1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-03 05:18:29 +03:00
lvm2/lib/metadata/lv_manip.c
Alasdair Kergon 352a99b95a Use dm_is_dm_major instead of local copy.
Allow mapped devices to be used as PVs safely.
2005-10-25 19:08:21 +00:00

1234 lines
29 KiB
C

/*
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU General Public License v.2.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "lib.h"
#include "metadata.h"
#include "locking.h"
#include "pv_map.h"
#include "lvm-string.h"
#include "toolcontext.h"
#include "lv_alloc.h"
#include "pv_alloc.h"
#include "display.h"
#include "segtype.h"
/*
* Find first unused LV number.
*/
uint32_t find_free_lvnum(struct logical_volume *lv)
{
int lvnum_used[MAX_RESTRICTED_LVS + 1];
uint32_t i = 0;
struct lv_list *lvl;
int lvnum;
memset(&lvnum_used, 0, sizeof(lvnum_used));
list_iterate_items(lvl, &lv->vg->lvs) {
lvnum = lvnum_from_lvid(&lvl->lv->lvid);
if (lvnum <= MAX_RESTRICTED_LVS)
lvnum_used[lvnum] = 1;
}
while (lvnum_used[i])
i++;
/* FIXME What if none are free? */
return i;
}
/*
* All lv_segments get created here.
*/
struct lv_segment *alloc_lv_segment(struct dm_pool *mem,
struct segment_type *segtype,
struct logical_volume *lv,
uint32_t le, uint32_t len,
uint32_t status,
uint32_t stripe_size,
struct logical_volume *log_lv,
uint32_t area_count,
uint32_t area_len,
uint32_t chunk_size,
uint32_t region_size,
uint32_t extents_copied)
{
struct lv_segment *seg;
uint32_t areas_sz = area_count * sizeof(*seg->areas);
if (!(seg = dm_pool_zalloc(mem, sizeof(*seg)))) {
stack;
return NULL;
}
if (!(seg->areas = dm_pool_zalloc(mem, areas_sz))) {
dm_pool_free(mem, seg);
stack;
return NULL;
}
if (!segtype) {
log_error("alloc_lv_segment: Missing segtype.");
return NULL;
}
seg->segtype = segtype;
seg->lv = lv;
seg->le = le;
seg->len = len;
seg->status = status;
seg->stripe_size = stripe_size;
seg->area_count = area_count;
seg->area_len = area_len;
seg->chunk_size = chunk_size;
seg->region_size = region_size;
seg->extents_copied = extents_copied;
seg->log_lv = log_lv;
list_init(&seg->tags);
if (log_lv)
log_lv->status |= MIRROR_LOG;
return seg;
}
struct lv_segment *alloc_snapshot_seg(struct logical_volume *lv,
uint32_t status, uint32_t old_le_count)
{
struct lv_segment *seg;
struct segment_type *segtype;
segtype = get_segtype_from_string(lv->vg->cmd, "snapshot");
if (!segtype) {
log_error("Failed to find snapshot segtype");
return NULL;
}
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem, segtype, lv, old_le_count,
lv->le_count - old_le_count, status, 0,
NULL, 0, lv->le_count - old_le_count,
0, 0, 0))) {
log_error("Couldn't allocate new snapshot segment.");
return NULL;
}
list_add(&lv->segments, &seg->list);
lv->status |= VIRTUAL;
return seg;
}
void release_lv_segment_area(struct lv_segment *seg, uint32_t s,
uint32_t area_reduction)
{
if (seg_type(seg, s) == AREA_UNASSIGNED)
return;
if (seg_type(seg, s) == AREA_PV) {
release_pv_segment(seg_pvseg(seg, s), area_reduction);
return;
}
if (seg_lv(seg, s)->status & MIRROR_IMAGE) {
lv_reduce(seg_lv(seg, s), area_reduction);
return;
}
if (area_reduction == seg->area_len) {
seg_lv(seg, s) = NULL;
seg_le(seg, s) = 0;
seg_type(seg, s) = AREA_UNASSIGNED;
}
}
/*
* Move a segment area from one segment to another
*/
int move_lv_segment_area(struct lv_segment *seg_to, uint32_t area_to,
struct lv_segment *seg_from, uint32_t area_from)
{
struct physical_volume *pv;
struct logical_volume *lv;
uint32_t pe, le;
switch (seg_type(seg_from, area_from)) {
case AREA_PV:
pv = seg_pv(seg_from, area_from);
pe = seg_pe(seg_from, area_from);
release_lv_segment_area(seg_from, area_from,
seg_from->area_len);
release_lv_segment_area(seg_to, area_to, seg_to->area_len);
if (!set_lv_segment_area_pv(seg_to, area_to, pv, pe)) {
stack;
return 0;
}
break;
case AREA_LV:
lv = seg_lv(seg_from, area_from);
le = seg_le(seg_from, area_from);
release_lv_segment_area(seg_from, area_from,
seg_from->area_len);
release_lv_segment_area(seg_to, area_to, seg_to->area_len);
set_lv_segment_area_lv(seg_to, area_to, lv, le, 0);
break;
case AREA_UNASSIGNED:
release_lv_segment_area(seg_to, area_to, seg_to->area_len);
}
return 1;
}
/*
* Link part of a PV to an LV segment.
