;
|
|
strcpy(li->name, name);
|
|
|
|
return li;
|
|
}
|
|
|
|
int label_init(void)
|
|
{
|
|
dm_list_init(&_labellers);
|
|
return 1;
|
|
}
|
|
|
|
void label_exit(void)
|
|
{
|
|
struct labeller_i *li, *tli;
|
|
|
|
dm_list_iterate_items_safe(li, tli, &_labellers) {
|
|
dm_list_del(&li->list);
|
|
li->l->ops->destroy(li->l);
|
|
free(li);
|
|
}
|
|
|
|
dm_list_init(&_labellers);
|
|
}
|
|
|
|
int label_register_handler(struct labeller *handler)
|
|
{
|
|
struct labeller_i *li;
|
|
|
|
if (!(li = _alloc_li(handler->fmt->name, handler)))
|
|
return_0;
|
|
|
|
dm_list_add(&_labellers, &li->list);
|
|
return 1;
|
|
}
|
|
|
|
struct labeller *label_get_handler(const char *name)
|
|
{
|
|
struct labeller_i *li;
|
|
|
|
dm_list_iterate_items(li, &_labellers)
|
|
if (!strcmp(li->name, name))
|
|
return li->l;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* FIXME Also wipe associated metadata area headers? */
|
|
int label_remove(struct device *dev)
|
|
{
|
|
char readbuf[LABEL_SIZE] __attribute__((aligned(8)));
|
|
int r = 1;
|
|
uint64_t sector;
|
|
int wipe;
|
|
struct labeller_i *li;
|
|
struct label_header *lh;
|
|
struct lvmcache_info *info;
|
|
|
|
log_very_verbose("Scanning for labels to wipe from %s", dev_name(dev));
|
|
|
|
if (!label_scan_open_excl(dev)) {
|
|
log_error("Failed to open device %s", dev_name(dev));
|
|
return 0;
|
|
}
|
|
|
|
/* Scan first few sectors for anything looking like a label */
|
|
for (sector = 0; sector < LABEL_SCAN_SECTORS;
|
|
sector += LABEL_SIZE >> SECTOR_SHIFT) {
|
|
|
|
memset(readbuf, 0, sizeof(readbuf));
|
|
|
|
if (!dev_read_bytes(dev, sector << SECTOR_SHIFT, LABEL_SIZE, readbuf)) {
|
|
log_error("Failed to read label from %s sector %llu",
|
|
dev_name(dev), (unsigned long long)sector);
|
|
continue;
|
|
}
|
|
|
|
lh = (struct label_header *)readbuf;
|
|
|
|
wipe = 0;
|
|
|
|
if (!memcmp(lh->id, LABEL_ID, sizeof(lh->id))) {
|
|
if (xlate64(lh->sector_xl) == sector)
|
|
wipe = 1;
|
|
} else {
|
|
dm_list_iterate_items(li, &_labellers) {
|
|
if (li->l->ops->can_handle(li->l, (char *)lh, sector)) {
|
|
wipe = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (wipe) {
|
|
log_very_verbose("%s: Wiping label at sector %llu",
|
|
dev_name(dev), (unsigned long long)sector);
|
|
|
|
if (!dev_write_zeros(dev, sector << SECTOR_SHIFT, LABEL_SIZE)) {
|
|
log_error("Failed to remove label from %s at sector %llu",
|
|
dev_name(dev), (unsigned long long)sector);
|
|
r = 0;
|
|
} else {
|
|
/* Also remove the PV record from cache. */
|
|
info = lvmcache_info_from_pvid(dev->pvid, dev, 0);
|
|
if (info)
|
|
lvmcache_del(info);
|
|
}
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Caller may need to use label_get_handler to create label struct! */
|
|
int label_write(struct device *dev, struct label *label)
|
|
{
|
|
char buf[LABEL_SIZE] __attribute__((aligned(8)));
|
|
struct label_header *lh = (struct label_header *) buf;
|
|
uint64_t offset;
|
|
int r = 1;
|
|
|
|
if (!label->labeller->ops->write) {
|
|
log_error("Label handler does not support label writes");
|
|
return 0;
|
|
}
|
|
|
|
if ((LABEL_SIZE + (label->sector << SECTOR_SHIFT)) > LABEL_SCAN_SIZE) {
|
|
log_error("Label sector %" PRIu64 " beyond range (%ld)",
|
|
label->sector, LABEL_SCAN_SECTORS);
|
|
return 0;
|
|
}
|
|
|
|
memset(buf, 0, LABEL_SIZE);
|
|
|
|
memcpy(lh->id, LABEL_ID, sizeof(lh->id));
|
|
lh->sector_xl = xlate64(label->sector);
|
|
lh->offset_xl = xlate32(sizeof(*lh));
|
|
|
|
if (!(label->labeller->ops->write)(label, buf))
|
|
return_0;
|
|
|
|
lh->crc_xl = xlate32(calc_crc(INITIAL_CRC, (uint8_t *)&lh->offset_xl, LABEL_SIZE -
|
|
((uint8_t *) &lh->offset_xl - (uint8_t *) lh)));
|
|
|
|
log_very_verbose("%s: Writing label to sector %" PRIu64 " with stored offset %"
|
|
PRIu32 ".", dev_name(dev), label->sector,
|
|
xlate32(lh->offset_xl));
|
|
|
|
if (!label_scan_open(dev)) {
|
|
log_error("Failed to open device %s", dev_name(dev));
|
|
return 0;
|
|
}
|
|
|
|
offset = label->sector << SECTOR_SHIFT;
|
|
|
|
dev_set_last_byte(dev, offset + LABEL_SIZE);
|
|
|
|
if (!dev_write_bytes(dev, offset, LABEL_SIZE, buf)) {
|
|
log_debug_devs("Failed to write label to %s", dev_name(dev));
|
|
r = 0;
|
|
}
|
|
|
|
dev_unset_last_byte(dev);
|
|
|
|
return r;
|
|
}
|
|
|
|
void label_destroy(struct label *label)
|
|
{
|
|
label->labeller->ops->destroy_label(label->labeller, label);
|
|
free(label);
|
|
}
|
|
|
|
struct label *label_create(struct labeller *labeller)
|
|
{
|
|
struct label *label;
|
|
|
|
if (!(label = zalloc(sizeof(*label)))) {
|
|
log_error("label allocaction failed");
|
|
return NULL;
|
|
}
|
|
|
|
label->labeller = labeller;
|
|
|
|
labeller->ops->initialise_label(labeller, label);
|
|
|
|
return label;
|
|
}
|
|
|
|
|
|
/* global variable for accessing the bcache populated by label scan */
|
|
struct bcache *scan_bcache;
|
|
|
|
#define BCACHE_BLOCK_SIZE_IN_SECTORS 256 /* 256*512 = 128K */
|
|
|
|
static bool _in_bcache(struct device *dev)
|
|
{
|
|
if (!dev)
|
|
return NULL;
|
|
return (dev->flags & DEV_IN_BCACHE) ? true : false;
|
|
}
|
|
|
|
static struct labeller *_find_lvm_header(struct device *dev,
|
|
char *scan_buf,
|
|
uint32_t scan_buf_sectors,
|
|
char *label_buf,
|
|
uint64_t *label_sector,
|
|
uint64_t block_sector,
|
|
uint64_t start_sector)
|
|
{
|
|
struct labeller_i *li;
|
|
struct labeller *labeller_ret = NULL;
|
|
struct label_header *lh;
|
|
uint64_t sector;
|
|
int found = 0;
|
|
|
|
/*
|
|
* Find which sector in scan_buf starts with a valid label,
|
|
* and copy it into label_buf.
