1
0
mirror of git://sourceware.org/git/lvm2.git synced 2024-12-31 21:18:26 +03:00
lvm2/test/unit/radix_tree_t.c
Joe Thornber ba6d8a3195 [unit-test/radix-tree] Add a huge test case
Derived from the logs that dct gave me.
2018-09-20 14:38:34 +01:00

851 lines
21 KiB
C

// Copyright (C) 2018 Red Hat, Inc. All rights reserved.
//
// This file is part of LVM2.
//
// This copyrighted material is made available to anyone wishing to use,
// modify, copy, or redistribute it subject to the terms and conditions
// of the GNU Lesser General Public License v.2.1.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#include "units.h"
#include "base/data-struct/radix-tree.h"
#include "base/memory/container_of.h"
#include <stdio.h>
#include <stdlib.h>
//----------------------------------------------------------------
static void *rt_init(void)
{
struct radix_tree *rt = radix_tree_create(NULL, NULL);
T_ASSERT(rt);
return rt;
}
static void rt_exit(void *fixture)
{
radix_tree_destroy(fixture);
}
static void test_create_destroy(void *fixture)
{
T_ASSERT(fixture);
}
static void test_insert_one(void *fixture)
{
struct radix_tree *rt = fixture;
union radix_value v;
unsigned char k = 'a';
v.n = 65;
T_ASSERT(radix_tree_insert(rt, &k, &k + 1, v));
T_ASSERT(radix_tree_is_well_formed(rt));
v.n = 0;
T_ASSERT(radix_tree_lookup(rt, &k, &k + 1, &v));
T_ASSERT_EQUAL(v.n, 65);
}
static void test_single_byte_keys(void *fixture)
{
unsigned i, count = 256;
struct radix_tree *rt = fixture;
union radix_value v;
uint8_t k;
for (i = 0; i < count; i++) {
k = i;
v.n = 100 + i;
T_ASSERT(radix_tree_insert(rt, &k, &k + 1, v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
for (i = 0; i < count; i++) {
k = i;
T_ASSERT(radix_tree_lookup(rt, &k, &k + 1, &v));
T_ASSERT_EQUAL(v.n, 100 + i);
}
}
static void test_overwrite_single_byte_keys(void *fixture)
{
unsigned i, count = 256;
struct radix_tree *rt = fixture;
union radix_value v;
uint8_t k;
for (i = 0; i < count; i++) {
k = i;
v.n = 100 + i;
T_ASSERT(radix_tree_insert(rt, &k, &k + 1, v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
for (i = 0; i < count; i++) {
k = i;
v.n = 1000 + i;
T_ASSERT(radix_tree_insert(rt, &k, &k + 1, v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
for (i = 0; i < count; i++) {
k = i;
T_ASSERT(radix_tree_lookup(rt, &k, &k + 1, &v));
T_ASSERT_EQUAL(v.n, 1000 + i);
}
}
static void test_16_bit_keys(void *fixture)
{
unsigned i, count = 1 << 16;
struct radix_tree *rt = fixture;
union radix_value v;
uint8_t k[2];
for (i = 0; i < count; i++) {
k[0] = i / 256;
k[1] = i % 256;
v.n = 100 + i;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
for (i = 0; i < count; i++) {
k[0] = i / 256;
k[1] = i % 256;
T_ASSERT(radix_tree_lookup(rt, k, k + sizeof(k), &v));
T_ASSERT_EQUAL(v.n, 100 + i);
}
}
static void test_prefix_keys(void *fixture)
{
struct radix_tree *rt = fixture;
union radix_value v;
uint8_t k[2];
k[0] = 100;
k[1] = 200;
v.n = 1024;
T_ASSERT(radix_tree_insert(rt, k, k + 1, v));
T_ASSERT(radix_tree_is_well_formed(rt));
v.n = 2345;
T_ASSERT(radix_tree_insert(rt, k, k + 2, v));
T_ASSERT(radix_tree_is_well_formed(rt));
T_ASSERT(radix_tree_lookup(rt, k, k + 1, &v));
T_ASSERT_EQUAL(v.n, 1024);
T_ASSERT(radix_tree_lookup(rt, k, k + 2, &v));
