1
0
mirror of git://sourceware.org/git/lvm2.git synced 2024-12-22 17:35:59 +03:00
lvm2/libdm/libdm-deptree.c
Zdenek Kabelac 8f518cf197 libdm: add check transaction_id after message
Add extra safety detection for thin pool transaction id
and query pool status after confirmed message.

In case there is a missmatch, immeditelly abort further
processing.
2014-08-26 14:12:20 +02:00

4077 lines
103 KiB
C

/*
* Copyright (C) 2005-2014 Red Hat, Inc. All rights reserved.
*
* This file is part of the device-mapper userspace tools.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "dmlib.h"
#include "libdm-targets.h"
#include "libdm-common.h"
#include "kdev_t.h"
#include "dm-ioctl.h"
#include <stdarg.h>
#include <sys/param.h>
#include <sys/utsname.h>
#define MAX_TARGET_PARAMSIZE 500000
#define REPLICATOR_LOCAL_SITE 0
/* Supported segment types */
enum {
SEG_CACHE,
SEG_CRYPT,
SEG_ERROR,
SEG_LINEAR,
SEG_MIRRORED,
SEG_REPLICATOR,
SEG_REPLICATOR_DEV,
SEG_SNAPSHOT,
SEG_SNAPSHOT_ORIGIN,
SEG_SNAPSHOT_MERGE,
SEG_STRIPED,
SEG_ZERO,
SEG_THIN_POOL,
SEG_THIN,
SEG_RAID1,
SEG_RAID10,
SEG_RAID4,
SEG_RAID5_LA,
SEG_RAID5_RA,
SEG_RAID5_LS,
SEG_RAID5_RS,
SEG_RAID6_ZR,
SEG_RAID6_NR,
SEG_RAID6_NC,
};
/* FIXME Add crypt and multipath support */
static const struct {
unsigned type;
const char target[16];
} _dm_segtypes[] = {
{ SEG_CACHE, "cache" },
{ SEG_CRYPT, "crypt" },
{ SEG_ERROR, "error" },
{ SEG_LINEAR, "linear" },
{ SEG_MIRRORED, "mirror" },
{ SEG_REPLICATOR, "replicator" },
{ SEG_REPLICATOR_DEV, "replicator-dev" },
{ SEG_SNAPSHOT, "snapshot" },
{ SEG_SNAPSHOT_ORIGIN, "snapshot-origin" },
{ SEG_SNAPSHOT_MERGE, "snapshot-merge" },
{ SEG_STRIPED, "striped" },
{ SEG_ZERO, "zero"},
{ SEG_THIN_POOL, "thin-pool"},
{ SEG_THIN, "thin"},
{ SEG_RAID1, "raid1"},
{ SEG_RAID10, "raid10"},
{ SEG_RAID4, "raid4"},
{ SEG_RAID5_LA, "raid5_la"},
{ SEG_RAID5_RA, "raid5_ra"},
{ SEG_RAID5_LS, "raid5_ls"},
{ SEG_RAID5_RS, "raid5_rs"},
{ SEG_RAID6_ZR, "raid6_zr"},
{ SEG_RAID6_NR, "raid6_nr"},
{ SEG_RAID6_NC, "raid6_nc"},
/*
*WARNING: Since 'raid' target overloads this 1:1 mapping table
* for search do not add new enum elements past them!
*/
{ SEG_RAID5_LS, "raid5"}, /* same as "raid5_ls" (default for MD also) */
{ SEG_RAID6_ZR, "raid6"}, /* same as "raid6_zr" */
};
/* Some segment types have a list of areas of other devices attached */
struct seg_area {
struct dm_list list;
struct dm_tree_node *dev_node;
uint64_t offset;
unsigned rsite_index; /* Replicator site index */
struct dm_tree_node *slog; /* Replicator sync log node */
uint64_t region_size; /* Replicator sync log size */
uint32_t flags; /* Replicator sync log flags */
};
struct dm_thin_message {
dm_thin_message_t type;
union {
struct {
uint32_t device_id;
uint32_t origin_id;
} m_create_snap;
struct {
uint32_t device_id;
} m_create_thin;
struct {
uint32_t device_id;
} m_delete;
struct {
uint64_t current_id;
uint64_t new_id;
} m_set_transaction_id;
} u;
};
struct thin_message {
struct dm_list list;
struct dm_thin_message message;
int expected_errno;
};
/* Replicator-log has a list of sites */
/* FIXME: maybe move to seg_area too? */
struct replicator_site {
struct dm_list list;
unsigned rsite_index;
dm_replicator_mode_t mode;
uint32_t async_timeout;
uint32_t fall_behind_ios;
uint64_t fall_behind_data;
};
/* Per-segment properties */
struct load_segment {
struct dm_list list;
unsigned type;
uint64_t size;
unsigned area_count; /* Linear + Striped + Mirrored + Crypt + Replicator */
struct dm_list areas; /* Linear + Striped + Mirrored + Crypt + Replicator */
uint32_t stripe_size; /* Striped + raid */
int persistent; /* Snapshot */
uint32_t chunk_size; /* Snapshot + cache */
struct dm_tree_node *cow; /* Snapshot */
struct dm_tree_node *origin; /* Snapshot + Snapshot origin + Cache */
struct dm_tree_node *merge; /* Snapshot */
struct dm_tree_node *log; /* Mirror + Replicator */
uint32_t region_size; /* Mirror + raid */
unsigned clustered; /* Mirror */
unsigned mirror_area_count; /* Mirror */
uint32_t flags; /* Mirror + raid + Cache */
char *uuid; /* Clustered mirror log */
unsigned core_argc; /* Cache */
const char *const *core_argv; /* Cache */
const char *policy_name; /* Cache */
unsigned policy_argc; /* Cache */
const char *const *policy_argv; /* Cache */
const char *cipher; /* Crypt */
const char *chainmode; /* Crypt */
const char *iv; /* Crypt */
uint64_t iv_offset; /* Crypt */
const char *key; /* Crypt */
const char *rlog_type; /* Replicator */
struct dm_list rsites; /* Replicator */
unsigned rsite_count; /* Replicator */
unsigned rdevice_count; /* Replicator */
struct dm_tree_node *replicator;/* Replicator-dev */
uint64_t rdevice_index; /* Replicator-dev */
uint64_t rebuilds; /* raid */
uint64_t writemostly; /* raid */
uint32_t writebehind; /* raid */
uint32_t max_recovery_rate; /* raid kB/sec/disk */
uint32_t min_recovery_rate; /* raid kB/sec/disk */
struct dm_tree_node *metadata; /* Thin_pool + Cache */
struct dm_tree_node *pool; /* Thin_pool, Thin */
struct dm_tree_node *external; /* Thin */
struct dm_list thin_messages; /* Thin_pool */
uint64_t transaction_id; /* Thin_pool */
uint64_t low_water_mark; /* Thin_pool */
uint32_t data_block_size; /* Thin_pool */
unsigned skip_block_zeroing; /* Thin_pool */
unsigned ignore_discard; /* Thin_pool target vsn 1.1 */
unsigned no_discard_passdown; /* Thin_pool target vsn 1.1 */
uint32_t device_id; /* Thin */
};
/* Per-device properties */
struct load_properties {
int read_only;
uint32_t major;
uint32_t minor;
uint32_t read_ahead;
uint32_t read_ahead_flags;
unsigned segment_count;
unsigned size_changed;
struct dm_list segs;
const char *new_name;
/* If immediate_dev_node is set to 1, try to create the dev node
* as soon as possible (e.g. in preload stage even during traversal
* and processing of dm tree). This will also flush all stacked dev
* node operations, synchronizing with udev.
*/
unsigned immediate_dev_node;
/*
* If the device size changed from zero and this is set,
* don't resume the device immediately, even if the device
* has parents. This works provided the parents do not
* validate the device size and is required by pvmove to
* avoid starting the mirror resync operation too early.
*/
unsigned delay_resume_if_new;
/* Send messages for this node in preload */
unsigned send_messages;
};
/* Two of these used to join two nodes with uses and used_by. */
struct dm_tree_link {
struct dm_list list;
struct dm_tree_node *node;
};
struct dm_tree_node {
struct dm_tree *dtree;
const char *name;
const char *uuid;
struct dm_info info;
struct dm_list uses; /* Nodes this node uses */
struct dm_list used_by; /* Nodes that use this node */
int activation_priority; /* 0 gets activated first */
int implicit_deps; /* 1 device only implicitly referenced */
uint16_t udev_flags; /* Udev control flags */
void *context; /* External supplied context */
struct load_properties props; /* For creation/table (re)load */
/*
* If presuspend of child node is needed
* Note: only direct child is allowed
*/
struct dm_tree_node *presuspend_node;
/* Callback */
dm_node_callback_fn callback;
void *callback_data;
/*
* TODO:
* Add advanced code which tracks of send ioctls and their
* proper revert operation for more advanced recovery
* Current code serves mostly only to recovery when
* thin pool metadata check fails and command would
* have left active thin data and metadata subvolumes.
*/
struct dm_list activated; /* Head of activated nodes for preload revert */
struct dm_list activated_list; /* List of activated nodes for preload revert */
};
struct dm_tree {
struct dm_pool *mem;
struct dm_hash_table *devs;
struct dm_hash_table *uuids;
struct dm_tree_node root;
int skip_lockfs; /* 1 skips lockfs (for non-snapshots) */
int no_flush; /* 1 sets noflush (mirrors/multipath) */
int retry_remove; /* 1 retries remove if not successful */
uint32_t cookie;
const char **optional_uuid_suffixes; /* uuid suffixes ignored when matching */
};
/*
* Tree functions.
*/
struct dm_tree *dm_tree_create(void)
{
struct dm_pool *dmem;
struct dm_tree *dtree;
if (!(dmem = dm_pool_create("dtree", 1024)) ||
!(dtree = dm_pool_zalloc(dmem, sizeof(*dtree)))) {
log_error("Failed to allocate dtree.");
if (dmem)
dm_pool_destroy(dmem);
return NULL;
}
dtree->root.dtree = dtree;
dm_list_init(&dtree->root.uses);
dm_list_init(&dtree->root.used_by);
dm_list_init(&dtree->root.activated);
dtree->skip_lockfs = 0;
dtree->no_flush = 0;
dtree->mem = dmem;
dtree->optional_uuid_suffixes = NULL;
if (!(dtree->devs = dm_hash_create(8))) {
log_error("dtree hash creation failed");
dm_pool_destroy(dtree->mem);
return NULL;
}
if (!(dtree->uuids = dm_hash_create(32))) {
log_error("dtree uuid hash creation failed");
dm_hash_destroy(dtree->devs);
dm_pool_destroy(dtree->mem);
return NULL;
}
return dtree;
}
void dm_tree_free(struct dm_tree *dtree)
{
if (!dtree)
return;
dm_hash_destroy(dtree->uuids);
dm_hash_destroy(dtree->devs);
dm_pool_destroy(dtree->mem);
}
void dm_tree_set_cookie(struct dm_tree_node *node, uint32_t cookie)
{
node->dtree->cookie = cookie;
}
uint32_t dm_tree_get_cookie(struct dm_tree_node *node)
{
return node->dtree->cookie;
}
void dm_tree_skip_lockfs(struct dm_tree_node *dnode)
{
dnode->dtree->skip_lockfs = 1;
}
void dm_tree_use_no_flush_suspend(struct dm_tree_node *dnode)
{
dnode->dtree->no_flush = 1;
}
void dm_tree_retry_remove(struct dm_tree_node *dnode)
{
dnode->dtree->retry_remove = 1;
}
/*
* Node functions.