|
|
*/
|
|
|
|
for (sector = start_sector; sector < start_sector + LABEL_SCAN_SECTORS;
|
|
sector += LABEL_SIZE >> SECTOR_SHIFT) {
|
|
|
|
/*
|
|
* The scan_buf passed in is a bcache block, which is
|
|
* BCACHE_BLOCK_SIZE_IN_SECTORS large. So if start_sector is
|
|
* one of the last couple sectors in that buffer, we need to
|
|
* break early.
|
|
*/
|
|
if (sector >= scan_buf_sectors)
|
|
break;
|
|
|
|
lh = (struct label_header *) (scan_buf + (sector << SECTOR_SHIFT));
|
|
|
|
if (!memcmp(lh->id, LABEL_ID, sizeof(lh->id))) {
|
|
if (found) {
|
|
log_error("Ignoring additional label on %s at sector %llu",
|
|
dev_name(dev), (unsigned long long)(block_sector + sector));
|
|
}
|
|
if (xlate64(lh->sector_xl) != sector) {
|
|
log_warn("%s: Label for sector %llu found at sector %llu - ignoring.",
|
|
dev_name(dev),
|
|
(unsigned long long)xlate64(lh->sector_xl),
|
|
(unsigned long long)(block_sector + sector));
|
|
continue;
|
|
}
|
|
if (calc_crc(INITIAL_CRC, (uint8_t *)&lh->offset_xl,
|
|
LABEL_SIZE - ((uint8_t *) &lh->offset_xl - (uint8_t *) lh)) != xlate32(lh->crc_xl)) {
|
|
log_very_verbose("Label checksum incorrect on %s - ignoring", dev_name(dev));
|
|
continue;
|
|
}
|
|
if (found)
|
|
continue;
|
|
}
|
|
|
|
dm_list_iterate_items(li, &_labellers) {
|
|
if (li->l->ops->can_handle(li->l, (char *) lh, block_sector + sector)) {
|
|
log_very_verbose("%s: %s label detected at sector %llu",
|
|
dev_name(dev), li->name,
|
|
(unsigned long long)(block_sector + sector));
|
|
if (found) {
|
|
log_error("Ignoring additional label on %s at sector %llu",
|
|
dev_name(dev),
|
|
(unsigned long long)(block_sector + sector));
|
|
continue;
|
|
}
|
|
|
|
labeller_ret = li->l;
|
|
found = 1;
|
|
|
|
memcpy(label_buf, lh, LABEL_SIZE);
|
|
if (label_sector)
|
|
*label_sector = block_sector + sector;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return labeller_ret;
|
|
}
|
|
|
|
/*
|
|
* Process/parse the headers from the data read from a device.
|
|
* Populates lvmcache with device / mda locations / vgname
|
|
* so that vg_read(vgname) will know which devices/locations
|
|
* to read metadata from.
|
|
*
|
|
* If during processing, headers/metadata are found to be needed
|
|
* beyond the range of the scanned block, then additional reads
|
|
* are performed in the processing functions to get that data.
|
|
*/
|
|
static int _process_block(struct cmd_context *cmd, struct dev_filter *f,
|
|
struct device *dev, struct block *bb,
|
|
uint64_t block_sector, uint64_t start_sector,
|
|
int *is_lvm_device)
|
|
{
|
|
char label_buf[LABEL_SIZE] __attribute__((aligned(8)));
|
|
struct labeller *labeller;
|
|
uint64_t sector = 0;
|
|
int is_duplicate = 0;
|
|
int ret = 0;
|
|
int pass;
|
|
|
|
dev->flags &= ~DEV_SCAN_FOUND_LABEL;
|
|
|
|
/*
|
|
* The device may have signatures that exclude it from being processed.
|
|
* If filters were applied before bcache data was available, some
|
|
* filters may have deferred their check until the point where bcache
|
|
* data had been read (here). They set this flag to indicate that the
|
|
* filters should be retested now that data from the device is ready.
|
|
*/
|
|
if (f && (dev->flags & DEV_FILTER_AFTER_SCAN)) {
|
|
dev->flags &= ~DEV_FILTER_AFTER_SCAN;
|
|
|
|
log_debug_devs("Scan filtering %s", dev_name(dev));
|
|
|
|
pass = f->passes_filter(cmd, f, dev, NULL);
|
|
|
|
if ((pass == -EAGAIN) || (dev->flags & DEV_FILTER_AFTER_SCAN)) {
|
|
/* Shouldn't happen */
|
|
dev->flags &= ~DEV_FILTER_OUT_SCAN;
|
|
log_debug_devs("Scan filter should not be deferred %s", dev_name(dev));
|
|
pass = 1;
|
|
}
|
|
|
|
if (!pass) {
|
|
log_very_verbose("%s: Not processing filtered", dev_name(dev));
|
|
dev->flags |= DEV_FILTER_OUT_SCAN;
|
|
*is_lvm_device = 0;
|
|
goto_out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finds the data sector containing the label and copies into label_buf.
|
|
* label_buf: struct label_header + struct pv_header + struct pv_header_extension
|
|
*
|
|
* FIXME: we don't need to copy one sector from bb->data into label_buf,
|
|
* we can just point label_buf at one sector in ld->buf.
|
|
*/
|
|
if (!(labeller = _find_lvm_header(dev, bb->data, BCACHE_BLOCK_SIZE_IN_SECTORS, label_buf, §or, block_sector, start_sector))) {
|
|
|
|
/*
|
|
* Non-PVs exit here
|
|
*
|
|
* FIXME: check for PVs with errors that also exit here!
|
|
* i.e. this code cannot distinguish between a non-lvm
|
|
* device an an lvm device with errors.
|
|
*/
|
|
|
|
log_very_verbose("%s: No lvm label detected", dev_name(dev));
|
|
|
|
lvmcache_del_dev(dev); /* FIXME: if this is needed, fix it. */
|
|
|
|
*is_lvm_device = 0;
|
|
goto_out;
|
|
}
|
|
|
|
dev->flags |= DEV_SCAN_FOUND_LABEL;
|
|
*is_lvm_device = 1;
|
|
|
|
/*
|
|
* This is the point where the scanning code dives into the rest of
|
|
* lvm. ops->read() is _text_read() which reads the pv_header, mda
|
|
* locations, and metadata text. All of the info it finds about the PV
|
|
* and VG is stashed in lvmcache which saves it in the form of
|
|
* info/vginfo structs. That lvmcache info is used later when the
|
|
* command wants to read the VG to do something to it.