T_ASSERT_EQUAL(v.n, 2345);
}
static void test_prefix_keys_reversed(void *fixture)
{
struct radix_tree *rt = fixture;
union radix_value v;
uint8_t k[2];
k[0] = 100;
k[1] = 200;
v.n = 1024;
T_ASSERT(radix_tree_insert(rt, k, k + 2, v));
T_ASSERT(radix_tree_is_well_formed(rt));
v.n = 2345;
T_ASSERT(radix_tree_insert(rt, k, k + 1, v));
T_ASSERT(radix_tree_is_well_formed(rt));
T_ASSERT(radix_tree_lookup(rt, k, k + 2, &v));
T_ASSERT_EQUAL(v.n, 1024);
T_ASSERT(radix_tree_lookup(rt, k, k + 1, &v));
T_ASSERT_EQUAL(v.n, 2345);
}
static void _gen_key(uint8_t *b, uint8_t *e)
{
for (; b != e; b++)
*b = rand() % 256;
}
static void test_sparse_keys(void *fixture)
{
unsigned n;
struct radix_tree *rt = fixture;
union radix_value v;
uint8_t k[32];
for (n = 0; n < 100000; n++) {
_gen_key(k, k + sizeof(k));
v.n = 1234;
T_ASSERT(radix_tree_insert(rt, k, k + 32, v));
// FIXME: remove
//T_ASSERT(radix_tree_is_well_formed(rt));
}
T_ASSERT(radix_tree_is_well_formed(rt));
}
static void test_remove_one(void *fixture)
{
struct radix_tree *rt = fixture;
uint8_t k[4];
union radix_value v;
_gen_key(k, k + sizeof(k));
v.n = 1234;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
T_ASSERT(radix_tree_is_well_formed(rt));
T_ASSERT(radix_tree_remove(rt, k, k + sizeof(k)));
T_ASSERT(radix_tree_is_well_formed(rt));
T_ASSERT(!radix_tree_lookup(rt, k, k + sizeof(k), &v));
}
static void test_remove_one_byte_keys(void *fixture)
{
struct radix_tree *rt = fixture;
unsigned i, j;
uint8_t k[1];
union radix_value v;
for (i = 0; i < 256; i++) {
k[0] = i;
v.n = i + 1000;
T_ASSERT(radix_tree_insert(rt, k, k + 1, v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
for (i = 0; i < 256; i++) {
k[0] = i;
T_ASSERT(radix_tree_remove(rt, k, k + 1));
T_ASSERT(radix_tree_is_well_formed(rt));
for (j = i + 1; j < 256; j++) {
k[0] = j;
T_ASSERT(radix_tree_lookup(rt, k, k + 1, &v));
if (v.n != j + 1000)
test_fail("v.n (%u) != j + 1000 (%u)\n",
(unsigned) v.n,
(unsigned) j + 1000);
}
}
for (i = 0; i < 256; i++) {
k[0] = i;
T_ASSERT(!radix_tree_lookup(rt, k, k + 1, &v));
}
}
static void test_remove_one_byte_keys_reversed(void *fixture)
{
struct radix_tree *rt = fixture;
unsigned i, j;
uint8_t k[1];
union radix_value v;
for (i = 0; i < 256; i++) {
k[0] = i;
v.n = i + 1000;
T_ASSERT(radix_tree_insert(rt, k, k + 1, v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
for (i = 256; i; i--) {
k[0] = i - 1;
T_ASSERT(radix_tree_remove(rt, k, k + 1));
T_ASSERT(radix_tree_is_well_formed(rt));
for (j = 0; j < i - 1; j++) {
k[0] = j;
T_ASSERT(radix_tree_lookup(rt, k, k + 1, &v));
if (v.n != j + 1000)
test_fail("v.n (%u) != j + 1000 (%u)\n",
(unsigned) v.n,
(unsigned) j + 1000);
}
}
for (i = 0; i < 256; i++) {
k[0] = i;
T_ASSERT(!radix_tree_lookup(rt, k, k + 1, &v));
}
}
static void test_remove_prefix_keys(void *fixture)
{
struct radix_tree *rt = fixture;
unsigned i, j;
uint8_t k[32];
union radix_value v;
_gen_key(k, k + sizeof(k));
for (i = 0; i < 32; i++) {
v.n = i;
T_ASSERT(radix_tree_insert(rt, k, k + i, v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
for (i = 0; i < 32; i++) {
T_ASSERT(radix_tree_remove(rt, k, k + i));
T_ASSERT(radix_tree_is_well_formed(rt));
for (j = i + 1; j < 32; j++) {