*/
int set_lv_segment_area_pv(struct lv_segment *seg, uint32_t area_num,
struct physical_volume *pv, uint32_t pe)
{
seg->areas[area_num].type = AREA_PV;
if (!(seg_pvseg(seg, area_num) =
assign_peg_to_lvseg(pv, pe, seg->area_len, seg, area_num))) {
stack;
return 0;
}
return 1;
}
/*
* Link one LV segment to another. Assumes sizes already match.
*/
void set_lv_segment_area_lv(struct lv_segment *seg, uint32_t area_num,
struct logical_volume *lv, uint32_t le,
uint32_t flags)
{
seg->areas[area_num].type = AREA_LV;
seg_lv(seg, area_num) = lv;
seg_le(seg, area_num) = le;
lv->status |= flags;
}
static int _lv_segment_add_areas(struct logical_volume *lv,
struct lv_segment *seg,
uint32_t new_area_count) __attribute__ ((unused));
/*
* Prepare for adding parallel areas to an existing segment.
*/
static int _lv_segment_add_areas(struct logical_volume *lv,
struct lv_segment *seg,
uint32_t new_area_count)
{
struct lv_segment_area *newareas;
uint32_t areas_sz = new_area_count * sizeof(*newareas);
if (!(newareas = dm_pool_zalloc(lv->vg->cmd->mem, areas_sz))) {
stack;
return 0;
}
memcpy(newareas, seg->areas, seg->area_count * sizeof(*seg->areas));
seg->areas = newareas;
seg->area_count = new_area_count;
return 1;
}
/*
* Reduce the size of an lv_segment. New size can be zero.
*/
static int _lv_segment_reduce(struct lv_segment *seg, uint32_t reduction)
{
uint32_t area_reduction, s;
/* Caller must ensure exact divisibility */
if (seg_is_striped(seg)) {
if (reduction % seg->area_count) {
log_error("Segment extent reduction %" PRIu32
"not divisible by #stripes %" PRIu32,
reduction, seg->area_count);
return 0;
}
area_reduction = (reduction / seg->area_count);
} else
area_reduction = reduction;
for (s = 0; s < seg->area_count; s++)
release_lv_segment_area(seg, s, area_reduction);
seg->len -= reduction;
seg->area_len -= area_reduction;
return 1;
}
/*
* Entry point for all LV reductions in size.