|
|
*/
|
|
ret = labeller->ops->read(labeller, dev, label_buf, sector, &is_duplicate);
|
|
|
|
if (!ret) {
|
|
if (is_duplicate) {
|
|
/*
|
|
* _text_read() called lvmcache_add() which found an
|
|
* existing info struct for this PVID but for a
|
|
* different dev. lvmcache_add() did not add an info
|
|
* struct for this dev, but added this dev to the list
|
|
* of duplicate devs.
|
|
*/
|
|
log_warn("WARNING: scan found duplicate PVID %s on %s", dev->pvid, dev_name(dev));
|
|
} else {
|
|
/*
|
|
* Leave the info in lvmcache because the device is
|
|
* present and can still be used even if it has
|
|
* metadata that we can't process (we can get metadata
|
|
* from another PV/mda.) _text_read only saves mdas
|
|
* with good metadata in lvmcache (this includes old
|
|
* metadata), and if a PV has no mdas with good
|
|
* metadata, then the info for the PV will be in
|
|
* lvmcache with empty info->mdas, and it will behave
|
|
* like a PV with no mdas (a common configuration.)
|
|
*/
|
|
log_warn("WARNING: scan failed to get metadata summary from %s PVID %s", dev_name(dev), dev->pvid);
|
|
}
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int _scan_dev_open(struct device *dev)
|
|
{
|
|
struct dm_list *name_list;
|
|
struct dm_str_list *name_sl;
|
|
const char *name;
|
|
struct stat sbuf;
|
|
int retried = 0;
|
|
int flags = 0;
|
|
int fd;
|
|
|
|
if (!dev)
|
|
return 0;
|
|
|
|
if (dev->flags & DEV_IN_BCACHE) {
|
|
/* Shouldn't happen */
|
|
log_error("Device open %s has DEV_IN_BCACHE already set", dev_name(dev));
|
|
dev->flags &= ~DEV_IN_BCACHE;
|
|
}
|
|
|
|
if (dev->bcache_fd > 0) {
|
|
/* Shouldn't happen */
|
|
log_error("Device open %s already open with fd %d",
|
|
dev_name(dev), dev->bcache_fd);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* All the names for this device (major:minor) are kept on
|
|
* dev->aliases, the first one is the primary/preferred name.
|
|
*/
|
|
if (!(name_list = dm_list_first(&dev->aliases))) {
|
|
/* Shouldn't happen */
|
|
log_error("Device open %s %d:%d has no path names.",
|
|
dev_name(dev), (int)MAJOR(dev->dev), (int)MINOR(dev->dev));
|
|
return 0;
|
|
}
|
|
name_sl = dm_list_item(name_list, struct dm_str_list);
|
|
name = name_sl->str;
|
|
|
|
flags |= O_DIRECT;
|
|
flags |= O_NOATIME;
|
|
|
|
/*
|
|
* FIXME: udev is a train wreck when we open RDWR and close, so we
|
|
* need to only use RDWR when we actually need to write, and use
|
|
* RDONLY otherwise. Fix, disable or scrap udev nonsense so we can
|
|
* just open with RDWR by default.
|
|
*/
|
|
|
|
if (dev->flags & DEV_BCACHE_EXCL) {
|
|
flags |= O_EXCL;
|
|
flags |= O_RDWR;
|
|
} else if (dev->flags & DEV_BCACHE_WRITE) {
|
|
flags |= O_RDWR;
|
|
} else {
|
|
flags |= O_RDONLY;
|
|
}
|
|
|
|
retry_open:
|
|
|
|
fd = open(name, flags, 0777);
|
|
|
|
if (fd < 0) {
|
|
if ((errno == EBUSY) && (flags & O_EXCL)) {
|
|
log_error("Can't open %s exclusively. Mounted filesystem?",
|
|
dev_name(dev));
|
|
} else {
|
|
int major, minor;
|
|
|
|
/*
|
|
* Shouldn't happen, if it does, print stat info to help figure
|
|
* out what's wrong.
|
|
*/
|
|
|
|
major = (int)MAJOR(dev->dev);
|
|
minor = (int)MINOR(dev->dev);
|
|
|
|
log_error("Device open %s %d:%d failed errno %d", name, major, minor, errno);
|
|
|
|
if (stat(name, &sbuf)) {
|
|
log_debug_devs("Device open %s %d:%d stat failed errno %d",
|
|
name, major, minor, errno);
|
|
} else if (sbuf.st_rdev != dev->dev) {
|
|
log_debug_devs("Device open %s %d:%d stat %d:%d does not match.",
|
|
name, major, minor,
|
|
(int)MAJOR(sbuf.st_rdev), (int)MINOR(sbuf.st_rdev));
|
|
}
|
|
|
|
if (!retried) {
|
|
/*
|
|
* FIXME: remove this, the theory for this retry is that
|
|
* there may be a udev race that we can sometimes mask by
|
|
* retrying. This is here until we can figure out if it's
|
|
* needed and if so fix the real problem.
|
|
*/
|
|
usleep(5000);
|
|
log_debug_devs("Device open %s retry", dev_name(dev));
|
|
retried = 1;
|
|
goto retry_open;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
dev->flags |= DEV_IN_BCACHE;
|
|
dev->bcache_fd = fd;
|
|
return 1;
|
|
}
|
|
|
|
static int _scan_dev_close(struct device *dev)
|
|
{
|
|
if (!(dev->flags & DEV_IN_BCACHE))
|
|
log_error("scan_dev_close %s no DEV_IN_BCACHE set", dev_name(dev));
|
|
|
|
dev->flags &= ~DEV_IN_BCACHE;
|
|
dev->flags &= ~DEV_BCACHE_EXCL;
|
|
|
|
if (dev->bcache_fd < 0) {
|
|
log_error("scan_dev_close %s already closed", dev_name(dev));
|
|
return 0;
|
|
}
|
|
|
|
if (close(dev->bcache_fd))
|
|
log_warn("close %s errno %d", dev_name(dev), errno);
|
|
dev->bcache_fd = -1;
|
|
return 1;
|
|
}
|
|
|
|
static void _drop_bad_aliases(struct device *dev)
|
|
{
|
|
struct dm_str_list *strl, *strl2;
|
|
const char *name;
|
|
struct stat sbuf;
|
|
int major = (int)MAJOR(dev->dev);
|
|
int minor = (int)MINOR(dev->dev);
|
|
int bad;
|
|
|
|
dm_list_iterate_items_safe(strl, strl2, &dev->aliases) {
|
|
name = strl->str;
|
|
bad = 0;
|
|
|
|
if (stat(name, &sbuf)) {
|
|
bad = 1;
|
|
log_debug_devs("Device path check %d:%d %s stat failed errno %d",
|
|
major, minor, name, errno);
|
|
} else if (sbuf.st_rdev != dev->dev) {
|
|
bad = 1;
|
|
log_debug_devs("Device path check %d:%d %s stat %d:%d does not match.",
|
|
major, minor, name,
|
|
(int)MAJOR(sbuf.st_rdev), (int)MINOR(sbuf.st_rdev));
|
|
}
|
|
|
|
if (bad) {
|
|
log_debug_devs("Device path check %d:%d dropping path %s.", major, minor, name);
|
|
dev_cache_failed_path(dev, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read or reread label/metadata from selected devs.