T_ASSERT(radix_tree_lookup(rt, k, k + j, &v));
T_ASSERT_EQUAL(v.n, j);
}
}
for (i = 0; i < 32; i++)
T_ASSERT(!radix_tree_lookup(rt, k, k + i, &v));
}
static void test_remove_prefix_keys_reversed(void *fixture)
{
struct radix_tree *rt = fixture;
unsigned i, j;
uint8_t k[32];
union radix_value v;
_gen_key(k, k + sizeof(k));
for (i = 0; i < 32; i++) {
v.n = i;
T_ASSERT(radix_tree_insert(rt, k, k + i, v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
for (i = 0; i < 32; i++) {
T_ASSERT(radix_tree_remove(rt, k, k + (31 - i)));
T_ASSERT(radix_tree_is_well_formed(rt));
for (j = 0; j < 31 - i; j++) {
T_ASSERT(radix_tree_lookup(rt, k, k + j, &v));
T_ASSERT_EQUAL(v.n, j);
}
}
for (i = 0; i < 32; i++)
T_ASSERT(!radix_tree_lookup(rt, k, k + i, &v));
}
static void test_remove_prefix(void *fixture)
{
struct radix_tree *rt = fixture;
unsigned i, count = 0;
uint8_t k[4];
union radix_value v;
// populate some random 32bit keys
for (i = 0; i < 100000; i++) {
_gen_key(k, k + sizeof(k));
if (k[0] == 21)
count++;
v.n = i;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
// remove keys in a sub range
k[0] = 21;
T_ASSERT_EQUAL(radix_tree_remove_prefix(rt, k, k + 1), count);
T_ASSERT(radix_tree_is_well_formed(rt));
}
static void test_remove_prefix_single(void *fixture)
{
struct radix_tree *rt = fixture;
uint8_t k[4];
union radix_value v;
_gen_key(k, k + sizeof(k));
v.n = 1234;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
T_ASSERT(radix_tree_is_well_formed(rt));
T_ASSERT_EQUAL(radix_tree_remove_prefix(rt, k, k + 2), 1);
T_ASSERT(radix_tree_is_well_formed(rt));
}
static void test_size(void *fixture)
{
struct radix_tree *rt = fixture;
unsigned i, dup_count = 0;
uint8_t k[2];
union radix_value v;
// populate some random 16bit keys
for (i = 0; i < 10000; i++) {
_gen_key(k, k + sizeof(k));
if (radix_tree_lookup(rt, k, k + sizeof(k), &v))
dup_count++;
v.n = i;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
}
T_ASSERT_EQUAL(radix_tree_size(rt), 10000 - dup_count);
T_ASSERT(radix_tree_is_well_formed(rt));
}
struct visitor {
struct radix_tree_iterator it;
unsigned count;
};
static bool _visit(struct radix_tree_iterator *it,
uint8_t *kb, uint8_t *ke, union radix_value v)
{
struct visitor *vt = container_of(it, struct visitor, it);
vt->count++;
return true;
}
static void test_iterate_all(void *fixture)
{
struct radix_tree *rt = fixture;
unsigned i;
uint8_t k[4];
union radix_value v;
struct visitor vt;
// populate some random 32bit keys
for (i = 0; i < 100000; i++) {
_gen_key(k, k + sizeof(k));
v.n = i;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
vt.count = 0;
vt.it.visit = _visit;
radix_tree_iterate(rt, NULL, NULL, &vt.it);
T_ASSERT_EQUAL(vt.count, radix_tree_size(rt));
}
static void test_iterate_subset(void *fixture)
{
struct radix_tree *rt = fixture;
unsigned i, subset_count = 0;
uint8_t k[3];
union radix_value v;
struct visitor vt;
// populate some random 32bit keys
for (i = 0; i < 100000; i++) {
_gen_key(k, k + sizeof(k));
if (k[0] == 21 && k[1] == 12)
subset_count++;
v.n = i;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
vt.count = 0;
vt.it.visit = _visit;
k[0] = 21;
k[1] = 12;
radix_tree_iterate(rt, k, k + 2, &vt.it);
T_ASSERT_EQUAL(vt.count, subset_count);
}