*/
static int _lv_reduce(struct logical_volume *lv, uint32_t extents, int delete)
{
struct lv_list *lvl;
struct lv_segment *seg;
uint32_t count = extents;
uint32_t reduction;
list_iterate_back_items(seg, &lv->segments) {
if (!count)
break;
if (seg->len <= count) {
/* remove this segment completely */
/* FIXME Check this is safe */
if (seg->log_lv && !lv_remove(seg->log_lv)) {
stack;
return 0;
}
list_del(&seg->list);
reduction = seg->len;
} else
reduction = count;
if (!_lv_segment_reduce(seg, reduction)) {
stack;
return 0;
}
count -= reduction;
}
lv->le_count -= extents;
lv->size = (uint64_t) lv->le_count * lv->vg->extent_size;
if (!delete)
return 1;
/* Remove the LV if it is now empty */
if (!lv->le_count) {
if (!(lvl = find_lv_in_vg(lv->vg, lv->name))) {
stack;
return 0;
}
list_del(&lvl->list);
lv->vg->lv_count--;
} else if (lv->vg->fid->fmt->ops->lv_setup &&
!lv->vg->fid->fmt->ops->lv_setup(lv->vg->fid, lv)) {
stack;
return 0;
}
return 1;
}
/*
* Empty an LV
*/
int lv_empty(struct logical_volume *lv)
{
return _lv_reduce(lv, 0, lv->le_count);
}
int lv_reduce(struct logical_volume *lv, uint32_t extents)
{
return _lv_reduce(lv, extents, 1);
}
/*
* Completely remove an LV.
*/
int lv_remove(struct logical_volume *lv)
{
if (!lv_reduce(lv, lv->le_count)) {
stack;
return 0;
}
return 1;
}
/*
* A set of contiguous physical extents allocated
*/
struct alloced_area {
struct list list;
struct physical_volume *pv;
uint32_t pe;
uint32_t len;
};
/*
* Details of an allocation attempt
*/
struct alloc_handle {
struct dm_pool *mem;
alloc_policy_t alloc; /* Overall policy */
uint32_t area_count; /* Number of parallel areas */
uint32_t area_multiple; /* seg->len = area_len * area_multiple */
uint32_t log_count; /* Number of parallel 1-extent logs */
uint32_t total_area_len; /* Total number of parallel extents */
struct alloced_area log_area; /* Extent used for log */
struct list alloced_areas[0]; /* Lists of areas in each stripe */
};
/*
* Preparation for a specific allocation attempt
*/
static struct alloc_handle *_alloc_init(struct dm_pool *mem,
struct segment_type *segtype,
alloc_policy_t alloc,
uint32_t mirrors,
uint32_t stripes,
uint32_t log_count,
struct physical_volume *mirrored_pv)
{
struct alloc_handle *ah;
uint32_t s, area_count;
if (stripes > 1 && mirrors > 1) {
log_error("Striped mirrors are not supported yet");
return NULL;
}
if ((stripes > 1 || mirrors > 1) && mirrored_pv) {
log_error("Can't mix striping or mirroring with "
"creation of a mirrored PV yet");
return NULL;
}
if (log_count && (stripes > 1 || mirrored_pv)) {
log_error("Can't mix striping or pvmove with "
"a mirror log yet.");
return NULL;
}
if (segtype_is_virtual(segtype))
area_count = 0;
else if (mirrors > 1)
area_count = mirrors;
else if (mirrored_pv)
area_count = 1;
else
area_count = stripes;
if (!(ah = dm_pool_zalloc(mem, sizeof(*ah) + sizeof(ah->alloced_areas[0]) * area_count))) {
log_error("allocation handle allocation failed");
return NULL;
}
if (segtype_is_virtual(segtype))
return ah;
if (!(ah->mem = dm_pool_create("allocation", 1024))) {
log_error("allocation pool creation failed");
return NULL;
}
ah->area_count = area_count;
ah->log_count = log_count;
ah->alloc = alloc;
ah->area_multiple = segtype_is_striped(segtype) ? ah->area_count : 1;
list_init(&ah->alloced_areas[0]);
for (s = 0; s < ah->area_count; s++)
list_init(&ah->alloced_areas[s]);
return ah;
}
void alloc_destroy(struct alloc_handle *ah)
{
if (ah->mem)
dm_pool_destroy(ah->mem);
}
static int _setup_alloced_segment(struct logical_volume *lv, uint32_t status,
uint32_t area_count,
uint32_t stripe_size,
struct segment_type *segtype,
struct alloced_area *aa,
struct physical_volume *mirrored_pv,