|
|
*
|
|
* Reads and looks at label_header, pv_header, pv_header_extension,
|
|
* mda_header, raw_locns, vg metadata from each device.
|
|
*
|
|
* Effect is populating lvmcache with latest info/vginfo (PV/VG) data
|
|
* from the devs. If a scanned device does not have a label_header,
|
|
* its info is removed from lvmcache.
|
|
*/
|
|
|
|
static int _scan_list(struct cmd_context *cmd, struct dev_filter *f,
|
|
struct dm_list *devs, int *failed)
|
|
{
|
|
struct dm_list wait_devs;
|
|
struct dm_list done_devs;
|
|
struct dm_list reopen_devs;
|
|
struct device_list *devl, *devl2;
|
|
struct block *bb;
|
|
int retried_open = 0;
|
|
int scan_read_errors = 0;
|
|
int scan_process_errors = 0;
|
|
int scan_failed_count = 0;
|
|
int rem_prefetches;
|
|
int submit_count;
|
|
int scan_failed;
|
|
int is_lvm_device;
|
|
int error;
|
|
int ret;
|
|
|
|
dm_list_init(&wait_devs);
|
|
dm_list_init(&done_devs);
|
|
dm_list_init(&reopen_devs);
|
|
|
|
log_debug_devs("Scanning %d devices for VG info", dm_list_size(devs));
|
|
|
|
scan_more:
|
|
rem_prefetches = bcache_max_prefetches(scan_bcache);
|
|
submit_count = 0;
|
|
|
|
dm_list_iterate_items_safe(devl, devl2, devs) {
|
|
|
|
/*
|
|
* If we prefetch more devs than blocks in the cache, then the
|
|
* cache will wait for earlier reads to complete, toss the
|
|
* results, and reuse those blocks before we've had a chance to
|
|
* use them. So, prefetch as many as are available, wait for
|
|
* and process them, then repeat.
|
|
*/
|
|
if (!rem_prefetches)
|
|
break;
|
|
|
|
if (!_in_bcache(devl->dev)) {
|
|
if (!_scan_dev_open(devl->dev)) {
|
|
log_debug_devs("Scan failed to open %s.", dev_name(devl->dev));
|
|
dm_list_del(&devl->list);
|
|
dm_list_add(&reopen_devs, &devl->list);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
bcache_prefetch(scan_bcache, devl->dev->bcache_fd, 0);
|
|
|
|
rem_prefetches--;
|
|
submit_count++;
|
|
|
|
dm_list_del(&devl->list);
|
|
dm_list_add(&wait_devs, &devl->list);
|
|
}
|
|
|
|
log_debug_devs("Scanning submitted %d reads", submit_count);
|
|
|
|
dm_list_iterate_items_safe(devl, devl2, &wait_devs) {
|
|
bb = NULL;
|
|
error = 0;
|
|
scan_failed = 0;
|
|
is_lvm_device = 0;
|
|
|
|
if (!bcache_get(scan_bcache, devl->dev->bcache_fd, 0, 0, &bb)) {
|
|
log_debug_devs("Scan failed to read %s error %d.", dev_name(devl->dev), error);
|
|
scan_failed = 1;
|
|
scan_read_errors++;
|
|
scan_failed_count++;
|
|
lvmcache_del_dev(devl->dev);
|
|
} else {
|
|
log_debug_devs("Processing data from device %s %d:%d fd %d block %p",
|
|
dev_name(devl->dev),
|
|
(int)MAJOR(devl->dev->dev),
|
|
(int)MINOR(devl->dev->dev),
|
|
devl->dev->bcache_fd, bb);
|
|
|
|
ret = _process_block(cmd, f, devl->dev, bb, 0, 0, &is_lvm_device);
|
|
|
|
if (!ret && is_lvm_device) {
|
|
log_debug_devs("Scan failed to process %s", dev_name(devl->dev));
|
|
scan_failed = 1;
|
|
scan_process_errors++;
|
|
scan_failed_count++;
|
|
}
|
|
}
|
|
|
|
if (bb)
|
|
bcache_put(bb);
|
|
|
|
/*
|
|
* Keep the bcache block of lvm devices we have processed so
|
|
* that the vg_read phase can reuse it. If bcache failed to
|
|
* read the block, or the device does not belong to lvm, then
|
|
* drop it from bcache.
|
|
*/
|
|
if (scan_failed || !is_lvm_device) {
|
|
bcache_invalidate_fd(scan_bcache, devl->dev->bcache_fd);
|
|
_scan_dev_close(devl->dev);
|
|
}
|
|
|
|
dm_list_del(&devl->list);
|
|
dm_list_add(&done_devs, &devl->list);
|
|
}
|
|
|
|
if (!dm_list_empty(devs))
|
|
goto scan_more;
|
|
|
|
/*
|
|
* We're done scanning all the devs. If we failed to open any of them
|
|
* the first time through, refresh device paths and retry. We failed
|
|
* to open the devs on the reopen_devs list.
|
|
*
|
|
* FIXME: it's not clear if or why this helps.
|
|
*/
|
|
if (!dm_list_empty(&reopen_devs)) {
|
|
if (retried_open) {
|
|
/* Don't try again. */
|
|
scan_failed_count += dm_list_size(&reopen_devs);
|
|
dm_list_splice(&done_devs, &reopen_devs);
|
|
goto out;
|
|
}
|
|
retried_open = 1;
|
|
|
|
dm_list_iterate_items_safe(devl, devl2, &reopen_devs) {
|
|
_drop_bad_aliases(devl->dev);
|
|
|
|
if (dm_list_empty(&devl->dev->aliases)) {
|
|
log_warn("WARNING: Scan ignoring device %d:%d with no paths.",
|
|
(int)MAJOR(devl->dev->dev),
|
|
(int)MINOR(devl->dev->dev));
|
|
|
|
dm_list_del(&devl->list);
|
|
lvmcache_del_dev(devl->dev);
|
|
scan_failed_count++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This will search the system's /dev for new path names and
|
|
* could help us reopen the device if it finds a new preferred
|
|
* path name for this dev's major:minor. It does that by
|
|
* inserting a new preferred path name on dev->aliases. open
|
|
* uses the first name from that list.