*/
static int _nodes_are_linked(const struct dm_tree_node *parent,
const struct dm_tree_node *child)
{
struct dm_tree_link *dlink;
dm_list_iterate_items(dlink, &parent->uses)
if (dlink->node == child)
return 1;
return 0;
}
static int _link(struct dm_list *list, struct dm_tree_node *node)
{
struct dm_tree_link *dlink;
if (!(dlink = dm_pool_alloc(node->dtree->mem, sizeof(*dlink)))) {
log_error("dtree link allocation failed");
return 0;
}
dlink->node = node;
dm_list_add(list, &dlink->list);
return 1;
}
static int _link_nodes(struct dm_tree_node *parent,
struct dm_tree_node *child)
{
if (_nodes_are_linked(parent, child))
return 1;
if (!_link(&parent->uses, child))
return 0;
if (!_link(&child->used_by, parent))
return 0;
return 1;
}
static void _unlink(struct dm_list *list, struct dm_tree_node *node)
{
struct dm_tree_link *dlink;
dm_list_iterate_items(dlink, list)
if (dlink->node == node) {
dm_list_del(&dlink->list);
break;
}
}
static void _unlink_nodes(struct dm_tree_node *parent,
struct dm_tree_node *child)
{
if (!_nodes_are_linked(parent, child))
return;
_unlink(&parent->uses, child);
_unlink(&child->used_by, parent);
}
static int _add_to_toplevel(struct dm_tree_node *node)
{
return _link_nodes(&node->dtree->root, node);
}
static void _remove_from_toplevel(struct dm_tree_node *node)
{
_unlink_nodes(&node->dtree->root, node);
}
static int _add_to_bottomlevel(struct dm_tree_node *node)
{
return _link_nodes(node, &node->dtree->root);
}
static void _remove_from_bottomlevel(struct dm_tree_node *node)
{
_unlink_nodes(node, &node->dtree->root);
}
static int _link_tree_nodes(struct dm_tree_node *parent, struct dm_tree_node *child)
{
/* Don't link to root node if child already has a parent */
if (parent == &parent->dtree->root) {
if (dm_tree_node_num_children(child, 1))
return 1;
} else
_remove_from_toplevel(child);
if (child == &child->dtree->root) {
if (dm_tree_node_num_children(parent, 0))
return 1;
} else
_remove_from_bottomlevel(parent);
return _link_nodes(parent, child);
}
static struct dm_tree_node *_create_dm_tree_node(struct dm_tree *dtree,
const char *name,
const char *uuid,
struct dm_info *info,
void *context,
uint16_t udev_flags)
{
struct dm_tree_node *node;
dev_t dev;
if (!(node = dm_pool_zalloc(dtree->mem, sizeof(*node)))) {
log_error("_create_dm_tree_node alloc failed");
return NULL;
}
node->dtree = dtree;
node->name = name;
node->uuid = uuid;
node->info = *info;
node->context = context;
node->udev_flags = udev_flags;
dm_list_init(&node->uses);
dm_list_init(&node->used_by);
dm_list_init(&node->activated);
dm_list_init(&node->props.segs);
dev = MKDEV((dev_t)info->major, info->minor);
if (!dm_hash_insert_binary(dtree->devs, (const char *) &dev,
sizeof(dev), node)) {
log_error("dtree node hash insertion failed");
dm_pool_free(dtree->mem, node);
return NULL;
}
if (uuid && *uuid &&
!dm_hash_insert(dtree->uuids, uuid, node)) {
log_error("dtree uuid hash insertion failed");
dm_hash_remove_binary(dtree->devs, (const char *) &dev,
sizeof(dev));
dm_pool_free(dtree->mem, node);
return NULL;
}
return node;
}
static struct dm_tree_node *_find_dm_tree_node(struct dm_tree *dtree,
uint32_t major, uint32_t minor)
{
dev_t dev = MKDEV((dev_t)major, minor);
return dm_hash_lookup_binary(dtree->devs, (const char *) &dev,
sizeof(dev));
}
void dm_tree_set_optional_uuid_suffixes(struct dm_tree *dtree, const char **optional_uuid_suffixes)
{
dtree->optional_uuid_suffixes = optional_uuid_suffixes;
}
static struct dm_tree_node *_find_dm_tree_node_by_uuid(struct dm_tree *dtree,
const char *uuid)
{
struct dm_tree_node *node;
const char *default_uuid_prefix;
size_t default_uuid_prefix_len;
const char *suffix, *suffix_position;
char uuid_without_suffix[DM_UUID_LEN];
unsigned i = 0;
const char **suffix_list = dtree->optional_uuid_suffixes;
if ((node = dm_hash_lookup(dtree->uuids, uuid))) {
log_debug("Matched uuid %s in deptree.", uuid);
return node;
}
default_uuid_prefix = dm_uuid_prefix();
default_uuid_prefix_len = strlen(default_uuid_prefix);
if (suffix_list && (suffix_position = rindex(uuid, '-'))) {
while ((suffix = suffix_list[i++])) {
if (strcmp(suffix_position + 1, suffix))
continue;
(void) strncpy(uuid_without_suffix, uuid, sizeof(uuid_without_suffix));
uuid_without_suffix[suffix_position - uuid] = '\0';
if ((node = dm_hash_lookup(dtree->uuids, uuid_without_suffix))) {
log_debug("Matched uuid %s (missing suffix -%s) in deptree.", uuid_without_suffix, suffix);
return node;
}
break;
};
}
if (strncmp(uuid, default_uuid_prefix, default_uuid_prefix_len))
return NULL;
if ((node = dm_hash_lookup(dtree->uuids, uuid + default_uuid_prefix_len))) {
log_debug("Matched uuid %s (missing prefix) in deptree.", uuid + default_uuid_prefix_len);
return node;
}
log_debug("Not matched uuid %s in deptree.", uuid + default_uuid_prefix_len);
return NULL;
}
void dm_tree_node_set_udev_flags(struct dm_tree_node *dnode, uint16_t udev_flags)
{
struct dm_info *dinfo = &dnode->info;
if (udev_flags != dnode->udev_flags)
log_debug_activation("Resetting %s (%" PRIu32 ":%" PRIu32
") udev_flags from 0x%x to 0x%x",
dnode->name, dinfo->major, dinfo->minor,
dnode->udev_flags, udev_flags);
dnode->udev_flags = udev_flags;
}
void dm_tree_node_set_read_ahead(struct dm_tree_node *dnode,
uint32_t read_ahead,
uint32_t read_ahead_flags)
{
dnode->props.read_ahead = read_ahead;
dnode->props.read_ahead_flags = read_ahead_flags;
}
void dm_tree_node_set_presuspend_node(struct dm_tree_node *node,
struct dm_tree_node *presuspend_node)
{
node->presuspend_node = presuspend_node;
}
const char *dm_tree_node_get_name(const struct dm_tree_node *node)
{
return node->info.exists ? node->name : "";
}
const char *dm_tree_node_get_uuid(const struct dm_tree_node *node)
{
return node->info.exists ? node->uuid : "";
}
const struct dm_info *dm_tree_node_get_info(const struct dm_tree_node *node)
{
return &node->info;
}
void *dm_tree_node_get_context(const struct dm_tree_node *node)
{
return node->context;
}
int dm_tree_node_size_changed(const struct dm_tree_node *dnode)
{
return dnode->props.size_changed;
}
int dm_tree_node_num_children(const struct dm_tree_node *node, uint32_t inverted)
{
if (inverted) {
if (_nodes_are_linked(&node->dtree->root, node))
return 0;
return dm_list_size(&node->used_by);
}
if (_nodes_are_linked(node, &node->dtree->root))
return 0;
return dm_list_size(&node->uses);
}
/*
* Returns 1 if no prefix supplied
*/
static int _uuid_prefix_matches(const char *uuid, const char *uuid_prefix, size_t uuid_prefix_len)
{
const char *default_uuid_prefix = dm_uuid_prefix();
size_t default_uuid_prefix_len = strlen(default_uuid_prefix);
if (!uuid_prefix)
return 1;
if (!strncmp(uuid, uuid_prefix, uuid_prefix_len))
return 1;
/* Handle transition: active device uuids might be missing the prefix */
if (uuid_prefix_len <= 4)
return 0;
if (!strncmp(uuid, default_uuid_prefix, default_uuid_prefix_len))
return 0;
if (strncmp(uuid_prefix, default_uuid_prefix, default_uuid_prefix_len))
return 0;
if (!strncmp(uuid, uuid_prefix + default_uuid_prefix_len, uuid_prefix_len - default_uuid_prefix_len))
return 1;
return 0;
}
/*
* Returns 1 if no children.
*/
static int _children_suspended(struct dm_tree_node *node,
uint32_t inverted,
const char *uuid_prefix,
size_t uuid_prefix_len)
{
struct dm_list *list;
struct dm_tree_link *dlink;
const struct dm_info *dinfo;
const char *uuid;
if (inverted) {
if (_nodes_are_linked(&node->dtree->root, node))
return 1;
list = &node->used_by;
} else {
if (_nodes_are_linked(node, &node->dtree->root))
return 1;
list = &node->uses;
}
dm_list_iterate_items(dlink, list) {
if (!(uuid = dm_tree_node_get_uuid(dlink->node))) {
stack;
continue;
}
/* Ignore if it doesn't belong to this VG */
if (!_uuid_prefix_matches(uuid, uuid_prefix, uuid_prefix_len))
continue;
/* Ignore if parent node wants to presuspend this node */
if (dlink->node->presuspend_node == node)
continue;
if (!(dinfo = dm_tree_node_get_info(dlink->node)))
return_0; /* FIXME Is this normal? */
if (!dinfo->suspended)
return 0;
}
return 1;
}
/*
* Set major and minor to zero for root of tree.
*/
struct dm_tree_node *dm_tree_find_node(struct dm_tree *dtree,
uint32_t major,
uint32_t minor)
{
if (!major && !minor)
return &dtree->root;
return _find_dm_tree_node(dtree, major, minor);
}
/*
* Set uuid to NULL for root of tree.
*/
struct dm_tree_node *dm_tree_find_node_by_uuid(struct dm_tree *dtree,
const char *uuid)
{
if (!uuid || !*uuid)
return &dtree->root;
return _find_dm_tree_node_by_uuid(dtree, uuid);
}
/*
* First time set *handle to NULL.
* Set inverted to invert the tree.