static void test_iterate_single(void *fixture)
{
struct radix_tree *rt = fixture;
uint8_t k[6];
union radix_value v;
struct visitor vt;
_gen_key(k, k + sizeof(k));
v.n = 1234;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
T_ASSERT(radix_tree_is_well_formed(rt));
vt.count = 0;
vt.it.visit = _visit;
radix_tree_iterate(rt, k, k + 3, &vt.it);
T_ASSERT_EQUAL(vt.count, 1);
}
static void test_iterate_vary_middle(void *fixture)
{
struct radix_tree *rt = fixture;
unsigned i;
uint8_t k[6];
union radix_value v;
struct visitor vt;
_gen_key(k, k + sizeof(k));
for (i = 0; i < 16; i++) {
k[3] = i;
v.n = i;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
vt.it.visit = _visit;
for (i = 0; i < 16; i++) {
vt.count = 0;
k[3] = i;
radix_tree_iterate(rt, k, k + 4, &vt.it);
T_ASSERT_EQUAL(vt.count, 1);
}
}
//----------------------------------------------------------------
#define DTR_COUNT 100
struct counter {
unsigned c;
uint8_t present[DTR_COUNT];
};
static void _counting_dtr(void *context, union radix_value v)
{
struct counter *c = context;
c->c++;
T_ASSERT(v.n < DTR_COUNT);
c->present[v.n] = 0;
}
static void test_remove_calls_dtr(void *fixture)
{
struct counter c;
struct radix_tree *rt = radix_tree_create(_counting_dtr, &c);
T_ASSERT(rt);
// Bug hunting, so I need the keys to be deterministic
srand(0);
c.c = 0;
memset(c.present, 1, sizeof(c.present));
{
unsigned i;
uint8_t keys[DTR_COUNT * 3];
union radix_value v;
// generate and insert a lot of keys
for (i = 0; i < DTR_COUNT; i++) {
bool found = false;
do {
v.n = i;
uint8_t *k = keys + (i * 3);
_gen_key(k, k + 3);
if (!radix_tree_lookup(rt, k, k + 3, &v)) {
T_ASSERT(radix_tree_insert(rt, k, k + 3, v));
found = true;
}
} while (!found);
}
T_ASSERT(radix_tree_is_well_formed(rt));
// double check
for (i = 0; i < DTR_COUNT; i++) {
uint8_t *k = keys + (i * 3);
T_ASSERT(radix_tree_lookup(rt, k, k + 3, &v));
}
for (i = 0; i < DTR_COUNT; i++) {
uint8_t *k = keys + (i * 3);
// FIXME: check the values get passed to the dtr
T_ASSERT(radix_tree_remove(rt, k, k + 3));
}
T_ASSERT(c.c == DTR_COUNT);
for (i = 0; i < DTR_COUNT; i++)
T_ASSERT(!c.present[i]);
}
radix_tree_destroy(rt);
}
static void test_destroy_calls_dtr(void *fixture)
{
unsigned i;
struct counter c;
struct radix_tree *rt = radix_tree_create(_counting_dtr, &c);
T_ASSERT(rt);
// Bug hunting, so I need the keys to be deterministic
srand(0);
c.c = 0;
memset(c.present, 1, sizeof(c.present));
{
uint8_t keys[DTR_COUNT * 3];
union radix_value v;
// generate and insert a lot of keys
for (i = 0; i < DTR_COUNT; i++) {
bool found = false;
do {
v.n = i;
uint8_t *k = keys + (i * 3);
_gen_key(k, k + 3);
if (!radix_tree_lookup(rt, k, k + 3, &v)) {
T_ASSERT(radix_tree_insert(rt, k, k + 3, v));
found = true;
}
} while (!found);
}
T_ASSERT(radix_tree_is_well_formed(rt));
}
radix_tree_destroy(rt);
T_ASSERT(c.c == DTR_COUNT);
for (i = 0; i < DTR_COUNT; i++)
T_ASSERT(!c.present[i]);
}
//----------------------------------------------------------------
static void test_bcache_scenario(void *fixture)
{
struct radix_tree *rt = fixture;
unsigned i;
uint8_t k[6];
union radix_value v;
memset(k, 0, sizeof(k));
for (i = 0; i < 3; i++) {
// it has to be the 4th byte that varies to
// trigger the bug.