|
|
*/
|
|
log_debug_devs("Scanning refreshing device paths.");
|
|
dev_cache_scan();
|
|
|
|
/* Put devs that failed to open back on the original list to retry. */
|
|
dm_list_splice(devs, &reopen_devs);
|
|
goto scan_more;
|
|
}
|
|
out:
|
|
log_debug_devs("Scanned devices: read errors %d process errors %d failed %d",
|
|
scan_read_errors, scan_process_errors, scan_failed_count);
|
|
|
|
if (failed)
|
|
*failed = scan_failed_count;
|
|
|
|
dm_list_splice(devs, &done_devs);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* num_devs is the number of devices the caller is going to scan.
|
|
* When 0 the caller doesn't know, and we use the default cache size.
|
|
* When non-zero, allocate at least num_devs bcache blocks.
|
|
* num_devs doesn't really tell us how many bcache blocks we'll use
|
|
* because it includes lvm devs and non-lvm devs, and each lvm dev
|
|
* will often use a number of bcache blocks.
|
|
*
|
|
* We don't know ahead of time if we will find some VG metadata
|
|
* that is larger than the total size of the bcache, which would
|
|
* prevent us from reading/writing the VG since we do not dynamically
|
|
* increase the bcache size when we find it's too small. In these
|
|
* cases the user would need to set io_memory_size to be larger
|
|
* than the max VG metadata size (lvm does not impose any limit on
|
|
* the metadata size.)
|
|
*/
|
|
|
|
#define MIN_BCACHE_BLOCKS 32 /* 4MB */
|
|
#define MAX_BCACHE_BLOCKS 1024
|
|
|
|
static int _setup_bcache(int num_devs)
|
|
{
|
|
struct io_engine *ioe = NULL;
|
|
int iomem_kb = io_memory_size();
|
|
int block_size_kb = (BCACHE_BLOCK_SIZE_IN_SECTORS * 512) / 1024;
|
|
int cache_blocks;
|
|
|
|
cache_blocks = iomem_kb / block_size_kb;
|
|
|
|
if (cache_blocks < MIN_BCACHE_BLOCKS)
|
|
cache_blocks = MIN_BCACHE_BLOCKS;
|
|
|
|
if (cache_blocks > MAX_BCACHE_BLOCKS)
|
|
cache_blocks = MAX_BCACHE_BLOCKS;
|
|
|
|
_current_bcache_size_bytes = cache_blocks * BCACHE_BLOCK_SIZE_IN_SECTORS * 512;
|
|
|
|
if (use_aio()) {
|
|
if (!(ioe = create_async_io_engine())) {
|
|
log_warn("Failed to set up async io, using sync io.");
|
|
init_use_aio(0);
|
|
}
|
|
}
|
|
|
|
if (!ioe) {
|
|
if (!(ioe = create_sync_io_engine())) {
|
|
log_error("Failed to set up sync io.");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (!(scan_bcache = bcache_create(BCACHE_BLOCK_SIZE_IN_SECTORS, cache_blocks, ioe))) {
|
|
log_error("Failed to create bcache with %d cache blocks.", cache_blocks);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void _free_hints(struct dm_list *hints)
|
|
{
|
|
struct hint *hint, *hint2;
|
|
|
|
dm_list_iterate_items_safe(hint, hint2, hints) {
|
|
dm_list_del(&hint->list);
|
|
free(hint);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Scan devices on the system to discover which are LVM devices.
|
|
* Info about the LVM devices (PVs) is saved in lvmcache in a
|
|
* basic/summary form (info/vginfo structs). The vg_read phase
|
|
* uses this summary info to know which PVs to look at for
|
|
* processing a given VG.
|
|
*/
|
|
|
|
int label_scan(struct cmd_context *cmd)
|
|
{
|
|
struct dm_list all_devs;
|
|
struct dm_list scan_devs;
|
|
struct dm_list hints_list;
|
|
struct dev_iter *iter;
|
|
struct device_list *devl, *devl2;
|
|
struct device *dev;
|
|
uint64_t max_metadata_size_bytes;
|
|
int using_hints;
|
|
int create_hints = 0; /* NEWHINTS_NONE */
|
|
|
|
log_debug_devs("Finding devices to scan");
|
|
|
|
dm_list_init(&all_devs);
|
|
dm_list_init(&scan_devs);
|
|
dm_list_init(&hints_list);
|
|
|
|
/*
|
|
* dev_cache_scan() creates a list of devices on the system
|
|
* (saved in in dev-cache) which we can iterate through to
|
|
* search for LVM devs. The dev cache list either comes from
|
|
* looking at dev nodes under /dev, or from udev.
|
|
*/
|
|
dev_cache_scan();
|
|
|
|
/*
|
|
* Set up the iterator that is needed to step through each device in
|
|
* dev cache.
|
|
*/
|
|
if (!(iter = dev_iter_create(cmd->filter, 0))) {
|
|
log_error("Scanning failed to get devices.");
|
|
return 0;
|
|
}
|
|
|
|
log_debug_devs("Filtering devices to scan");
|
|
|
|
/*
|
|
* Iterate through all devices in dev cache and apply filters
|
|
* to exclude devs that we do not need to scan. Those devs
|
|
* that pass the filters are returned by the iterator and
|
|
* saved in a list of devs that we will proceed to scan to
|
|
* check if they are LVM devs. IOW this loop is the
|
|
* application of filters (those that do not require reading
|
|
* the devs) to the list of all devices. It does that because
|
|
* the 'cmd->filter' is used above when setting up the iterator.
|
|
* Unfortunately, it's not obvious that this is what's happening
|
|
* here. filters that require reading the device are not applied
|
|
* here, but in process_block(), see DEV_FILTER_AFTER_SCAN.
|
|
*/
|
|
while ((dev = dev_iter_get(cmd, iter))) {
|
|
if (!(devl = zalloc(sizeof(*devl))))
|
|
continue;
|
|
devl->dev = dev;
|
|
dm_list_add(&all_devs, &devl->list);
|
|
|
|
/*
|
|
* label_scan should not generally be called a second time,
|
|
* so this will usually not be true.
|
|
*/
|
|
if (_in_bcache(dev)) {
|
|
bcache_invalidate_fd(scan_bcache, dev->bcache_fd);
|
|
_scan_dev_close(dev);
|
|
}
|
|
|
|
/*
|
|
* When md devices exist that use the old superblock at the
|
|
* end of the device, then in order to detect and filter out
|
|
* the component devices of those md devs, we enable the full
|
|
* md filter which scans both the start and the end of every
|
|
* device. This doubles the amount of scanning i/o, which we
|
|
* want to avoid. FIXME: this forces start+end scanning of
|
|
* every device, but it would be more efficient to limit the
|
|
* end scan only to PVs.