*/
struct dm_tree_node *dm_tree_next_child(void **handle,
const struct dm_tree_node *parent,
uint32_t inverted)
{
struct dm_list **dlink = (struct dm_list **) handle;
const struct dm_list *use_list;
if (inverted)
use_list = &parent->used_by;
else
use_list = &parent->uses;
if (!*dlink)
*dlink = dm_list_first(use_list);
else
*dlink = dm_list_next(use_list, *dlink);
return (*dlink) ? dm_list_item(*dlink, struct dm_tree_link)->node : NULL;
}
static int _deps(struct dm_task **dmt, struct dm_pool *mem, uint32_t major, uint32_t minor,
const char **name, const char **uuid, unsigned inactive_table,
struct dm_info *info, struct dm_deps **deps)
{
memset(info, 0, sizeof(*info));
if (!dm_is_dm_major(major)) {
if (name)
*name = "";
if (uuid)
*uuid = "";
*deps = NULL;
info->major = major;
info->minor = minor;
return 1;
}
if (!(*dmt = dm_task_create(DM_DEVICE_DEPS))) {
log_error("deps dm_task creation failed");
return 0;
}
if (!dm_task_set_major(*dmt, major)) {
log_error("_deps: failed to set major for (%" PRIu32 ":%" PRIu32 ")",
major, minor);
goto failed;
}
if (!dm_task_set_minor(*dmt, minor)) {
log_error("_deps: failed to set minor for (%" PRIu32 ":%" PRIu32 ")",
major, minor);
goto failed;
}
if (inactive_table && !dm_task_query_inactive_table(*dmt)) {
log_error("_deps: failed to set inactive table for (%" PRIu32 ":%" PRIu32 ")",
major, minor);
goto failed;
}
if (!dm_task_run(*dmt)) {
log_error("_deps: task run failed for (%" PRIu32 ":%" PRIu32 ")",
major, minor);
goto failed;
}
if (!dm_task_get_info(*dmt, info)) {
log_error("_deps: failed to get info for (%" PRIu32 ":%" PRIu32 ")",
major, minor);
goto failed;
}
if (!info->exists) {
if (name)
*name = "";
if (uuid)
*uuid = "";
*deps = NULL;
} else {
if (info->major != major) {
log_error("Inconsistent dtree major number: %u != %u",
major, info->major);
goto failed;
}
if (info->minor != minor) {
log_error("Inconsistent dtree minor number: %u != %u",
minor, info->minor);
goto failed;
}
if (name && !(*name = dm_pool_strdup(mem, dm_task_get_name(*dmt)))) {
log_error("name pool_strdup failed");
goto failed;
}
if (uuid && !(*uuid = dm_pool_strdup(mem, dm_task_get_uuid(*dmt)))) {
log_error("uuid pool_strdup failed");
goto failed;
}
*deps = dm_task_get_deps(*dmt);
}
return 1;
failed:
dm_task_destroy(*dmt);
return 0;
}
/*
* Deactivate a device with its dependencies if the uuid prefix matches.
*/
static int _info_by_dev(uint32_t major, uint32_t minor, int with_open_count,
struct dm_info *info, struct dm_pool *mem,
const char **name, const char **uuid)
{
struct dm_task *dmt;
int r;
if (!(dmt = dm_task_create(DM_DEVICE_INFO))) {
log_error("_info_by_dev: dm_task creation failed");
return 0;
}
if (!dm_task_set_major(dmt, major) || !dm_task_set_minor(dmt, minor)) {
log_error("_info_by_dev: Failed to set device number");
dm_task_destroy(dmt);
return 0;
}
if (!with_open_count && !dm_task_no_open_count(dmt))
log_error("Failed to disable open_count");
if (!(r = dm_task_run(dmt)))
goto_out;
if (!(r = dm_task_get_info(dmt, info)))
goto_out;
if (name && !(*name = dm_pool_strdup(mem, dm_task_get_name(dmt)))) {
log_error("name pool_strdup failed");
r = 0;
goto out;
}
if (uuid && !(*uuid = dm_pool_strdup(mem, dm_task_get_uuid(dmt)))) {
log_error("uuid pool_strdup failed");
r = 0;
goto out;
}
out:
dm_task_destroy(dmt);
return r;
}
static int _check_device_not_in_use(const char *name, struct dm_info *info)
{
if (!info->exists)
return 1;
/* If sysfs is not used, use open_count information only. */
if (!*dm_sysfs_dir()) {
if (info->open_count) {
log_error("Device %s (%" PRIu32 ":%" PRIu32 ") in use",
name, info->major, info->minor);
return 0;
}
return 1;
}
if (dm_device_has_holders(info->major, info->minor)) {
log_error("Device %s (%" PRIu32 ":%" PRIu32 ") is used "
"by another device.", name, info->major, info->minor);
return 0;
}
if (dm_device_has_mounted_fs(info->major, info->minor)) {
log_error("Device %s (%" PRIu32 ":%" PRIu32 ") contains "
"a filesystem in use.", name, info->major, info->minor);
return 0;
}
return 1;
}
/* Check if all parent nodes of given node have open_count == 0 */
static int _node_has_closed_parents(struct dm_tree_node *node,
const char *uuid_prefix,
size_t uuid_prefix_len)
{
struct dm_tree_link *dlink;
const struct dm_info *dinfo;
struct dm_info info;
const char *uuid;
/* Iterate through parents of this node */
dm_list_iterate_items(dlink, &node->used_by) {
if (!(uuid = dm_tree_node_get_uuid(dlink->node))) {
stack;
continue;
}
/* Ignore if it doesn't belong to this VG */
if (!_uuid_prefix_matches(uuid, uuid_prefix, uuid_prefix_len))
continue;
if (!(dinfo = dm_tree_node_get_info(dlink->node)))
return_0; /* FIXME Is this normal? */
/* Refresh open_count */
if (!_info_by_dev(dinfo->major, dinfo->minor, 1, &info, NULL, NULL, NULL) ||
!info.exists)
continue;
if (info.open_count) {
log_debug_activation("Node %s %d:%d has open_count %d", uuid_prefix,
dinfo->major, dinfo->minor, info.open_count);
return 0;
}
}
return 1;
}
static int _deactivate_node(const char *name, uint32_t major, uint32_t minor,
uint32_t *cookie, uint16_t udev_flags, int retry)
{
struct dm_task *dmt;
int r = 0;
log_verbose("Removing %s (%" PRIu32 ":%" PRIu32 ")", name, major, minor);
if (!(dmt = dm_task_create(DM_DEVICE_REMOVE))) {
log_error("Deactivation dm_task creation failed for %s", name);
return 0;
}
if (!dm_task_set_major(dmt, major) || !dm_task_set_minor(dmt, minor)) {
log_error("Failed to set device number for %s deactivation", name);
goto out;
}
if (!dm_task_no_open_count(dmt))
log_error("Failed to disable open_count");
if (cookie)
if (!dm_task_set_cookie(dmt, cookie, udev_flags))
goto out;
if (retry)
dm_task_retry_remove(dmt);
r = dm_task_run(dmt);
/* FIXME Until kernel returns actual name so dm-iface.c can handle it */
rm_dev_node(name, dmt->cookie_set && !(udev_flags & DM_UDEV_DISABLE_DM_RULES_FLAG),
dmt->cookie_set && (udev_flags & DM_UDEV_DISABLE_LIBRARY_FALLBACK));
/* FIXME Remove node from tree or mark invalid? */
out:
dm_task_destroy(dmt);
return r;
}
static int _node_clear_table(struct dm_tree_node *dnode, uint16_t udev_flags)
{
struct dm_task *dmt = NULL, *deps_dmt = NULL;
struct dm_info *info, deps_info;
struct dm_deps *deps = NULL;
const char *name, *uuid;
const char *default_uuid_prefix;
size_t default_uuid_prefix_len;
uint32_t i;
int r = 0;
if (!(info = &dnode->info)) {
log_error("_node_clear_table failed: missing info");
return 0;
}
if (!(name = dm_tree_node_get_name(dnode))) {
log_error("_node_clear_table failed: missing name");
return 0;
}
/* Is there a table? */
if (!info->exists || !info->inactive_table)
return 1;
/* Get devices used by inactive table that's about to be deleted. */
if (!_deps(&deps_dmt, dnode->dtree->mem, info->major, info->minor, NULL, NULL, 1, info, &deps)) {
log_error("Failed to obtain dependencies for %s before clearing table.", name);
return 0;
}
log_verbose("Clearing inactive table %s (%" PRIu32 ":%" PRIu32 ")",
name, info->major, info->minor);
if (!(dmt = dm_task_create(DM_DEVICE_CLEAR))) {
log_error("Table clear dm_task creation failed for %s", name);
goto out;
}
if (!dm_task_set_major(dmt, info->major) ||
!dm_task_set_minor(dmt, info->minor)) {
log_error("Failed to set device number for %s table clear", name);
goto out;
}
r = dm_task_run(dmt);
if (!dm_task_get_info(dmt, info)) {
log_error("_node_clear_table failed: info missing after running task for %s", name);
r = 0;
}
if (!r || !deps)
goto_out;
/*
* Remove (incomplete) devices that the inactive table referred to but
* which are not in the tree, no longer referenced and don't have a live
* table.