uint32_t mirrored_pe,
uint32_t region_size,
struct logical_volume *log_lv)
{
uint32_t s, extents, area_multiple, extra_areas = 0;
struct lv_segment *seg;
if (mirrored_pv)
extra_areas = 1;
area_multiple = segtype_is_striped(segtype) ? area_count : 1;
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem, segtype, lv,
lv->le_count,
aa[0].len * area_multiple,
status, stripe_size, log_lv,
area_count + extra_areas,
aa[0].len, 0u, region_size, 0u))) {
log_error("Couldn't allocate new LV segment.");
return 0;
}
if (extra_areas) {
if (!set_lv_segment_area_pv(seg, 0, mirrored_pv, mirrored_pe)) {
stack;
return 0;
}
}
for (s = 0; s < area_count; s++) {
if (!set_lv_segment_area_pv(seg, s + extra_areas, aa[s].pv,
aa[s].pe)) {
stack;
return 0;
}
}
list_add(&lv->segments, &seg->list);
extents = aa[0].len * area_multiple;
lv->le_count += extents;
lv->size += (uint64_t) extents *lv->vg->extent_size;
if (segtype_is_mirrored(segtype))
lv->status |= MIRRORED;
return 1;
}
static int _setup_alloced_segments(struct logical_volume *lv,
struct list *alloced_areas,
uint32_t area_count,
uint32_t status,
uint32_t stripe_size,
struct segment_type *segtype,
struct physical_volume *mirrored_pv,
uint32_t mirrored_pe,
uint32_t region_size,
struct logical_volume *log_lv)
{
struct alloced_area *aa;
list_iterate_items(aa, &alloced_areas[0]) {
if (!_setup_alloced_segment(lv, status, area_count,
stripe_size, segtype, aa,
mirrored_pv, mirrored_pe,
region_size, log_lv)) {
stack;
return 0;
}
}
return 1;
}
/*
* This function takes a list of pv_areas and adds them to allocated_areas.
* If the complete area is not needed then it gets split.
* The part used is removed from the pv_map so it can't be allocated twice.
*/
static int _alloc_parallel_area(struct alloc_handle *ah, uint32_t needed,
struct pv_area **areas,
uint32_t *ix, struct pv_area *log_area)
{
uint32_t area_len, smallest, remaining;
uint32_t s;
struct alloced_area *aa;
remaining = needed - *ix;
area_len = remaining / ah->area_multiple;
smallest = areas[ah->area_count - 1]->count;
if (area_len > smallest)
area_len = smallest;
if (!(aa = dm_pool_alloc(ah->mem, sizeof(*aa) *
(ah->area_count + (log_area ? 1 : 0))))) {
log_error("alloced_area allocation failed");
return 0;
}
for (s = 0; s < ah->area_count; s++) {
aa[s].pv = areas[s]->map->pv;
aa[s].pe = areas[s]->start;
aa[s].len = area_len;
list_add(&ah->alloced_areas[s], &aa[s].list);
}
ah->total_area_len += area_len;
for (s = 0; s < ah->area_count; s++)
consume_pv_area(areas[s], area_len);
if (log_area) {
ah->log_area.pv = log_area->map->pv;
ah->log_area.pe = log_area->start;
ah->log_area.len = 1; /* FIXME Calculate & check this */
consume_pv_area(log_area, ah->log_area.len);
}
*ix += area_len * ah->area_multiple;
return 1;
}
static int _comp_area(const void *l, const void *r)
{
const struct pv_area *lhs = *((const struct pv_area **) l);
const struct pv_area *rhs = *((const struct pv_area **) r);
if (lhs->count < rhs->count)
return 1;
else if (lhs->count > rhs->count)
return -1;
return 0;
}
/*
* Is pva contiguous to any existing areas or on the same PV?
*/
static int _check_contiguous(struct lv_segment *prev_lvseg,
struct physical_volume *pv, struct pv_area *pva,
struct pv_area **areas)
{
struct pv_segment *prev_pvseg;
uint32_t s;
for (s = 0; s < prev_lvseg->area_count; s++) {
if (seg_type(prev_lvseg, s) != AREA_PV)
continue; /* FIXME Broken */
if (!(prev_pvseg = seg_pvseg(prev_lvseg, s)))
continue; /* FIXME Broken */
if ((prev_pvseg->pv != pv))
continue;
if (prev_pvseg->pe + prev_pvseg->len == pva->start) {
areas[s] = pva;
return 1;
}
}
return 0;
}
/*
* Choose sets of parallel areas to use, respecting any constraints.