|
|
*/
|
|
if (dev_is_md_with_end_superblock(cmd->dev_types, dev))
|
|
cmd->use_full_md_check = 1;
|
|
};
|
|
dev_iter_destroy(iter);
|
|
|
|
if (!scan_bcache) {
|
|
if (!_setup_bcache(dm_list_size(&all_devs)))
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* In some common cases we can avoid scanning all devices
|
|
* by using hints which tell us which devices are PVs, which
|
|
* are the only devices we actually need to scan. Without
|
|
* hints we need to scan all devs to find which are PVs.
|
|
*
|
|
* TODO: if the command is using hints and a single vgname
|
|
* arg, we can also take the vg lock here, prior to scanning.
|
|
* This means we would not need to rescan the PVs in the VG
|
|
* in vg_read (skip lvmcache_label_rescan_vg) after the
|
|
* vg lock is usually taken. (Some commands are already
|
|
* able to avoid rescan in vg_read, but locking early would
|
|
* apply to more cases.)
|
|
*/
|
|
if (!get_hints(cmd, &hints_list, &create_hints, &all_devs, &scan_devs)) {
|
|
dm_list_splice(&scan_devs, &all_devs);
|
|
dm_list_init(&hints_list);
|
|
using_hints = 0;
|
|
} else
|
|
using_hints = 1;
|
|
|
|
log_debug("Will scan %d devices skip %d", dm_list_size(&scan_devs), dm_list_size(&all_devs));
|
|
|
|
/*
|
|
* Do the main scan.
|
|
*/
|
|
_scan_list(cmd, cmd->filter, &scan_devs, NULL);
|
|
|
|
/*
|
|
* Metadata could be larger than total size of bcache, and bcache
|
|
* cannot currently be resized during the command. If this is the
|
|
* case (or within reach), warn that io_memory_size needs to be
|
|
* set larger.
|
|
*
|
|
* Even if bcache out of space did not cause a failure during scan, it
|
|
* may cause a failure during the next vg_read phase or during vg_write.
|
|
*
|
|
* If there was an error during scan, we could recreate bcache here
|
|
* with a larger size and then restart label_scan. But, this does not
|
|
* address the problem of writing new metadata that excedes the bcache
|
|
* size and failing, which would often be hit first, i.e. we'll fail
|
|
* to write new metadata exceding the max size before we have a chance
|
|
* to read any metadata with that size, unless we find an existing vg
|
|
* that has been previously created with the larger size.
|
|
*
|
|
* If the largest metadata is within 1MB of the bcache size, then start
|
|
* warning.
|
|
*/
|
|
max_metadata_size_bytes = lvmcache_max_metadata_size();
|
|
|
|
if (max_metadata_size_bytes + (1024 * 1024) > _current_bcache_size_bytes) {
|
|
/* we want bcache to be 1MB larger than the max metadata seen */
|
|
uint64_t want_size_kb = (max_metadata_size_bytes / 1024) + 1024;
|
|
uint64_t remainder;
|
|
if ((remainder = (want_size_kb % 1024)))
|
|
want_size_kb = want_size_kb + 1024 - remainder;
|
|
|
|
log_warn("WARNING: metadata may not be usable with current io_memory_size %d KiB",
|
|
io_memory_size());
|
|
log_warn("WARNING: increase lvm.conf io_memory_size to at least %llu KiB",
|
|
(unsigned long long)want_size_kb);
|
|
}
|
|
|
|
dm_list_init(&cmd->hints);
|
|
|
|
/*
|
|
* If we're using hints to limit which devs we scanned, verify
|
|
* that those hints were valid, and if not we need to scan the
|
|
* rest of the devs.
|
|
*/
|
|
if (using_hints) {
|
|
if (!validate_hints(cmd, &hints_list)) {
|
|
log_debug("Will scan %d remaining devices", dm_list_size(&all_devs));
|
|
_scan_list(cmd, cmd->filter, &all_devs, NULL);
|
|
_free_hints(&hints_list);
|
|
using_hints = 0;
|
|
create_hints = 0;
|
|
} else {
|
|
/* The hints may be used by another device iteration. */
|
|
dm_list_splice(&cmd->hints, &hints_list);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stronger exclusion of md components that might have been
|
|
* misidentified as PVs due to having an end-of-device md superblock.
|
|
* If we're not using hints, and are not already doing a full md check
|
|
* on devs being scanned, then if udev info is missing for a PV, scan
|
|
* the end of the PV to verify it's not an md component. The full
|
|
* dev_is_md_component call will do new reads at the end of the dev.
|
|
*/
|
|
if (cmd->md_component_detection && !cmd->use_full_md_check && !using_hints &&
|
|
!strcmp(cmd->md_component_checks, "auto")) {
|
|
int once = 0;
|
|
dm_list_iterate_items(devl, &scan_devs) {
|
|
if (!(devl->dev->flags & DEV_SCAN_FOUND_LABEL))
|
|
continue;
|
|
if (!(devl->dev->flags & DEV_UDEV_INFO_MISSING))
|
|
continue;
|
|
if (!once++)
|
|
log_debug_devs("Scanning end of PVs with no udev info for MD components");
|
|
|
|
if (dev_is_md_component(devl->dev, NULL, 1)) {
|
|
log_debug_devs("Drop PV from MD component %s", dev_name(devl->dev));
|
|
devl->dev->flags &= ~DEV_SCAN_FOUND_LABEL;
|
|
lvmcache_del_dev(devl->dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
dm_list_iterate_items_safe(devl, devl2, &all_devs) {
|
|
dm_list_del(&devl->list);
|
|
free(devl);
|
|
}
|
|
|
|
dm_list_iterate_items_safe(devl, devl2, &scan_devs) {
|
|
dm_list_del(&devl->list);
|
|
free(devl);
|
|
}
|
|
|
|
/*
|
|
* If hints were not available/usable, then we scanned all devs,
|
|
* and we now know which are PVs. Save this list of PVs we've
|
|
* identified as hints for the next command to use.
|
|
* (create_hints variable has NEWHINTS_X value which indicates
|
|
* the reason for creating the new hints.)
|
|
*/
|
|
if (create_hints)
|
|
write_hint_file(cmd, create_hints);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Scan and cache lvm data from the listed devices. If a device is already
|
|
* scanned and cached, this replaces the previously cached lvm data for the
|
|
* device. This is called when vg_read() wants to guarantee that it is using
|
|
* the latest data from the devices in the VG (since the scan populated bcache
|
|
* without a lock.)