*/
default_uuid_prefix = dm_uuid_prefix();
default_uuid_prefix_len = strlen(default_uuid_prefix);
for (i = 0; i < deps->count; i++) {
/* If already in tree, assume it's under control */
if (_find_dm_tree_node(dnode->dtree, MAJOR(deps->device[i]), MINOR(deps->device[i])))
continue;
if (!_info_by_dev(MAJOR(deps->device[i]), MINOR(deps->device[i]), 1,
&deps_info, dnode->dtree->mem, &name, &uuid))
continue;
/* Proceed if device is an 'orphan' - unreferenced and without a live table. */
if (!deps_info.exists || deps_info.live_table || deps_info.open_count)
continue;
if (strncmp(uuid, default_uuid_prefix, default_uuid_prefix_len))
continue;
/* Remove device. */
if (!_deactivate_node(name, deps_info.major, deps_info.minor, &dnode->dtree->cookie, udev_flags, 0)) {
log_error("Failed to deactivate no-longer-used device %s (%"
PRIu32 ":%" PRIu32 ")", name, deps_info.major, deps_info.minor);
} else if (deps_info.suspended)
dec_suspended();
}
out:
if (dmt)
dm_task_destroy(dmt);
if (deps_dmt)
dm_task_destroy(deps_dmt);
return r;
}
struct dm_tree_node *dm_tree_add_new_dev_with_udev_flags(struct dm_tree *dtree,
const char *name,
const char *uuid,
uint32_t major,
uint32_t minor,
int read_only,
int clear_inactive,
void *context,
uint16_t udev_flags)
{
struct dm_tree_node *dnode;
struct dm_info info = { 0 };
const char *name2;
const char *uuid2;
if (!name || !uuid) {
log_error("Cannot add device without name and uuid.");
return NULL;
}
/* Do we need to add node to tree? */
if (!(dnode = dm_tree_find_node_by_uuid(dtree, uuid))) {
if (!(name2 = dm_pool_strdup(dtree->mem, name))) {
log_error("name pool_strdup failed");
return NULL;
}
if (!(uuid2 = dm_pool_strdup(dtree->mem, uuid))) {
log_error("uuid pool_strdup failed");
return NULL;
}
if (!(dnode = _create_dm_tree_node(dtree, name2, uuid2, &info,
context, 0)))
return_NULL;
/* Attach to root node until a table is supplied */
if (!_add_to_toplevel(dnode) || !_add_to_bottomlevel(dnode))
return_NULL;
dnode->props.major = major;
dnode->props.minor = minor;
} else if (strcmp(name, dnode->name)) {
/* Do we need to rename node? */
if (!(dnode->props.new_name = dm_pool_strdup(dtree->mem, name))) {
log_error("name pool_strdup failed");
return NULL;
}
}
dnode->props.read_only = read_only ? 1 : 0;
dnode->props.read_ahead = DM_READ_AHEAD_AUTO;
dnode->props.read_ahead_flags = 0;
if (clear_inactive && !_node_clear_table(dnode, udev_flags))
return_NULL;
dnode->context = context;
dnode->udev_flags = udev_flags;
return dnode;
}
struct dm_tree_node *dm_tree_add_new_dev(struct dm_tree *dtree, const char *name,
const char *uuid, uint32_t major, uint32_t minor,
int read_only, int clear_inactive, void *context)
{
return dm_tree_add_new_dev_with_udev_flags(dtree, name, uuid, major, minor,
read_only, clear_inactive, context, 0);
}
static struct dm_tree_node *_add_dev(struct dm_tree *dtree,
struct dm_tree_node *parent,
uint32_t major, uint32_t minor,
uint16_t udev_flags,
int implicit_deps)
{
struct dm_task *dmt = NULL;
struct dm_info info;
struct dm_deps *deps = NULL;
const char *name = NULL;
const char *uuid = NULL;
struct dm_tree_node *node = NULL;
uint32_t i;
int new = 0;
/* Already in tree? */
if (!(node = _find_dm_tree_node(dtree, major, minor))) {
if (!_deps(&dmt, dtree->mem, major, minor, &name, &uuid, 0, &info, &deps))
return_NULL;
if (!(node = _create_dm_tree_node(dtree, name, uuid, &info,
NULL, udev_flags)))
goto_out;
new = 1;
node->implicit_deps = implicit_deps;
} else if (!implicit_deps && node->implicit_deps) {
node->udev_flags = udev_flags;
node->implicit_deps = 0;
}
if (!_link_tree_nodes(parent, node)) {
node = NULL;
goto_out;
}
/* If node was already in tree, no need to recurse. */
if (!new)
goto out;
/* Can't recurse if not a mapped device or there are no dependencies */
if (!node->info.exists || !deps || !deps->count) {
if (!_add_to_bottomlevel(node)) {
stack;
node = NULL;
}
goto out;
}
/* Add dependencies to tree */
for (i = 0; i < deps->count; i++)
/* Implicit devices are by default temporary */
if (!_add_dev(dtree, node, MAJOR(deps->device[i]),
MINOR(deps->device[i]), udev_flags |
DM_UDEV_DISABLE_SUBSYSTEM_RULES_FLAG |
DM_UDEV_DISABLE_DISK_RULES_FLAG |
DM_UDEV_DISABLE_OTHER_RULES_FLAG, 1)) {
node = NULL;
goto_out;
}
out:
if (dmt)
dm_task_destroy(dmt);
return node;
}
int dm_tree_add_dev(struct dm_tree *dtree, uint32_t major, uint32_t minor)
{
return _add_dev(dtree, &dtree->root, major, minor, 0, 0) ? 1 : 0;
}
int dm_tree_add_dev_with_udev_flags(struct dm_tree *dtree, uint32_t major,
uint32_t minor, uint16_t udev_flags)
{
return _add_dev(dtree, &dtree->root, major, minor, udev_flags, 0) ? 1 : 0;
}
static int _rename_node(const char *old_name, const char *new_name, uint32_t major,
uint32_t minor, uint32_t *cookie, uint16_t udev_flags)
{
struct dm_task *dmt;
int r = 0;
log_verbose("Renaming %s (%" PRIu32 ":%" PRIu32 ") to %s", old_name, major, minor, new_name);
if (!(dmt = dm_task_create(DM_DEVICE_RENAME))) {
log_error("Rename dm_task creation failed for %s", old_name);
return 0;
}
if (!dm_task_set_name(dmt, old_name)) {
log_error("Failed to set name for %s rename.", old_name);
goto out;
}
if (!dm_task_set_newname(dmt, new_name))
goto_out;
if (!dm_task_no_open_count(dmt))
log_error("Failed to disable open_count");
if (!dm_task_set_cookie(dmt, cookie, udev_flags))
goto out;
r = dm_task_run(dmt);
out:
dm_task_destroy(dmt);
return r;
}
/* FIXME Merge with _suspend_node? */
static int _resume_node(const char *name, uint32_t major, uint32_t minor,
uint32_t read_ahead, uint32_t read_ahead_flags,
struct dm_info *newinfo, uint32_t *cookie,
uint16_t udev_flags, int already_suspended)
{
struct dm_task *dmt;
int r = 0;
log_verbose("Resuming %s (%" PRIu32 ":%" PRIu32 ")", name, major, minor);
if (!(dmt = dm_task_create(DM_DEVICE_RESUME))) {
log_debug_activation("Suspend dm_task creation failed for %s.", name);
return 0;
}
/* FIXME Kernel should fill in name on return instead */
if (!dm_task_set_name(dmt, name)) {
log_debug_activation("Failed to set device name for %s resumption.", name);
goto out;
}
if (!dm_task_set_major(dmt, major) || !dm_task_set_minor(dmt, minor)) {
log_error("Failed to set device number for %s resumption.", name);
goto out;
}
if (!dm_task_no_open_count(dmt))
log_error("Failed to disable open_count");
if (!dm_task_set_read_ahead(dmt, read_ahead, read_ahead_flags))
log_error("Failed to set read ahead");
if (!dm_task_set_cookie(dmt, cookie, udev_flags))
goto_out;
if (!(r = dm_task_run(dmt)))
goto_out;
if (already_suspended)
dec_suspended();
if (!(r = dm_task_get_info(dmt, newinfo)))
stack;
out:
dm_task_destroy(dmt);
return r;
}
static int _suspend_node(const char *name, uint32_t major, uint32_t minor,
int skip_lockfs, int no_flush, struct dm_info *newinfo)
{
struct dm_task *dmt;
int r;
log_verbose("Suspending %s (%" PRIu32 ":%" PRIu32 ")%s%s",
name, major, minor,
skip_lockfs ? "" : " with filesystem sync",
no_flush ? "" : " with device flush");
if (!(dmt = dm_task_create(DM_DEVICE_SUSPEND))) {
log_error("Suspend dm_task creation failed for %s", name);
return 0;
}
if (!dm_task_set_major(dmt, major) || !dm_task_set_minor(dmt, minor)) {
log_error("Failed to set device number for %s suspension.", name);
dm_task_destroy(dmt);
return 0;
}
if (!dm_task_no_open_count(dmt))
log_error("Failed to disable open_count");
if (skip_lockfs && !dm_task_skip_lockfs(dmt))
log_error("Failed to set skip_lockfs flag.");
if (no_flush && !dm_task_no_flush(dmt))
log_error("Failed to set no_flush flag.");
if ((r = dm_task_run(dmt))) {
inc_suspended();
r = dm_task_get_info(dmt, newinfo);
}
dm_task_destroy(dmt);
return r;
}
static int _thin_pool_status_transaction_id(struct dm_tree_node *dnode, uint64_t *transaction_id)
{
struct dm_task *dmt;
int r = 0;
uint64_t start, length;
char *type = NULL;
char *params = NULL;
if (!(dmt = dm_task_create(DM_DEVICE_STATUS)))
return_0;
if (!dm_task_set_major(dmt, dnode->info.major) ||
!dm_task_set_minor(dmt, dnode->info.minor)) {
log_error("Failed to set major minor.");
goto out;
}
if (!dm_task_no_flush(dmt))
log_warn("Can't set no_flush flag."); /* Non fatal */
if (!dm_task_run(dmt))
goto_out;
dm_get_next_target(dmt, NULL, &start, &length, &type, &params);
if (type && (strcmp(type, "thin-pool") != 0)) {
log_error("Expected thin-pool target for %d:%d and got %s.",
dnode->info.major, dnode->info.minor, type);
goto out;
}
if (!params || (sscanf(params, "%" PRIu64, transaction_id) != 1)) {
log_error("Failed to parse transaction_id from %s.", params);
goto out;
}
log_debug_activation("Thin pool transaction id: %" PRIu64 " status: %s.", *transaction_id, params);
r = 1;
out:
dm_task_destroy(dmt);
return r;
}
static int _thin_pool_node_message(struct dm_tree_node *dnode, struct thin_message *tm)
{
struct dm_task *dmt;
struct dm_thin_message *m = &tm->message;
char buf[64];
int r;
switch (m->type) {
case DM_THIN_MESSAGE_CREATE_SNAP:
r = dm_snprintf(buf, sizeof(buf), "create_snap %u %u",
m->u.m_create_snap.device_id,
m->u.m_create_snap.origin_id);
break;
case DM_THIN_MESSAGE_CREATE_THIN:
r = dm_snprintf(buf, sizeof(buf), "create_thin %u",
m->u.m_create_thin.device_id);
break;
case DM_THIN_MESSAGE_DELETE:
r = dm_snprintf(buf, sizeof(buf), "delete %u",
m->u.m_delete.device_id);
break;
case DM_THIN_MESSAGE_SET_TRANSACTION_ID:
r = dm_snprintf(buf, sizeof(buf),
"set_transaction_id %" PRIu64 " %" PRIu64,
m->u.m_set_transaction_id.current_id,
m->u.m_set_transaction_id.new_id);
break;
case DM_THIN_MESSAGE_RESERVE_METADATA_SNAP: /* target vsn 1.1 */
r = dm_snprintf(buf, sizeof(buf), "reserve_metadata_snap");
break;
case DM_THIN_MESSAGE_RELEASE_METADATA_SNAP: /* target vsn 1.1 */
r = dm_snprintf(buf, sizeof(buf), "release_metadata_snap");
break;
default:
r = -1;
}
if (r < 0) {
log_error("Failed to prepare message.");
return 0;
}
r = 0;
if (!(dmt = dm_task_create(DM_DEVICE_TARGET_MSG)))
return_0;
if (!dm_task_set_major(dmt, dnode->info.major) ||
!dm_task_set_minor(dmt, dnode->info.minor)) {
log_error("Failed to set message major minor.");
goto out;
}
if (!dm_task_set_message(dmt, buf))
goto_out;
/* Internal functionality of dm_task */
dmt->expected_errno = tm->expected_errno;
if (!dm_task_run(dmt))
goto_out;
r = 1;
out:
dm_task_destroy(dmt);
return r;
}
/* For preload pass only validate pool's transaction_id */
static int _node_send_messages(struct dm_tree_node *dnode,
const char *uuid_prefix,
size_t uuid_prefix_len,
int send)
{
struct load_segment *seg;
struct thin_message *tmsg;
uint64_t trans_id;
const char *uuid;
int have_messages;
if (!dnode->info.exists || (dm_list_size(&dnode->props.segs) != 1))
return 1;
seg = dm_list_item(dm_list_last(&dnode->props.segs), struct load_segment);
if (seg->type != SEG_THIN_POOL)
return 1;
if (!(uuid = dm_tree_node_get_uuid(dnode)))
return_0;
if (!_uuid_prefix_matches(uuid, uuid_prefix, uuid_prefix_len)) {
log_debug_activation("UUID \"%s\" does not match.", uuid);
return 1;
}
if (!_thin_pool_status_transaction_id(dnode, &trans_id))
return_0;
have_messages = !dm_list_empty(&seg->thin_messages) ? 1 : 0;
if (trans_id == seg->transaction_id) {
dnode->props.send_messages = 0; /* messages already committed */
if (have_messages)
log_debug_activation("Thin pool transaction_id matches %" PRIu64
", skipping messages.", trans_id);
return 1;
}
/* Error if there are no stacked messages or id mismatches */
if (trans_id != (seg->transaction_id - have_messages)) {
log_error("Thin pool transaction_id is %" PRIu64 ", while expected %" PRIu64 ".",
trans_id, seg->transaction_id - have_messages);
return 0;
}
if (!send)
return 1; /* transaction_id is matching */
dm_list_iterate_items(tmsg, &seg->thin_messages) {
if (!(_thin_pool_node_message(dnode, tmsg)))
return_0;
if (tmsg->message.type == DM_THIN_MESSAGE_SET_TRANSACTION_ID) {
if (!_thin_pool_status_transaction_id(dnode, &trans_id))
return_0;
if (trans_id != tmsg->message.u.m_set_transaction_id.new_id) {
log_error("Thin pool transaction_id is %" PRIu64
" and does not match expected %" PRIu64 ".",
trans_id,
tmsg->message.u.m_set_transaction_id.new_id);
return 0;
}
}
}
dnode->props.send_messages = 0; /* messages posted */
return 1;
}
/*
* FIXME Don't attempt to deactivate known internal dependencies.