k[4] = i;
v.n = i;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
k[4] = 0;
T_ASSERT(radix_tree_remove(rt, k, k + sizeof(k)));
T_ASSERT(radix_tree_is_well_formed(rt));
k[4] = i;
v.n = i;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
T_ASSERT(radix_tree_is_well_formed(rt));
}
//----------------------------------------------------------------
static void _bcs2_step1(struct radix_tree *rt)
{
unsigned i;
uint8_t k[12];
union radix_value v;
memset(k, 0, sizeof(k));
for (i = 0x6; i < 0x69; i++) {
k[0] = i;
v.n = i;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
}
static void _bcs2_step2(struct radix_tree *rt)
{
unsigned i;
uint8_t k[12];
memset(k, 0, sizeof(k));
for (i = 0x6; i < 0x69; i++) {
k[0] = i;
radix_tree_remove_prefix(rt, k, k + 4);
}
T_ASSERT(radix_tree_is_well_formed(rt));
}
static void test_bcache_scenario2(void *fixture)
{
unsigned i;
struct radix_tree *rt = fixture;
uint8_t k[12];
union radix_value v;
_bcs2_step1(rt);
_bcs2_step2(rt);
memset(k, 0, sizeof(k));
for (i = 0; i < 50; i++) {
k[0] = 0x6;
v.n = 0x6;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
radix_tree_remove_prefix(rt, k, k + 4);
}
T_ASSERT(radix_tree_is_well_formed(rt));
_bcs2_step1(rt);
_bcs2_step2(rt);
_bcs2_step1(rt);
_bcs2_step2(rt);
memset(k, 0, sizeof(k));
for(i = 0x6; i < 0x37; i++) {
k[0] = i;
k[4] = 0xf;
k[5] = 0x1;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
k[4] = 0;
k[5] = 0;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
memset(k, 0, sizeof(k));
for (i = 0x38; i < 0x69; i++) {
k[0] = i - 0x32;
k[4] = 0xf;
k[5] = 1;
T_ASSERT(radix_tree_remove(rt, k, k + sizeof(k)));
k[0] = i;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
k[0] = i - 0x32;
k[4] = 0;
k[5] = 0;
T_ASSERT(radix_tree_remove(rt, k, k + sizeof(k)));
k[0] = i;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
}
T_ASSERT(radix_tree_is_well_formed(rt));
memset(k, 0, sizeof(k));
k[0] = 0x6;
radix_tree_remove_prefix(rt, k, k + 4);
T_ASSERT(radix_tree_is_well_formed(rt));
k[0] = 0x38;
k[4] = 0xf;
k[5] = 0x1;
T_ASSERT(radix_tree_remove(rt, k, k + sizeof(k)));
T_ASSERT(radix_tree_is_well_formed(rt));
memset(k, 0, sizeof(k));
k[0] = 0x6;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
T_ASSERT(radix_tree_is_well_formed(rt));
k[0] = 0x7;
radix_tree_remove_prefix(rt, k, k + 4);
T_ASSERT(radix_tree_is_well_formed(rt));
k[0] = 0x38;
T_ASSERT(radix_tree_remove(rt, k, k + sizeof(k)));
T_ASSERT(radix_tree_is_well_formed(rt));
k[0] = 7;
T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
T_ASSERT(radix_tree_is_well_formed(rt));
}
//----------------------------------------------------------------
struct key_parts {
uint32_t fd;
uint64_t b;
} __attribute__ ((packed));
union key {
struct key_parts parts;
uint8_t bytes[12];
};
static void __lookup_matches(struct radix_tree *rt, int fd, uint64_t b, uint64_t expected)
{
union key k;
union radix_value v;
k.parts.fd = fd;
k.parts.b = b;
T_ASSERT(radix_tree_lookup(rt, k.bytes, k.bytes + sizeof(k.bytes), &v));
T_ASSERT(v.n == expected);
}
static void __lookup_fails(struct radix_tree *rt, int fd, uint64_t b)
{
union key k;
union radix_value v;
k.parts.fd = fd;
k.parts.b = b;
T_ASSERT(!radix_tree_lookup(rt, k.bytes, k.bytes + sizeof(k.bytes), &v));