|
|
*/
|
|
|
|
int label_scan_devs(struct cmd_context *cmd, struct dev_filter *f, struct dm_list *devs)
|
|
{
|
|
struct device_list *devl;
|
|
|
|
if (!scan_bcache) {
|
|
if (!_setup_bcache(0))
|
|
return 0;
|
|
}
|
|
|
|
dm_list_iterate_items(devl, devs) {
|
|
if (_in_bcache(devl->dev)) {
|
|
bcache_invalidate_fd(scan_bcache, devl->dev->bcache_fd);
|
|
_scan_dev_close(devl->dev);
|
|
}
|
|
}
|
|
|
|
_scan_list(cmd, f, devs, NULL);
|
|
|
|
/* FIXME: this function should probably fail if any devs couldn't be scanned */
|
|
|
|
return 1;
|
|
}
|
|
|
|
int label_scan_devs_excl(struct dm_list *devs)
|
|
{
|
|
struct device_list *devl;
|
|
int failed = 0;
|
|
|
|
dm_list_iterate_items(devl, devs) {
|
|
if (_in_bcache(devl->dev)) {
|
|
bcache_invalidate_fd(scan_bcache, devl->dev->bcache_fd);
|
|
_scan_dev_close(devl->dev);
|
|
}
|
|
/*
|
|
* With this flag set, _scan_dev_open() done by
|
|
* _scan_list() will do open EXCL
|
|
*/
|
|
devl->dev->flags |= DEV_BCACHE_EXCL;
|
|
}
|
|
|
|
_scan_list(NULL, NULL, devs, &failed);
|
|
|
|
if (failed)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
void label_scan_invalidate(struct device *dev)
|
|
{
|
|
if (_in_bcache(dev)) {
|
|
bcache_invalidate_fd(scan_bcache, dev->bcache_fd);
|
|
_scan_dev_close(dev);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a PV is stacked on an LV, then the LV is kept open
|
|
* in bcache, and needs to be closed so the open fd doesn't
|
|
* interfere with processing the LV.
|
|
*/
|
|
|
|
void label_scan_invalidate_lv(struct cmd_context *cmd, struct logical_volume *lv)
|
|
{
|
|
struct lvinfo lvinfo;
|
|
struct device *dev;
|
|
dev_t devt;
|
|
|
|
if (!lv_info(cmd, lv, 0, &lvinfo, 0, 0))
|
|
return;
|
|
|
|
devt = MKDEV(lvinfo.major, lvinfo.minor);
|
|
if ((dev = dev_cache_get_by_devt(cmd, devt, NULL, NULL)))
|
|
label_scan_invalidate(dev);
|
|
}
|
|
|
|
/*
|
|
* Empty the bcache of all blocks and close all open fds,
|
|
* but keep the bcache set up.
|
|
*/
|
|
|
|
void label_scan_drop(struct cmd_context *cmd)
|
|
{
|
|
struct dev_iter *iter;
|
|
struct device *dev;
|
|
|
|
if (!(iter = dev_iter_create(NULL, 0)))
|
|
return;
|
|
|
|
while ((dev = dev_iter_get(cmd, iter))) {
|
|
if (_in_bcache(dev))
|
|
_scan_dev_close(dev);
|
|
}
|
|
dev_iter_destroy(iter);
|
|
}
|
|
|
|
/*
|
|
* Close devices that are open because bcache is holding blocks for them.
|
|
* Destroy the bcache.
|
|
*/
|
|
|
|
void label_scan_destroy(struct cmd_context *cmd)
|
|
{
|
|
if (!scan_bcache)
|
|
return;
|
|
|
|
label_scan_drop(cmd);
|
|
|
|
bcache_destroy(scan_bcache);
|
|
scan_bcache = NULL;
|
|
}
|
|
|
|
/*
|
|
* Read (or re-read) and process (or re-process) the data for a device. This
|
|
* will reset (clear and repopulate) the bcache and lvmcache info for this
|
|
* device. There are only a couple odd places that want to reread a specific
|
|
* device, this is not a commonly used function.
|
|
*/
|
|
|
|
int label_read(struct device *dev)
|
|
{
|
|
struct dm_list one_dev;
|
|
struct device_list *devl;
|
|
int failed = 0;
|
|
|
|
/* scanning is done by list, so make a single item list for this dev */
|
|
if (!(devl = zalloc(sizeof(*devl))))
|
|
return 0;
|
|
devl->dev = dev;
|
|
dm_list_init(&one_dev);
|
|
dm_list_add(&one_dev, &devl->list);
|
|
|
|
if (_in_bcache(dev)) {
|
|
bcache_invalidate_fd(scan_bcache, dev->bcache_fd);
|
|
_scan_dev_close(dev);
|
|
}
|
|
|
|
_scan_list(NULL, NULL, &one_dev, &failed);
|
|
|
|
free(devl);
|
|
|
|
if (failed)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int label_scan_setup_bcache(void)
|
|
{
|
|
if (!scan_bcache) {
|
|
if (!_setup_bcache(0))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This is needed to write to a new non-lvm device.
|
|
* Scanning that dev would not keep it open or in
|
|
* bcache, but to use bcache_write we need the dev
|
|
* to be open so we can use dev->bcache_fd to write.
|
|
*/
|
|
|
|
int label_scan_open(struct device *dev)
|
|
{
|
|
if (!_in_bcache(dev))
|
|
return _scan_dev_open(dev);
|
|
return 1;
|
|
}
|
|
|
|
int label_scan_open_excl(struct device *dev)
|
|
{
|
|
if (_in_bcache(dev) && !(dev->flags & DEV_BCACHE_EXCL)) {
|
|
/* FIXME: avoid tossing out bcache blocks just to replace fd. */
|
|
log_debug("Close and reopen excl %s", dev_name(dev));
|
|
bcache_invalidate_fd(scan_bcache, dev->bcache_fd);
|
|
_scan_dev_close(dev);
|
|
}
|
|
dev->flags |= DEV_BCACHE_EXCL;
|
|
dev->flags |= DEV_BCACHE_WRITE;
|
|
return label_scan_open(dev);
|
|
}
|
|
|
|
int label_scan_open_rw(struct device *dev)
|
|
{
|
|
if (_in_bcache(dev) && !(dev->flags & DEV_BCACHE_WRITE)) {
|
|
/* FIXME: avoid tossing out bcache blocks just to replace fd. */
|
|
log_debug("Close and reopen rw %s", dev_name(dev));
|
|
bcache_invalidate_fd(scan_bcache, dev->bcache_fd);
|
|
_scan_dev_close(dev);
|
|
}
|
|
dev->flags |= DEV_BCACHE_WRITE;
|
|
return label_scan_open(dev);
|
|
}
|
|
|
|
bool dev_read_bytes(struct device *dev, uint64_t start, size_t len, void *data)
|
|
{
|
|
if (!scan_bcache) {
|
|
/* Should not happen */
|
|
log_error("dev_read bcache not set up %s", dev_name(dev));
|
|
return false;
|
|
}
|
|
|
|
if (dev->bcache_fd <= 0) {
|
|
/* This is not often needed. */
|
|
if (!label_scan_open(dev)) {
|
|
log_error("Error opening device %s for reading at %llu length %u.",
|
|