*/
static int _dm_tree_deactivate_children(struct dm_tree_node *dnode,
const char *uuid_prefix,
size_t uuid_prefix_len,
unsigned level)
{
int r = 1;
void *handle = NULL;
struct dm_tree_node *child = dnode;
struct dm_info info;
const struct dm_info *dinfo;
const char *name;
const char *uuid;
while ((child = dm_tree_next_child(&handle, dnode, 0))) {
if (!(dinfo = dm_tree_node_get_info(child))) {
stack;
continue;
}
if (!(name = dm_tree_node_get_name(child))) {
stack;
continue;
}
if (!(uuid = dm_tree_node_get_uuid(child))) {
stack;
continue;
}
/* Ignore if it doesn't belong to this VG */
if (!_uuid_prefix_matches(uuid, uuid_prefix, uuid_prefix_len))
continue;
/* Refresh open_count */
if (!_info_by_dev(dinfo->major, dinfo->minor, 1, &info, NULL, NULL, NULL) ||
!info.exists)
continue;
if (info.open_count) {
/* Skip internal non-toplevel opened nodes */
if (level)
continue;
/* When retry is not allowed, error */
if (!child->dtree->retry_remove) {
log_error("Unable to deactivate open %s (%" PRIu32
":%" PRIu32 ")", name, info.major, info.minor);
r = 0;
continue;
}
/* Check toplevel node for holders/mounted fs */
if (!_check_device_not_in_use(name, &info)) {
stack;
r = 0;
continue;
}
/* Go on with retry */
}
/* Also checking open_count in parent nodes of presuspend_node */
if ((child->presuspend_node &&
!_node_has_closed_parents(child->presuspend_node,
uuid_prefix, uuid_prefix_len))) {
/* Only report error from (likely non-internal) dependency at top level */
if (!level) {
log_error("Unable to deactivate open %s (%" PRIu32
":%" PRIu32 ")", name, info.major,
info.minor);
r = 0;
}
continue;
}
/* Suspend child node first if requested */
if (child->presuspend_node &&
!dm_tree_suspend_children(child, uuid_prefix, uuid_prefix_len))
continue;
if (!_deactivate_node(name, info.major, info.minor,
&child->dtree->cookie, child->udev_flags,
(level == 0) ? child->dtree->retry_remove : 0)) {
log_error("Unable to deactivate %s (%" PRIu32
":%" PRIu32 ")", name, info.major,
info.minor);
r = 0;
continue;
}
if (info.suspended && info.live_table)
dec_suspended();
if (child->callback &&
!child->callback(child, DM_NODE_CALLBACK_DEACTIVATED,
child->callback_data))
stack;
// FIXME: We need to let lvremove pass,
// so for now deactivation ignores check result
//r = 0; // FIXME: _node_clear_table() without callback ?
if (dm_tree_node_num_children(child, 0) &&
!_dm_tree_deactivate_children(child, uuid_prefix, uuid_prefix_len, level + 1))
return_0;
}
return r;
}
int dm_tree_deactivate_children(struct dm_tree_node *dnode,
const char *uuid_prefix,
size_t uuid_prefix_len)
{
return _dm_tree_deactivate_children(dnode, uuid_prefix, uuid_prefix_len, 0);
}
int dm_tree_suspend_children(struct dm_tree_node *dnode,
const char *uuid_prefix,
size_t uuid_prefix_len)
{
int r = 1;
void *handle = NULL;
struct dm_tree_node *child = dnode;
struct dm_info info, newinfo;
const struct dm_info *dinfo;
const char *name;
const char *uuid;
/* Suspend nodes at this level of the tree */
while ((child = dm_tree_next_child(&handle, dnode, 0))) {
if (!(dinfo = dm_tree_node_get_info(child))) {
stack;
continue;
}
if (!(name = dm_tree_node_get_name(child))) {
stack;
continue;
}
if (!(uuid = dm_tree_node_get_uuid(child))) {
stack;
continue;
}
/* Ignore if it doesn't belong to this VG */
if (!_uuid_prefix_matches(uuid, uuid_prefix, uuid_prefix_len))
continue;
/* Ensure immediate parents are already suspended */
if (!_children_suspended(child, 1, uuid_prefix, uuid_prefix_len))
continue;
if (!_info_by_dev(dinfo->major, dinfo->minor, 0, &info, NULL, NULL, NULL) ||
!info.exists || info.suspended)
continue;
if (!_suspend_node(name, info.major, info.minor,
child->dtree->skip_lockfs,
child->dtree->no_flush, &newinfo)) {
log_error("Unable to suspend %s (%" PRIu32
":%" PRIu32 ")", name, info.major,
info.minor);
r = 0;
continue;
}
/* Update cached info */
child->info = newinfo;
}
/* Then suspend any child nodes */
handle = NULL;
while ((child = dm_tree_next_child(&handle, dnode, 0))) {
if (!(uuid = dm_tree_node_get_uuid(child))) {
stack;
continue;
}
/* Ignore if it doesn't belong to this VG */
if (!_uuid_prefix_matches(uuid, uuid_prefix, uuid_prefix_len))
continue;
if (dm_tree_node_num_children(child, 0))
if (!dm_tree_suspend_children(child, uuid_prefix, uuid_prefix_len))
return_0;
}
return r;
}
/*
* _rename_conflict_exists
* @dnode
* @node
* @resolvable
*
* Check if there is a rename conflict with existing peers in
* this tree. 'resolvable' is set if the conflicting node will
* also be undergoing a rename. (Allowing that node to rename
* first would clear the conflict.)
*
* Returns: 1 if conflict, 0 otherwise
*/
static int _rename_conflict_exists(struct dm_tree_node *parent,
struct dm_tree_node *node,
int *resolvable)
{
void *handle = NULL;
const char *name = dm_tree_node_get_name(node);
const char *sibling_name;
struct dm_tree_node *sibling;
*resolvable = 0;
if (!name)
return_0;
while ((sibling = dm_tree_next_child(&handle, parent, 0))) {
if (sibling == node)
continue;
if (!(sibling_name = dm_tree_node_get_name(sibling))) {
stack;
continue;
}
if (!strcmp(node->props.new_name, sibling_name)) {
if (sibling->props.new_name)
*resolvable = 1;
return 1;
}
}
return 0;
}
int dm_tree_activate_children(struct dm_tree_node *dnode,
const char *uuid_prefix,
size_t uuid_prefix_len)
{
int r = 1;
int resolvable_name_conflict, awaiting_peer_rename = 0;
void *handle = NULL;
struct dm_tree_node *child = dnode;
struct dm_info newinfo;
const char *name;
const char *uuid;
int priority;
/* Activate children first */
while ((child = dm_tree_next_child(&handle, dnode, 0))) {
if (!(uuid = dm_tree_node_get_uuid(child))) {
stack;
continue;
}
if (!_uuid_prefix_matches(uuid, uuid_prefix, uuid_prefix_len))
continue;
if (dm_tree_node_num_children(child, 0))
if (!dm_tree_activate_children(child, uuid_prefix, uuid_prefix_len))
return_0;
}
handle = NULL;
for (priority = 0; priority < 3; priority++) {
awaiting_peer_rename = 0;
while ((child = dm_tree_next_child(&handle, dnode, 0))) {
if (priority != child->activation_priority)
continue;
if (!(uuid = dm_tree_node_get_uuid(child))) {
stack;
continue;
}
if (!_uuid_prefix_matches(uuid, uuid_prefix, uuid_prefix_len))
continue;
if (!(name = dm_tree_node_get_name(child))) {
stack;
continue;
}
/* Rename? */
if (child->props.new_name) {
if (_rename_conflict_exists(dnode, child, &resolvable_name_conflict) &&
resolvable_name_conflict) {
awaiting_peer_rename++;
continue;
}
if (!_rename_node(name, child->props.new_name, child->info.major,
child->info.minor, &child->dtree->cookie,
child->udev_flags)) {
log_error("Failed to rename %s (%" PRIu32
":%" PRIu32 ") to %s", name, child->info.major,
child->info.minor, child->props.new_name);
return 0;
}
child->name = child->props.new_name;
child->props.new_name = NULL;
}
if (!child->info.inactive_table && !child->info.suspended)
continue;
if (!_resume_node(child->name, child->info.major, child->info.minor,
child->props.read_ahead, child->props.read_ahead_flags,
&newinfo, &child->dtree->cookie, child->udev_flags, child->info.suspended)) {
log_error("Unable to resume %s (%" PRIu32
":%" PRIu32 ")", child->name, child->info.major,
child->info.minor);
r = 0;
continue;
}
/* Update cached info */
child->info = newinfo;
}
if (awaiting_peer_rename)
priority--; /* redo priority level */
}
/*
* FIXME: Implement delayed error reporting
* activation should be stopped only in the case,
* the submission of transation_id message fails,
* resume should continue further, just whole command
* has to report failure.
*/
if (r && dnode->props.send_messages &&
!(r = _node_send_messages(dnode, uuid_prefix, uuid_prefix_len, 1)))
stack;
return r;
}
static int _create_node(struct dm_tree_node *dnode)
{
int r = 0;
struct dm_task *dmt;
log_verbose("Creating %s", dnode->name);
if (!(dmt = dm_task_create(DM_DEVICE_CREATE))) {
log_error("Create dm_task creation failed for %s", dnode->name);
return 0;
}
if (!dm_task_set_name(dmt, dnode->name)) {
log_error("Failed to set device name for %s", dnode->name);
goto out;
}
if (!dm_task_set_uuid(dmt, dnode->uuid)) {
log_error("Failed to set uuid for %s", dnode->name);
goto out;
}
if (dnode->props.major &&
(!dm_task_set_major(dmt, dnode->props.major) ||
!dm_task_set_minor(dmt, dnode->props.minor))) {
log_error("Failed to set device number for %s creation.", dnode->name);
goto out;
}
if (dnode->props.read_only && !dm_task_set_ro(dmt)) {
log_error("Failed to set read only flag for %s", dnode->name);
goto out;
}
if (!dm_task_no_open_count(dmt))
log_error("Failed to disable open_count");
if ((r = dm_task_run(dmt))) {
if (!(r = dm_task_get_info(dmt, &dnode->info)))
/*
* This should not be possible to occur. However,
* we print an error message anyway for the more
* absurd cases (e.g. memory corruption) so there
* is never any question as to which one failed.
*/
log_error(INTERNAL_ERROR
"Unable to get DM task info for %s.",
dnode->name);
}
out:
dm_task_destroy(dmt);
return r;
}
/*
* _remove_node
*
* This function is only used to remove a DM device that has failed
* to load any table.