*/
/* FIXME Also accept existing areas new space must be parallel to */
static int _find_parallel_space(struct alloc_handle *ah, alloc_policy_t alloc,
struct list *pvms, struct pv_area **areas,
uint32_t areas_size, unsigned can_split,
struct lv_segment *prev_lvseg,
uint32_t *allocated, uint32_t needed)
{
struct pv_map *pvm;
struct pv_area *pva;
unsigned already_found_one = 0;
unsigned contiguous = 0, contiguous_count = 0;
unsigned ix;
unsigned ix_offset = 0; /* Offset for non-contiguous allocations */
/* FIXME Do calculations on free extent counts before selecting space */
/* FIXME Select log PV appropriately if there isn't one yet */
if ((alloc == ALLOC_CONTIGUOUS)) {
contiguous = 1;
if (prev_lvseg)
ix_offset = prev_lvseg->area_count;
else
ix_offset = ah->area_count;
}
/* FIXME This algorithm needs a lot of cleaning up! */
/* FIXME anywhere doesn't find all space yet */
/* ix_offset holds the number of allocations that must be contiguous */
/* ix holds the number of areas found on other PVs */
do {
ix = 0;
/*
* Put the smallest area of each PV that is at least the
* size we need into areas array. If there isn't one
* that fits completely and we're allowed more than one
* LV segment, then take the largest remaining instead.
*/
list_iterate_items(pvm, pvms) {
if (list_empty(&pvm->areas))
continue; /* Next PV */
/* Don't allocate onto the log pv */
if ((alloc != ALLOC_ANYWHERE) && ah->log_count &&
(pvm->pv == ah->log_area.pv))
continue; /* Next PV */
already_found_one = 0;
/* First area in each list is the largest */
list_iterate_items(pva, &pvm->areas) {
if (contiguous) {
if (prev_lvseg &&
_check_contiguous(prev_lvseg,
pvm->pv,
pva, areas)) {
contiguous_count++;
break; /* Next PV */
}
continue;
}
/* Is it big enough on its own? */
if ((pva->count < needed - *allocated) &&
((!can_split && !ah->log_count) ||
(already_found_one &&
!(alloc == ALLOC_ANYWHERE))))
break; /* Next PV */
if (!already_found_one ||
alloc == ALLOC_ANYWHERE) {
ix++;
already_found_one = 1;
}
areas[ix + ix_offset -1] = pva;
break; /* Next PV */
}
if (ix >= areas_size)
break;
}
if (contiguous && (contiguous_count < ix_offset))
break;
/* Only allocate log_area the first time around */
if (ix + ix_offset < ah->area_count +
((ah->log_count && !ah->log_area.len) ?
ah->log_count : 0))
/* FIXME With ALLOC_ANYWHERE, need to split areas */
break;
/* sort the areas so we allocate from the biggest */
if (ix > 1)
qsort(areas + ix_offset, ix, sizeof(*areas),
_comp_area);
/* First time around, use smallest area as log_area */
/* FIXME decide which PV to use at top of function instead */
if (!_alloc_parallel_area(ah, needed, areas,
allocated,
(ah->log_count && !ah->log_area.len) ?
*(areas + ix_offset + ix - 1) :
NULL)) {
stack;
return 0;
}
} while (!contiguous && *allocated != needed && can_split);
return 1;
}
/*
* Allocate several segments, each the same size, in parallel.
* If mirrored_pv and mirrored_pe are supplied, it is used as
* the first area, and additional areas are allocated parallel to it.
*/
static int _allocate(struct alloc_handle *ah,
struct volume_group *vg,
struct logical_volume *lv, uint32_t status,
uint32_t new_extents,
struct list *allocatable_pvs,
uint32_t stripes, uint32_t mirrors,
struct segment_type *segtype,
struct physical_volume *mirrored_pv,
uint32_t mirrored_pe)
{
struct pv_area **areas;
uint32_t allocated = lv ? lv->le_count : 0;
uint32_t old_allocated;
struct lv_segment *prev_lvseg = NULL;
unsigned can_split = 1; /* Are we allowed more than one segment? */
int r = 0;
struct list *pvms;
uint32_t areas_size;
if (allocated >= new_extents) {
log_error("_allocate called with no work to do!");
return 1;
}
if (mirrored_pv || (ah->alloc == ALLOC_CONTIGUOUS))
can_split = 0;
if (lv && !list_empty(&lv->segments))
prev_lvseg = list_item(list_last(&lv->segments),
struct lv_segment);
/*
* Build the sets of available areas on the pv's.