dev_name(dev), (unsigned long long)start, (uint32_t)len);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!bcache_read_bytes(scan_bcache, dev->bcache_fd, start, len, data)) {
|
|
log_error("Error reading device %s at %llu length %u.",
|
|
dev_name(dev), (unsigned long long)start, (uint32_t)len);
|
|
label_scan_invalidate(dev);
|
|
return false;
|
|
}
|
|
return true;
|
|
|
|
}
|
|
|
|
bool dev_write_bytes(struct device *dev, uint64_t start, size_t len, void *data)
|
|
{
|
|
if (test_mode())
|
|
return true;
|
|
|
|
if (!scan_bcache) {
|
|
/* Should not happen */
|
|
log_error("dev_write bcache not set up %s", dev_name(dev));
|
|
return false;
|
|
}
|
|
|
|
if (_in_bcache(dev) && !(dev->flags & DEV_BCACHE_WRITE)) {
|
|
/* FIXME: avoid tossing out bcache blocks just to replace fd. */
|
|
log_debug("Close and reopen to write %s", dev_name(dev));
|
|
bcache_invalidate_fd(scan_bcache, dev->bcache_fd);
|
|
_scan_dev_close(dev);
|
|
|
|
dev->flags |= DEV_BCACHE_WRITE;
|
|
label_scan_open(dev);
|
|
}
|
|
|
|
if (dev->bcache_fd <= 0) {
|
|
/* This is not often needed. */
|
|
dev->flags |= DEV_BCACHE_WRITE;
|
|
if (!label_scan_open(dev)) {
|
|
log_error("Error opening device %s for writing at %llu length %u.",
|
|
dev_name(dev), (unsigned long long)start, (uint32_t)len);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!bcache_write_bytes(scan_bcache, dev->bcache_fd, start, len, data)) {
|
|
log_error("Error writing device %s at %llu length %u.",
|
|
dev_name(dev), (unsigned long long)start, (uint32_t)len);
|
|
label_scan_invalidate(dev);
|
|
return false;
|
|
}
|
|
|
|
if (!bcache_flush(scan_bcache)) {
|
|
log_error("Error writing device %s at %llu length %u.",
|
|
dev_name(dev), (unsigned long long)start, (uint32_t)len);
|
|
label_scan_invalidate(dev);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool dev_write_zeros(struct device *dev, uint64_t start, size_t len)
|
|
{
|
|
if (test_mode())
|
|
return true;
|
|
|
|
if (!scan_bcache) {
|
|
log_error("dev_write_zeros bcache not set up %s", dev_name(dev));
|
|
return false;
|
|
}
|
|
|
|
if (_in_bcache(dev) && !(dev->flags & DEV_BCACHE_WRITE)) {
|
|
/* FIXME: avoid tossing out bcache blocks just to replace fd. */
|
|
log_debug("Close and reopen to write %s", dev_name(dev));
|
|
bcache_invalidate_fd(scan_bcache, dev->bcache_fd);
|
|
_scan_dev_close(dev);
|
|
|
|
dev->flags |= DEV_BCACHE_WRITE;
|
|
label_scan_open(dev);
|
|
}
|
|
|
|
if (dev->bcache_fd <= 0) {
|
|
/* This is not often needed. */
|
|
dev->flags |= DEV_BCACHE_WRITE;
|
|
if (!label_scan_open(dev)) {
|
|
log_error("Error opening device %s for writing at %llu length %u.",
|
|
dev_name(dev), (unsigned long long)start, (uint32_t)len);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
dev_set_last_byte(dev, start + len);
|
|
|
|
if (!bcache_zero_bytes(scan_bcache, dev->bcache_fd, start, len)) {
|
|
log_error("Error writing device %s at %llu length %u.",
|
|
dev_name(dev), (unsigned long long)start, (uint32_t)len);
|
|
dev_unset_last_byte(dev);
|
|
label_scan_invalidate(dev);
|
|
return false;
|
|
}
|
|
|
|
if (!bcache_flush(scan_bcache)) {
|
|
log_error("Error writing device %s at %llu length %u.",
|
|
dev_name(dev), (unsigned long long)start, (uint32_t)len);
|
|
dev_unset_last_byte(dev);
|
|
label_scan_invalidate(dev);
|
|
return false;
|
|
}
|
|
dev_unset_last_byte(dev);
|
|
return true;
|
|
}
|
|
|
|
bool dev_set_bytes(struct device *dev, uint64_t start, size_t len, uint8_t val)
|
|
{
|
|
if (test_mode())
|
|
return true;
|
|
|
|
if (!scan_bcache) {
|
|
log_error("dev_set_bytes bcache not set up %s", dev_name(dev));
|
|
return false;
|
|
}
|
|
|
|
if (_in_bcache(dev) && !(dev->flags & DEV_BCACHE_WRITE)) {
|
|
/* FIXME: avoid tossing out bcache blocks just to replace fd. */
|
|
log_debug("Close and reopen to write %s", dev_name(dev));
|
|
bcache_invalidate_fd(scan_bcache, dev->bcache_fd);
|
|
_scan_dev_close(dev);
|
|
/* goes to label_scan_open() since bcache_fd < 0 */
|
|
}
|
|
|
|
if (dev->bcache_fd <= 0) {
|
|
/* This is not often needed. */
|
|
dev->flags |= DEV_BCACHE_WRITE;
|
|
if (!label_scan_open(dev)) {
|
|
log_error("Error opening device %s for writing at %llu length %u.",
|
|
dev_name(dev), (unsigned long long)start, (uint32_t)len);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
dev_set_last_byte(dev, start + len);
|
|
|
|
if (!bcache_set_bytes(scan_bcache, dev->bcache_fd, start, len, val)) {
|
|
log_error("Error writing device %s at %llu length %u.",
|
|
dev_name(dev), (unsigned long long)start, (uint32_t)len);
|
|
dev_unset_last_byte(dev);
|
|
label_scan_invalidate(dev);
|
|
return false;
|
|
}
|
|
|
|
if (!bcache_flush(scan_bcache)) {
|
|
log_error("Error writing device %s at %llu length %u.",
|
|
dev_name(dev), (unsigned long long)start, (uint32_t)len);
|
|
dev_unset_last_byte(dev);
|
|
label_scan_invalidate(dev);
|
|
return false;
|
|
}
|
|
|
|
dev_unset_last_byte(dev);
|
|
return true;
|
|
}
|
|
|
|
void dev_set_last_byte(struct device *dev, uint64_t offset)
|
|
{
|
|
unsigned int phys_block_size = 0;
|
|
unsigned int block_size = 0;
|
|
|
|
if (!dev_get_block_size(dev, &phys_block_size, &block_size)) {
|
|
stack;
|
|
/* FIXME ASSERT or regular error testing is missing */
|
|
return;
|
|
}
|
|
|
|
bcache_set_last_byte(scan_bcache, dev->bcache_fd, offset, phys_block_size);
|
|
}
|
|
|
|
void dev_unset_last_byte(struct device *dev)
|
|
{
|
|
bcache_unset_last_byte(scan_bcache, dev->bcache_fd);
|
|
}
|
|
|