*/
static int _remove_node(struct dm_tree_node *dnode)
{
if (!dnode->info.exists)
return 1;
if (dnode->info.live_table || dnode->info.inactive_table) {
log_error(INTERNAL_ERROR
"_remove_node called on device with loaded table(s).");
return 0;
}
if (!_deactivate_node(dnode->name, dnode->info.major, dnode->info.minor,
&dnode->dtree->cookie, dnode->udev_flags, 0)) {
log_error("Failed to clean-up device with no table: %s %u:%u",
dnode->name ? dnode->name : "",
dnode->info.major, dnode->info.minor);
return 0;
}
return 1;
}
static int _build_dev_string(char *devbuf, size_t bufsize, struct dm_tree_node *node)
{
if (!dm_format_dev(devbuf, bufsize, node->info.major, node->info.minor)) {
log_error("Failed to format %s device number for %s as dm "
"target (%u,%u)",
node->name, node->uuid, node->info.major, node->info.minor);
return 0;
}
return 1;
}
/* simplify string emiting code */
#define EMIT_PARAMS(p, str...)\
do {\
int w;\
if ((w = dm_snprintf(params + p, paramsize - (size_t) p, str)) < 0) {\
stack; /* Out of space */\
return -1;\
}\
p += w;\
} while (0)
/*
* _emit_areas_line
*
* Returns: 1 on success, 0 on failure
*/
static int _emit_areas_line(struct dm_task *dmt __attribute__((unused)),
struct load_segment *seg, char *params,
size_t paramsize, int *pos)
{
struct seg_area *area;
char devbuf[DM_FORMAT_DEV_BUFSIZE];
unsigned first_time = 1;
const char *logtype, *synctype;
unsigned log_parm_count;
dm_list_iterate_items(area, &seg->areas) {
switch (seg->type) {
case SEG_REPLICATOR_DEV:
if (!_build_dev_string(devbuf, sizeof(devbuf), area->dev_node))
return_0;
EMIT_PARAMS(*pos, " %d 1 %s", area->rsite_index, devbuf);
if (first_time)
EMIT_PARAMS(*pos, " nolog 0");
else {
/* Remote devices */
log_parm_count = (area->flags &
(DM_NOSYNC | DM_FORCESYNC)) ? 2 : 1;
if (!area->slog) {
devbuf[0] = 0; /* Only core log parameters */
logtype = "core";
} else {
devbuf[0] = ' '; /* Extra space before device name */
if (!_build_dev_string(devbuf + 1,
sizeof(devbuf) - 1,
area->slog))
return_0;
logtype = "disk";
log_parm_count++; /* Extra sync log device name parameter */
}
EMIT_PARAMS(*pos, " %s %u%s %" PRIu64, logtype,
log_parm_count, devbuf, area->region_size);
synctype = (area->flags & DM_NOSYNC) ?
" nosync" : (area->flags & DM_FORCESYNC) ?
" sync" : NULL;
if (synctype)
EMIT_PARAMS(*pos, "%s", synctype);
}
break;
case SEG_RAID1:
case SEG_RAID10:
case SEG_RAID4:
case SEG_RAID5_LA:
case SEG_RAID5_RA:
case SEG_RAID5_LS:
case SEG_RAID5_RS:
case SEG_RAID6_ZR:
case SEG_RAID6_NR:
case SEG_RAID6_NC:
if (!area->dev_node) {
EMIT_PARAMS(*pos, " -");
break;
}
if (!_build_dev_string(devbuf, sizeof(devbuf), area->dev_node))
return_0;
EMIT_PARAMS(*pos, " %s", devbuf);
break;
default:
if (!_build_dev_string(devbuf, sizeof(devbuf), area->dev_node))
return_0;
EMIT_PARAMS(*pos, "%s%s %" PRIu64, first_time ? "" : " ",
devbuf, area->offset);
}
first_time = 0;
}
return 1;
}
static int _replicator_emit_segment_line(const struct load_segment *seg, char *params,
size_t paramsize, int *pos)
{
const struct load_segment *rlog_seg;
struct replicator_site *rsite;
char rlogbuf[DM_FORMAT_DEV_BUFSIZE];
unsigned parm_count;
if (!seg->log || !_build_dev_string(rlogbuf, sizeof(rlogbuf), seg->log))
return_0;
rlog_seg = dm_list_item(dm_list_last(&seg->log->props.segs),
struct load_segment);
EMIT_PARAMS(*pos, "%s 4 %s 0 auto %" PRIu64,
seg->rlog_type, rlogbuf, rlog_seg->size);
dm_list_iterate_items(rsite, &seg->rsites) {
parm_count = (rsite->fall_behind_data
|| rsite->fall_behind_ios
|| rsite->async_timeout) ? 4 : 2;
EMIT_PARAMS(*pos, " blockdev %u %u %s", parm_count, rsite->rsite_index,
(rsite->mode == DM_REPLICATOR_SYNC) ? "synchronous" : "asynchronous");
if (rsite->fall_behind_data)
EMIT_PARAMS(*pos, " data %" PRIu64, rsite->fall_behind_data);
else if (rsite->fall_behind_ios)
EMIT_PARAMS(*pos, " ios %" PRIu32, rsite->fall_behind_ios);
else if (rsite->async_timeout)
EMIT_PARAMS(*pos, " timeout %" PRIu32, rsite->async_timeout);
}
return 1;
}
/*
* Returns: 1 on success, 0 on failure
*/
static int _mirror_emit_segment_line(struct dm_task *dmt, struct load_segment *seg,
char *params, size_t paramsize)
{
int block_on_error = 0;
int handle_errors = 0;
int dm_log_userspace = 0;
struct utsname uts;
unsigned log_parm_count;
int pos = 0, parts;
char logbuf[DM_FORMAT_DEV_BUFSIZE];
const char *logtype;
unsigned kmaj = 0, kmin = 0, krel = 0;
if (uname(&uts) == -1) {
log_error("Cannot read kernel release version.");
return 0;
}
/* Kernels with a major number of 2 always had 3 parts. */
parts = sscanf(uts.release, "%u.%u.%u", &kmaj, &kmin, &krel);
if (parts < 1 || (kmaj < 3 && parts < 3)) {
log_error("Wrong kernel release version %s.", uts.release);
return 0;
}
if ((seg->flags & DM_BLOCK_ON_ERROR)) {
/*
* Originally, block_on_error was an argument to the log
* portion of the mirror CTR table. It was renamed to
* "handle_errors" and now resides in the 'features'
* section of the mirror CTR table (i.e. at the end).
*
* We can identify whether to use "block_on_error" or
* "handle_errors" by the dm-mirror module's version
* number (>= 1.12) or by the kernel version (>= 2.6.22).
*/
if (KERNEL_VERSION(kmaj, kmin, krel) >= KERNEL_VERSION(2, 6, 22))
handle_errors = 1;
else
block_on_error = 1;
}
if (seg->clustered) {
/* Cluster mirrors require a UUID */
if (!seg->uuid)
return_0;
/*
* Cluster mirrors used to have their own log
* types. Now they are accessed through the
* userspace log type.
*
* The dm-log-userspace module was added to the
* 2.6.31 kernel.
*/
if (KERNEL_VERSION(kmaj, kmin, krel) >= KERNEL_VERSION(2, 6, 31))
dm_log_userspace = 1;
}
/* Region size */
log_parm_count = 1;
/* [no]sync, block_on_error etc. */
log_parm_count += hweight32(seg->flags);
/* "handle_errors" is a feature arg now */
if (handle_errors)
log_parm_count--;
/* DM_CORELOG does not count in the param list */
if (seg->flags & DM_CORELOG)
log_parm_count--;
if (seg->clustered) {
log_parm_count++; /* For UUID */
if (!dm_log_userspace)
EMIT_PARAMS(pos, "clustered-");
else
/* For clustered-* type field inserted later */
log_parm_count++;
}
if (!seg->log)
logtype = "core";
else {
logtype = "disk";
log_parm_count++;
if (!_build_dev_string(logbuf, sizeof(logbuf), seg->log))
return_0;
}
if (dm_log_userspace)
EMIT_PARAMS(pos, "userspace %u %s clustered-%s",
log_parm_count, seg->uuid, logtype);
else
EMIT_PARAMS(pos, "%s %u", logtype, log_parm_count);
if (seg->log)
EMIT_PARAMS(pos, " %s", logbuf);
EMIT_PARAMS(pos, " %u", seg->region_size);
if (seg->clustered && !dm_log_userspace)
EMIT_PARAMS(pos, " %s", seg->uuid);
if ((seg->flags & DM_NOSYNC))
EMIT_PARAMS(pos, " nosync");
else if ((seg->flags & DM_FORCESYNC))
EMIT_PARAMS(pos, " sync");
if (block_on_error)
EMIT_PARAMS(pos, " block_on_error");
EMIT_PARAMS(pos, " %u ", seg->mirror_area_count);
if (_emit_areas_line(dmt, seg, params, paramsize, &pos) <= 0)
return_0;
if (handle_errors)
EMIT_PARAMS(pos, " 1 handle_errors");
return 1;
}
static int _raid_emit_segment_line(struct dm_task *dmt, uint32_t major,
uint32_t minor, struct load_segment *seg,
uint64_t *seg_start, char *params,
size_t paramsize)
{
uint32_t i;
int param_count = 1; /* mandatory 'chunk size'/'stripe size' arg */
int pos = 0;
if ((seg->flags & DM_NOSYNC) || (seg->flags & DM_FORCESYNC))
param_count++;
if (seg->region_size)
param_count += 2;
if (seg->writebehind)
param_count += 2;
if (seg->min_recovery_rate)
param_count += 2;
if (seg->max_recovery_rate)
param_count += 2;
/* rebuilds is 64-bit */
param_count += 2 * hweight32(seg->rebuilds & 0xFFFFFFFF);
param_count += 2 * hweight32(seg->rebuilds >> 32);
/* rebuilds is 64-bit */
param_count += 2 * hweight32(seg->writemostly & 0xFFFFFFFF);
param_count += 2 * hweight32(seg->writemostly >> 32);
if ((seg->type == SEG_RAID1) && seg->stripe_size)
log_error("WARNING: Ignoring RAID1 stripe size");
EMIT_PARAMS(pos, "%s %d %u", _dm_segtypes[seg->type].target,
param_count, seg->stripe_size);
if (seg->flags & DM_NOSYNC)
EMIT_PARAMS(pos, " nosync");
else if (seg->flags & DM_FORCESYNC)
EMIT_PARAMS(pos, " sync");
if (seg->region_size)
EMIT_PARAMS(pos, " region_size %u", seg->region_size);
for (i = 0; i < (seg->area_count / 2); i++)
if (seg->rebuilds & (1ULL << i))
EMIT_PARAMS(pos, " rebuild %u", i);
for (i = 0; i < (seg->area_count / 2); i++)
if (seg->writemostly & (1ULL << i))
EMIT_PARAMS(pos, " write_mostly %u", i);
if (seg->writebehind)
EMIT_PARAMS(pos, " writebehind %u", seg->writebehind);
if (seg->min_recovery_rate)
EMIT_PARAMS(pos, " min_recovery_rate %u",
seg->min_recovery_rate);
if (seg->max_recovery_rate)
EMIT_PARAMS(pos, " max_recovery_rate %u",
seg->max_recovery_rate);
/* Print number of metadata/data device pairs */
EMIT_PARAMS(pos, " %u", seg->area_count/2);
if (_emit_areas_line(dmt, seg, params, paramsize, &pos) <= 0)