*/
if (!(pvms = create_pv_maps(ah->mem, vg, allocatable_pvs))) {
stack;
return 0;
}
areas_size = list_size(pvms);
if (areas_size < ah->area_count + ah->log_count) {
if (ah->alloc != ALLOC_ANYWHERE) {
log_error("Not enough PVs with free space available "
"for parallel allocation.");
log_error("Consider --alloc anywhere if desperate.");
return 0;
}
areas_size = ah->area_count + ah->log_count;
}
/* Allocate an array of pv_areas to hold the largest space on each PV */
if (!(areas = dm_malloc(sizeof(*areas) * areas_size))) {
log_err("Couldn't allocate areas array.");
return 0;
}
old_allocated = allocated;
if (!_find_parallel_space(ah, ALLOC_CONTIGUOUS, pvms, areas,
areas_size, can_split,
prev_lvseg, &allocated, new_extents)) {
stack;
goto out;
}
if ((allocated == new_extents) || (ah->alloc == ALLOC_CONTIGUOUS) ||
(!can_split && (allocated != old_allocated)))
goto finished;
old_allocated = allocated;
if (!_find_parallel_space(ah, ALLOC_NORMAL, pvms, areas,
areas_size, can_split,
prev_lvseg, &allocated, new_extents)) {
stack;
goto out;
}
if ((allocated == new_extents) || (ah->alloc == ALLOC_NORMAL) ||
(!can_split && (allocated != old_allocated)))
goto finished;
if (!_find_parallel_space(ah, ALLOC_ANYWHERE, pvms, areas,
areas_size, can_split,
prev_lvseg, &allocated, new_extents)) {
stack;
goto out;
}
finished:
if (allocated != new_extents) {
log_error("Insufficient suitable %sallocatable extents "
"for logical volume %s: %u more required",
can_split ? "" : "contiguous ",
lv ? lv->name : "",
(new_extents - allocated) * ah->area_count
/ ah->area_multiple);
goto out;
}
r = 1;
out:
dm_free(areas);
return r;
}
int lv_add_virtual_segment(struct logical_volume *lv, uint32_t status,
uint32_t extents, struct segment_type *segtype)
{
struct lv_segment *seg;
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem, segtype, lv,
lv->le_count, extents, status, 0,
NULL, 0, extents, 0, 0, 0))) {
log_error("Couldn't allocate new zero segment.");
return 0;
}
list_add(&lv->segments, &seg->list);
lv->le_count += extents;
lv->size += (uint64_t) extents *lv->vg->extent_size;
lv->status |= VIRTUAL;
return 1;
}
/*
* Entry point for all extent allocations.
*/
struct alloc_handle *allocate_extents(struct volume_group *vg,
struct logical_volume *lv,
struct segment_type *segtype,
uint32_t stripes,
uint32_t mirrors, uint32_t log_count,
uint32_t extents,
struct physical_volume *mirrored_pv,
uint32_t mirrored_pe,
uint32_t status,
struct list *allocatable_pvs,
alloc_policy_t alloc)
{
struct alloc_handle *ah;
if (segtype_is_virtual(segtype)) {
log_error("allocate_extents does not handle virtual segments");
return NULL;
}
if (vg->fid->fmt->ops->segtype_supported &&
!vg->fid->fmt->ops->segtype_supported(vg->fid, segtype)) {
log_error("Metadata format (%s) does not support required "
"LV segment type (%s).", vg->fid->fmt->name,
segtype->name);
log_error("Consider changing the metadata format by running "
"vgconvert.");
return NULL;
}
if (alloc == ALLOC_INHERIT)
alloc = vg->alloc;
if (!(ah = _alloc_init(vg->cmd->mem, segtype, alloc, mirrors,
stripes, log_count, mirrored_pv))) {
stack;
return NULL;
}
if (!segtype_is_virtual(segtype) &&
!_allocate(ah, vg, lv, status, (lv ? lv->le_count : 0) + extents,
allocatable_pvs,
stripes, mirrors, segtype, mirrored_pv, mirrored_pe)) {
stack;
alloc_destroy(ah);
return NULL;
}
return ah;
}
/*
* Add new segments to an LV from supplied list of areas.