}
static void __insert(struct radix_tree *rt, int fd, uint64_t b, uint64_t n)
{
union key k;
union radix_value v;
k.parts.fd = fd;
k.parts.b = b;
v.n = n;
T_ASSERT(radix_tree_insert(rt, k.bytes, k.bytes + sizeof(k.bytes), v));
}
static void __invalidate(struct radix_tree *rt, int fd)
{
union key k;
k.parts.fd = fd;
radix_tree_remove_prefix(rt, k.bytes, k.bytes + sizeof(k.parts.fd));
radix_tree_is_well_formed(rt);
}
static void test_bcache_scenario3(void *fixture)
{
struct radix_tree *rt = fixture;
#include "test/unit/rt_case1.c"
}
//----------------------------------------------------------------
#define T(path, desc, fn) register_test(ts, "/base/data-struct/radix-tree/" path, desc, fn)
void radix_tree_tests(struct dm_list *all_tests)
{
struct test_suite *ts = test_suite_create(rt_init, rt_exit);
if (!ts) {
fprintf(stderr, "out of memory\n");
exit(1);
}
T("create-destroy", "create and destroy an empty tree", test_create_destroy);
T("insert-one", "insert one trivial trivial key", test_insert_one);
T("insert-single-byte-keys", "inserts many single byte keys", test_single_byte_keys);
T("overwrite-single-byte-keys", "overwrite many single byte keys", test_overwrite_single_byte_keys);
T("insert-16-bit-keys", "insert many 16bit keys", test_16_bit_keys);
T("prefix-keys", "prefixes of other keys are valid keys", test_prefix_keys);
T("prefix-keys-reversed", "prefixes of other keys are valid keys", test_prefix_keys_reversed);
T("sparse-keys", "see what the memory usage is for sparsely distributed keys", test_sparse_keys);
T("remove-one", "remove one entry", test_remove_one);
T("remove-one-byte-keys", "remove many one byte keys", test_remove_one_byte_keys);
T("remove-one-byte-keys-reversed", "remove many one byte keys reversed", test_remove_one_byte_keys_reversed);
T("remove-prefix-keys", "remove a set of keys that have common prefixes", test_remove_prefix_keys);
T("remove-prefix-keys-reversed", "remove a set of keys that have common prefixes (reversed)", test_remove_prefix_keys_reversed);
T("remove-prefix", "remove a subrange", test_remove_prefix);
T("remove-prefix-single", "remove a subrange with a single entry", test_remove_prefix_single);
T("size-spots-duplicates", "duplicate entries aren't counted twice", test_size);
T("iterate-all", "iterate all entries in tree", test_iterate_all);
T("iterate-subset", "iterate a subset of entries in tree", test_iterate_subset);
T("iterate-single", "iterate a subset that contains a single entry", test_iterate_single);
T("iterate-vary-middle", "iterate keys that vary in the middle", test_iterate_vary_middle);
T("remove-calls-dtr", "remove should call the dtr for the value", test_remove_calls_dtr);
T("destroy-calls-dtr", "destroy should call the dtr for all values", test_destroy_calls_dtr);
T("bcache-scenario", "A specific series of keys from a bcache scenario", test_bcache_scenario);
T("bcache-scenario-2", "A second series of keys from a bcache scenario", test_bcache_scenario2);
T("bcache-scenario-3", "A third series of keys from a bcache scenario", test_bcache_scenario3);
dm_list_add(all_tests, &ts->list);
}
//----------------------------------------------------------------