return_0;
return 1;
}
static int _cache_emit_segment_line(struct dm_task *dmt,
struct load_segment *seg,
char *params, size_t paramsize)
{
int pos = 0;
unsigned i = 0;
unsigned feature_count;
struct seg_area *area;
char data[DM_FORMAT_DEV_BUFSIZE];
char metadata[DM_FORMAT_DEV_BUFSIZE];
char origin[DM_FORMAT_DEV_BUFSIZE];
/* Metadata Dev */
if (!_build_dev_string(metadata, sizeof(metadata), seg->metadata))
return_0;
/* Cache Dev */
if (!_build_dev_string(data, sizeof(origin), seg->pool))
return_0;
/* Origin Dev */
dm_list_iterate_items(area, &seg->areas)
break; /* There is only ever 1 area */
if (!_build_dev_string(origin, sizeof(data), area->dev_node))
return_0;
EMIT_PARAMS(pos, " %s %s %s", metadata, data, origin);
/* Chunk size */
EMIT_PARAMS(pos, " %u", seg->chunk_size);
/* Features */
feature_count = hweight32(seg->flags);
EMIT_PARAMS(pos, " %u", feature_count);
if (seg->flags & DM_CACHE_FEATURE_WRITETHROUGH)
EMIT_PARAMS(pos, " writethrough");
else if (seg->flags & DM_CACHE_FEATURE_WRITEBACK)
EMIT_PARAMS(pos, " writeback");
/* Core Arguments (like 'migration_threshold') */
if (seg->core_argc) {
EMIT_PARAMS(pos, " %u", seg->core_argc);
for (i = 0; i < seg->core_argc; i++)
EMIT_PARAMS(pos, " %s", seg->core_argv[i]);
}
/* Cache Policy */
if (!seg->policy_name)
EMIT_PARAMS(pos, " default 0");
else {
EMIT_PARAMS(pos, " %s %u", seg->policy_name, seg->policy_argc);
if (seg->policy_argc % 2) {
log_error(INTERNAL_ERROR
"Cache policy arguments must be in "
"<key> <value> pairs");
return 0;
}
for (i = 0; i < seg->policy_argc; i++)
EMIT_PARAMS(pos, " %s", seg->policy_argv[i]);
}
return 1;
}
static int _thin_pool_emit_segment_line(struct dm_task *dmt,
struct load_segment *seg,
char *params, size_t paramsize)
{
int pos = 0;
char pool[DM_FORMAT_DEV_BUFSIZE], metadata[DM_FORMAT_DEV_BUFSIZE];
int features = (seg->skip_block_zeroing ? 1 : 0) +
(seg->ignore_discard ? 1 : 0) +
(seg->no_discard_passdown ? 1 : 0);
if (!_build_dev_string(metadata, sizeof(metadata), seg->metadata))
return_0;
if (!_build_dev_string(pool, sizeof(pool), seg->pool))
return_0;
EMIT_PARAMS(pos, "%s %s %d %" PRIu64 " %d%s%s%s", metadata, pool,
seg->data_block_size, seg->low_water_mark, features,
seg->skip_block_zeroing ? " skip_block_zeroing" : "",
seg->ignore_discard ? " ignore_discard" : "",
seg->no_discard_passdown ? " no_discard_passdown" : ""
);
return 1;
}
static int _thin_emit_segment_line(struct dm_task *dmt,
struct load_segment *seg,
char *params, size_t paramsize)
{
int pos = 0;
char pool[DM_FORMAT_DEV_BUFSIZE];
char external[DM_FORMAT_DEV_BUFSIZE + 1];
if (!_build_dev_string(pool, sizeof(pool), seg->pool))
return_0;
if (!seg->external)
*external = 0;
else {
*external = ' ';
if (!_build_dev_string(external + 1, sizeof(external) - 1,
seg->external))
return_0;
}
EMIT_PARAMS(pos, "%s %d%s", pool, seg->device_id, external);
return 1;
}
static int _emit_segment_line(struct dm_task *dmt, uint32_t major,
uint32_t minor, struct load_segment *seg,
uint64_t *seg_start, char *params,
size_t paramsize)
{
int pos = 0;
int r;
int target_type_is_raid = 0;
char originbuf[DM_FORMAT_DEV_BUFSIZE], cowbuf[DM_FORMAT_DEV_BUFSIZE];
switch(seg->type) {
case SEG_ERROR:
case SEG_ZERO:
case SEG_LINEAR:
break;
case SEG_MIRRORED:
/* Mirrors are pretty complicated - now in separate function */
r = _mirror_emit_segment_line(dmt, seg, params, paramsize);
if (!r)
return_0;
break;
case SEG_REPLICATOR:
if ((r = _replicator_emit_segment_line(seg, params, paramsize,
&pos)) <= 0) {
stack;
return r;
}
break;
case SEG_REPLICATOR_DEV:
if (!seg->replicator || !_build_dev_string(originbuf,
sizeof(originbuf),
seg->replicator))
return_0;
EMIT_PARAMS(pos, "%s %" PRIu64, originbuf, seg->rdevice_index);
break;
case SEG_SNAPSHOT:
case SEG_SNAPSHOT_MERGE:
if (!_build_dev_string(originbuf, sizeof(originbuf), seg->origin))
return_0;
if (!_build_dev_string(cowbuf, sizeof(cowbuf), seg->cow))
return_0;
EMIT_PARAMS(pos, "%s %s %c %d", originbuf, cowbuf,
seg->persistent ? 'P' : 'N', seg->chunk_size);
break;
case SEG_SNAPSHOT_ORIGIN:
if (!_build_dev_string(originbuf, sizeof(originbuf), seg->origin))
return_0;
EMIT_PARAMS(pos, "%s", originbuf);
break;
case SEG_STRIPED:
EMIT_PARAMS(pos, "%u %u ", seg->area_count, seg->stripe_size);
break;
case SEG_CRYPT:
EMIT_PARAMS(pos, "%s%s%s%s%s %s %" PRIu64 " ", seg->cipher,
seg->chainmode ? "-" : "", seg->chainmode ?: "",
seg->iv ? "-" : "", seg->iv ?: "", seg->key,
seg->iv_offset != DM_CRYPT_IV_DEFAULT ?
seg->iv_offset : *seg_start);
break;
case SEG_RAID1:
case SEG_RAID10:
case SEG_RAID4:
case SEG_RAID5_LA:
case SEG_RAID5_RA:
case SEG_RAID5_LS:
case SEG_RAID5_RS:
case SEG_RAID6_ZR:
case SEG_RAID6_NR:
case SEG_RAID6_NC:
target_type_is_raid = 1;
r = _raid_emit_segment_line(dmt, major, minor, seg, seg_start,
params, paramsize);
if (!r)
return_0;
break;
case SEG_THIN_POOL:
if (!_thin_pool_emit_segment_line(dmt, seg, params, paramsize))
return_0;
break;
case SEG_THIN:
if (!_thin_emit_segment_line(dmt, seg, params, paramsize))
return_0;
break;
case SEG_CACHE:
if (!_cache_emit_segment_line(dmt, seg, params, paramsize))
return_0;
break;
}
switch(seg->type) {
case SEG_ERROR:
case SEG_REPLICATOR:
case SEG_SNAPSHOT:
case SEG_SNAPSHOT_ORIGIN:
case SEG_SNAPSHOT_MERGE:
case SEG_ZERO:
case SEG_THIN_POOL:
case SEG_THIN:
case SEG_CACHE:
break;
case SEG_CRYPT:
case SEG_LINEAR:
case SEG_REPLICATOR_DEV:
case SEG_STRIPED:
if ((r = _emit_areas_line(dmt, seg, params, paramsize, &pos)) <= 0) {
stack;
return r;
}
if (!params[0]) {
log_error("No parameters supplied for %s target "
"%u:%u.", _dm_segtypes[seg->type].target,
major, minor);
return 0;
}
break;
}
log_debug_activation("Adding target to (%" PRIu32 ":%" PRIu32 "): %" PRIu64
" %" PRIu64 " %s %s", major, minor,
*seg_start, seg->size, target_type_is_raid ? "raid" :
_dm_segtypes[seg->type].target, params);
if (!dm_task_add_target(dmt, *seg_start, seg->size,
target_type_is_raid ? "raid" :
_dm_segtypes[seg->type].target, params))
return_0;
*seg_start += seg->size;
return 1;
}
#undef EMIT_PARAMS
static int _emit_segment(struct dm_task *dmt, uint32_t major, uint32_t minor,
struct load_segment *seg, uint64_t *seg_start)
{
char *params;
size_t paramsize = 4096;
int ret;
do {
if (!(params = dm_malloc(paramsize))) {
log_error("Insufficient space for target parameters.");
return 0;
}
params[0] = '\0';
ret = _emit_segment_line(dmt, major, minor, seg, seg_start,
params, paramsize);
dm_free(params);
if (!ret)
stack;
if (ret >= 0)
return ret;
log_debug_activation("Insufficient space in params[%" PRIsize_t
"] for target parameters.", paramsize);
paramsize *= 2;
} while (paramsize < MAX_TARGET_PARAMSIZE);
log_error("Target parameter size too big. Aborting.");
return 0;
}
static int _load_node(struct dm_tree_node *dnode)
{
int r = 0;
struct dm_task *dmt;
struct load_segment *seg;
uint64_t seg_start = 0, existing_table_size;
log_verbose("Loading %s table (%" PRIu32 ":%" PRIu32 ")", dnode->name,
dnode->info.major, dnode->info.minor);
if (!(dmt = dm_task_create(DM_DEVICE_RELOAD))) {
log_error("Reload dm_task creation failed for %s", dnode->name);
return 0;
}
if (!dm_task_set_major(dmt, dnode->info.major) ||
!dm_task_set_minor(dmt, dnode->info.minor)) {
log_error("Failed to set device number for %s reload.", dnode->name);
goto out;
}
if (dnode->props.read_only && !dm_task_set_ro(dmt)) {
log_error("Failed to set read only flag for %s", dnode->name);
goto out;
}
if (!dm_task_no_open_count(dmt))
log_error("Failed to disable open_count");
dm_list_iterate_items(seg, &dnode->props.segs)
if (!_emit_segment(dmt, dnode->info.major, dnode->info.minor,
seg, &seg_start))
goto_out;
if (!dm_task_suppress_identical_reload(dmt))
log_error("Failed to suppress reload of identical tables.");
if ((r = dm_task_run(dmt))) {
r = dm_task_get_info(dmt, &dnode->info);
if (r && !dnode->info.inactive_table)
log_verbose("Suppressed %s (%" PRIu32 ":%" PRIu32
") identical table reload.",
dnode->name,
dnode->info.major, dnode->info.minor);
existing_table_size = dm_task_get_existing_table_size(dmt);
if ((dnode->props.size_changed =
(existing_table_size == seg_start) ? 0 : 1)) {
/*
* Kernel usually skips size validation on zero-length devices
* now so no need to preload them.
*/
/* FIXME In which kernel version did this begin? */
if (!existing_table_size && dnode->props.delay_resume_if_new)
dnode->props.size_changed = 0;
log_debug_activation("Table size changed from %" PRIu64 " to %"
PRIu64 " for %s (%" PRIu32 ":%" PRIu32 ").%s",
existing_table_size, seg_start, dnode->name,
dnode->info.major, dnode->info.minor,
dnode->props.size_changed ? "" : " (Ignoring.)");
}
}
dnode->props.segment_count = 0;
out:
dm_task_destroy(dmt);
return r;
}
/*
* Currently try to deactivate only nodes created during preload.