*/
int lv_add_segment(struct alloc_handle *ah,
uint32_t first_area, uint32_t num_areas,
struct logical_volume *lv,
struct segment_type *segtype,
uint32_t stripe_size,
struct physical_volume *mirrored_pv,
uint32_t mirrored_pe,
uint32_t status,
uint32_t region_size,
struct logical_volume *log_lv)
{
if (!segtype) {
log_error("Missing segtype in lv_add_segment().");
return 0;
}
if (segtype_is_virtual(segtype)) {
log_error("lv_add_segment cannot handle virtual segments");
return 0;
}
if (!_setup_alloced_segments(lv, &ah->alloced_areas[first_area],
num_areas, status,
stripe_size, segtype,
mirrored_pv, mirrored_pe,
region_size, log_lv)) {
stack;
return 0;
}
if ((segtype->flags & SEG_CAN_SPLIT) && !lv_merge_segments(lv)) {
log_err("Couldn't merge segments after extending "
"logical volume.");
return 0;
}
if (lv->vg->fid->fmt->ops->lv_setup &&
!lv->vg->fid->fmt->ops->lv_setup(lv->vg->fid, lv)) {
stack;
return 0;
}
return 1;
}
/*
* Turn an empty LV into a mirror log.
*/
int lv_add_log_segment(struct alloc_handle *ah, struct logical_volume *log_lv)
{
struct lv_segment *seg;
if (list_size(&log_lv->segments)) {
log_error("Log segments can only be added to an empty LV");
return 0;
}
if (!(seg = alloc_lv_segment(log_lv->vg->cmd->mem,
get_segtype_from_string(log_lv->vg->cmd,
"striped"),
log_lv, 0, ah->log_area.len, MIRROR_LOG,
0, NULL, 1, ah->log_area.len, 0, 0, 0))) {
log_error("Couldn't allocate new mirror log segment.");
return 0;
}
if (!set_lv_segment_area_pv(seg, 0, ah->log_area.pv, ah->log_area.pe)) {
stack;
return 0;
}
list_add(&log_lv->segments, &seg->list);
log_lv->le_count += ah->log_area.len;
log_lv->size += (uint64_t) log_lv->le_count *log_lv->vg->extent_size;
if (log_lv->vg->fid->fmt->ops->lv_setup &&
!log_lv->vg->fid->fmt->ops->lv_setup(log_lv->vg->fid, log_lv)) {
stack;
return 0;
}
return 1;
}
/*
* Add a mirror segment
*/
int lv_add_mirror_segment(struct alloc_handle *ah,
struct logical_volume *lv,
struct logical_volume **sub_lvs,
uint32_t mirrors,
struct segment_type *segtype,
uint32_t status,
uint32_t region_size,
struct logical_volume *log_lv)
{
struct lv_segment *seg;
uint32_t m;
if (list_empty(&log_lv->segments)) {
log_error("Log LV %s is empty.", log_lv->name);
return 0;
}
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem,
get_segtype_from_string(lv->vg->cmd,
"mirror"),
lv, lv->le_count, ah->total_area_len, 0,
0, log_lv, mirrors, ah->total_area_len, 0,
region_size, 0))) {
log_error("Couldn't allocate new mirror segment.");
return 0;
}
for (m = 0; m < mirrors; m++)
set_lv_segment_area_lv(seg, m, sub_lvs[m], 0, MIRROR_IMAGE);
list_add(&lv->segments, &seg->list);
lv->le_count += ah->total_area_len;
lv->size += (uint64_t) lv->le_count *lv->vg->extent_size;
if (lv->vg->fid->fmt->ops->lv_setup &&
!lv->vg->fid->fmt->ops->lv_setup(lv->vg->fid, lv)) {
stack;
return 0;
}
return 1;
}
/*
* Entry point for single-step LV allocation + extension.
*/
int lv_extend(struct logical_volume *lv,
struct segment_type *segtype,
uint32_t stripes, uint32_t stripe_size,
uint32_t mirrors, uint32_t extents,
struct physical_volume *mirrored_pv, uint32_t mirrored_pe,
uint32_t status, struct list *allocatable_pvs,
alloc_policy_t alloc)
{
int r = 1;
uint32_t m;
struct alloc_handle *ah;
struct lv_segment *first_seg;
if (segtype_is_virtual(segtype))
return lv_add_virtual_segment(lv, status, extents, segtype);
if (!(ah = allocate_extents(lv->vg, lv, segtype, stripes, mirrors, 0,
extents, mirrored_pv, mirrored_pe, status,
allocatable_pvs, alloc))) {
stack;
return 0;
}
if (mirrors < 2) {
if (!lv_add_segment(ah, 0, ah->area_count, lv, segtype, stripe_size,
mirrored_pv, mirrored_pe, status, 0, NULL)) {
stack;
goto out;
}
} else {
list_iterate_items(first_seg, &lv->segments)
break;
for (m = 0; m < mirrors; m++) {
if (!lv_add_segment(ah, m, 1, seg_lv(first_seg, m),
get_segtype_from_string(lv->vg->cmd,
"striped"),
0, NULL, 0, 0, 0, NULL)) {
log_error("Aborting. Failed to extend %s.",
seg_lv(first_seg, m)->name);
return 0;
}
}
first_seg->area_len += extents;
first_seg->len += extents;
lv->le_count += extents;
lv->size += (uint64_t) extents *lv->vg->extent_size;
}
out:
alloc_destroy(ah);
return r;
}
char *generate_lv_name(struct volume_group *vg, const char *format,
char *buffer, size_t len)
{
struct lv_list *lvl;
int high = -1, i;
list_iterate_items(lvl, &vg->lvs) {
if (sscanf(lvl->lv->name, format, &i) != 1)
continue;
if (i > high)
high = i;
}
if (lvm_snprintf(buffer, len, format, high + 1) < 0)
return NULL;
return buffer;
}
/*
* Create a new empty LV.
*/
struct logical_volume *lv_create_empty(struct format_instance *fi,
const char *name,
union lvid *lvid,
uint32_t status,
alloc_policy_t alloc,
int import,
struct volume_group *vg)
{
struct cmd_context *cmd = vg->cmd;
struct lv_list *ll = NULL;
struct logical_volume *lv;
char dname[32];
if (vg->max_lv && (vg->max_lv == vg->lv_count)) {
log_error("Maximum number of logical volumes (%u) reached "
"in volume group %s", vg->max_lv, vg->name);
return NULL;
}
if (strstr(name, "%d") &&
!(name = generate_lv_name(vg, name, dname, sizeof(dname)))) {
log_error("Failed to generate unique name for the new "
"logical volume");
return NULL;
}
if (!import)
log_verbose("Creating logical volume %s", name);
if (!(ll = dm_pool_zalloc(cmd->mem, sizeof(*ll))) ||
!(ll->lv = dm_pool_zalloc(cmd->mem, sizeof(*ll->lv)))) {
log_error("lv_list allocation failed");
if (ll)
dm_pool_free(cmd->mem, ll);
return NULL;
}
lv = ll->lv;
lv->vg = vg;
if (!(lv->name = dm_pool_strdup(cmd->mem, name))) {
log_error("lv name strdup failed");
if (ll)
dm_pool_free(cmd->mem, ll);
return NULL;
}
lv->status = status;
lv->alloc = alloc;
lv->read_ahead = 0;
lv->major = -1;
lv->minor = -1;
lv->size = UINT64_C(0);
lv->le_count = 0;
lv->snapshot = NULL;
list_init(&lv->snapshot_segs);
list_init(&lv->segments);
list_init(&lv->tags);
if (lvid)
lv->lvid = *lvid;
if (fi->fmt->ops->lv_setup && !fi->fmt->ops->lv_setup(fi, lv)) {
stack;
if (ll)
dm_pool_free(cmd->mem, ll);
return NULL;
}
if (!import)
vg->lv_count++;
list_add(&vg->lvs, &ll->list);
return lv;
}