* New node is always attached to the front of activated_list
*/
static int _dm_tree_revert_activated(struct dm_tree_node *parent)
{
struct dm_tree_node *child;
dm_list_iterate_items_gen(child, &parent->activated, activated_list) {
log_debug_activation("Reverting %s.", child->name);
if (!_deactivate_node(child->name, child->info.major, child->info.minor,
&child->dtree->cookie, child->udev_flags, 0)) {
log_error("Unable to deactivate %s (%" PRIu32
":%" PRIu32 ")", child->name, child->info.major,
child->info.minor);
return 0;
}
if (!_dm_tree_revert_activated(child))
return_0;
}
return 1;
}
int dm_tree_preload_children(struct dm_tree_node *dnode,
const char *uuid_prefix,
size_t uuid_prefix_len)
{
int r = 1, node_created = 0;
void *handle = NULL;
struct dm_tree_node *child;
struct dm_info newinfo;
int update_devs_flag = 0;
/* Preload children first */
while ((child = dm_tree_next_child(&handle, dnode, 0))) {
/* Skip existing non-device-mapper devices */
if (!child->info.exists && child->info.major)
continue;
/* Ignore if it doesn't belong to this VG */
if (child->info.exists &&
!_uuid_prefix_matches(child->uuid, uuid_prefix, uuid_prefix_len))
continue;
if (dm_tree_node_num_children(child, 0))
if (!dm_tree_preload_children(child, uuid_prefix, uuid_prefix_len))
return_0;
/* FIXME Cope if name exists with no uuid? */
if (!child->info.exists && !(node_created = _create_node(child)))
return_0;
if (!child->info.inactive_table &&
child->props.segment_count &&
!_load_node(child)) {
/*
* If the table load does not succeed, we remove the
* device in the kernel that would otherwise have an
* empty table. This makes the create + load of the
* device atomic. However, if other dependencies have
* already been created and loaded; this code is
* insufficient to remove those - only the node
* encountering the table load failure is removed.
*/
if (node_created && !_remove_node(child))
return_0;
return_0;
}
/* Propagate device size change change */
if (child->props.size_changed)
dnode->props.size_changed = 1;
/* Resume device immediately if it has parents and its size changed */
if (!dm_tree_node_num_children(child, 1) || !child->props.size_changed)
continue;
if (!child->info.inactive_table && !child->info.suspended)
continue;
if (!_resume_node(child->name, child->info.major, child->info.minor,
child->props.read_ahead, child->props.read_ahead_flags,
&newinfo, &child->dtree->cookie, child->udev_flags,
child->info.suspended)) {
log_error("Unable to resume %s (%" PRIu32
":%" PRIu32 ")", child->name, child->info.major,
child->info.minor);
/* If the device was not previously active, we might as well remove this node. */
if (!child->info.live_table &&
!_deactivate_node(child->name, child->info.major, child->info.minor,
&child->dtree->cookie, child->udev_flags, 0))
log_error("Unable to deactivate %s (%" PRIu32
":%" PRIu32 ")", child->name, child->info.major,
child->info.minor);
r = 0;
/* Each child is handled independently */
continue;
}
if (!child->info.live_table) {
/* Collect newly introduced devices for revert */
dm_list_add_h(&dnode->activated, &child->activated_list);
/* When creating new node also check transaction_id. */
if (child->props.send_messages &&
!_node_send_messages(child, uuid_prefix, uuid_prefix_len, 0)) {
stack;
if (!dm_udev_wait(dm_tree_get_cookie(dnode)))
stack;
dm_tree_set_cookie(dnode, 0);
(void) _dm_tree_revert_activated(dnode);
r = 0;
continue;
}
}
/* Update cached info */
child->info = newinfo;
/*
* Prepare for immediate synchronization with udev and flush all stacked
* dev node operations if requested by immediate_dev_node property. But
* finish processing current level in the tree first.
*/
if (child->props.immediate_dev_node)
update_devs_flag = 1;
}
if (update_devs_flag ||
(r && !dnode->info.exists && dnode->callback)) {
if (!dm_udev_wait(dm_tree_get_cookie(dnode)))
stack;
dm_tree_set_cookie(dnode, 0);
if (r && !dnode->info.exists && dnode->callback &&
!dnode->callback(dnode, DM_NODE_CALLBACK_PRELOADED,
dnode->callback_data))
{
/* Try to deactivate what has been activated in preload phase */
(void) _dm_tree_revert_activated(dnode);
return_0;
}
}
return r;
}
/*
* Returns 1 if unsure.
*/
int dm_tree_children_use_uuid(struct dm_tree_node *dnode,
const char *uuid_prefix,
size_t uuid_prefix_len)
{
void *handle = NULL;
struct dm_tree_node *child = dnode;
const char *uuid;
while ((child = dm_tree_next_child(&handle, dnode, 0))) {
if (!(uuid = dm_tree_node_get_uuid(child))) {
log_error("Failed to get uuid for dtree node.");
return 1;
}
if (_uuid_prefix_matches(uuid, uuid_prefix, uuid_prefix_len))
return 1;
if (dm_tree_node_num_children(child, 0))
dm_tree_children_use_uuid(child, uuid_prefix, uuid_prefix_len);
}
return 0;
}
/*
* Target functions
*/
static struct load_segment *_add_segment(struct dm_tree_node *dnode, unsigned type, uint64_t size)
{
struct load_segment *seg;
if (!(seg = dm_pool_zalloc(dnode->dtree->mem, sizeof(*seg)))) {
log_error("dtree node segment allocation failed");
return NULL;
}
seg->type = type;
seg->size = size;
dm_list_init(&seg->areas);
dm_list_add(&dnode->props.segs, &seg->list);
dnode->props.segment_count++;
return seg;
}
int dm_tree_node_add_snapshot_origin_target(struct dm_tree_node *dnode,
uint64_t size,
const char *origin_uuid)
{
struct load_segment *seg;
struct dm_tree_node *origin_node;
if (!(seg = _add_segment(dnode, SEG_SNAPSHOT_ORIGIN, size)))
return_0;
if (!(origin_node = dm_tree_find_node_by_uuid(dnode->dtree, origin_uuid))) {
log_error("Couldn't find snapshot origin uuid %s.", origin_uuid);
return 0;
}
seg->origin = origin_node;
if (!_link_tree_nodes(dnode, origin_node))
return_0;
/* Resume snapshot origins after new snapshots */
dnode->activation_priority = 1;
/*
* Don't resume the origin immediately in case it is a non-trivial
* target that must not be active more than once concurrently!
*/
origin_node->props.delay_resume_if_new = 1;
return 1;
}
static int _add_snapshot_target(struct dm_tree_node *node,
uint64_t size,
const char *origin_uuid,
const char *cow_uuid,
const char *merge_uuid,
int persistent,
uint32_t chunk_size)
{
struct load_segment *seg;
struct dm_tree_node *origin_node, *cow_node, *merge_node;
unsigned seg_type;
seg_type = !merge_uuid ? SEG_SNAPSHOT : SEG_SNAPSHOT_MERGE;
if (!(seg = _add_segment(node, seg_type, size)))
return_0;
if (!(origin_node = dm_tree_find_node_by_uuid(node->dtree, origin_uuid))) {
log_error("Couldn't find snapshot origin uuid %s.", origin_uuid);
return 0;
}
seg->origin = origin_node;
if (!_link_tree_nodes(node, origin_node))
return_0;
if (!(cow_node = dm_tree_find_node_by_uuid(node->dtree, cow_uuid))) {
log_error("Couldn't find snapshot COW device uuid %s.", cow_uuid);
return 0;
}
seg->cow = cow_node;
if (!_link_tree_nodes(node, cow_node))
return_0;
seg->persistent = persistent ? 1 : 0;
seg->chunk_size = chunk_size;
if (merge_uuid) {
if (!(merge_node = dm_tree_find_node_by_uuid(node->dtree, merge_uuid))) {
/* not a pure error, merging snapshot may have been deactivated */
log_verbose("Couldn't find merging snapshot uuid %s.", merge_uuid);
} else {
seg->merge = merge_node;
/* must not link merging snapshot, would undermine activation_priority below */
}
/* Resume snapshot-merge (acting origin) after other snapshots */
node->activation_priority = 1;
if (seg->merge) {
/* Resume merging snapshot after snapshot-merge */
seg->merge->activation_priority = 2;
}
}
return 1;
}
int dm_tree_node_add_snapshot_target(struct dm_tree_node *node,
uint64_t size,
const char *origin_uuid,
const char *cow_uuid,
int persistent,
uint32_t chunk_size)
{
return _add_snapshot_target(node, size, origin_uuid, cow_uuid,
NULL, persistent, chunk_size);
}
int dm_tree_node_add_snapshot_merge_target(struct dm_tree_node *node,
uint64_t size,
const char *origin_uuid,
const char *cow_uuid,
const char *merge_uuid,
uint32_t chunk_size)
{
return _add_snapshot_target(node, size, origin_uuid, cow_uuid,
merge_uuid, 1, chunk_size);
}
int dm_get_status_snapshot(struct dm_pool *mem, const char *params,
struct dm_status_snapshot **status)
{
struct dm_status_snapshot *s;
int r;
if (!params) {
log_error("Failed to parse invalid snapshot params.");
return 0;
}
if (!(s = dm_pool_zalloc(mem, sizeof(*s)))) {
log_error("Failed to allocate snapshot status structure.");
return 0;
}
r = sscanf(params, "%" PRIu64 "/%" PRIu64 " %" PRIu64,
&s->used_sectors, &s->total_sectors,
&s->metadata_sectors);
if (r == 3 || r == 2)
s->has_metadata_sectors = (r == 3);
else if (!strcmp(params, "Invalid"))
s->invalid = 1;
else if (!strcmp(params, "Merge failed"))
s->merge_failed = 1;
else {
dm_pool_free(mem, s);
log_error("Failed to parse snapshot params: %s.", params);
return 0;
}
*status = s;
return 1;
}
int dm_tree_node_add_error_target(struct dm_tree_node *node,
uint64_t size)
{
if (!_add_segment(node, SEG_ERROR, size))
return_0;
return 1;
}
int dm_tree_node_add_zero_target(struct dm_tree_node *node,
uint64_t size)
{
if (!_add_segment(node, SEG_ZERO, size))
return_0;
return 1;
}
int dm_tree_node_add_linear_target(struct dm_tree_node *node,
uint64_t size)
{
if (!_add_segment(node, SEG_LINEAR, size))
return_0;
return 1;
}
int dm_tree_node_add_striped_target(struct dm_tree_node *node,
uint64_t size,
uint32_t stripe_size)
{
struct load_segment *seg;
if (!(seg = _add_segment(node, SEG_STRIPED, size)))
return_0;
seg->stripe_size = stripe_size;
return 1;
}
int dm_tree_node_add_crypt_target(struct dm_tree_node *node,
uint64_t size,
const char *cipher,
const char *chainmode,
const char *iv,
uint64_t iv_offset,
const char *key)
{
struct load_segment *seg;
if (!(seg = _add_segment(node, SEG_CRYPT, size)))
return_0;
seg->cipher = cipher;
seg->chainmode = chainmode;
seg->iv = iv;
seg->iv_offset = iv_offset;
seg->key = key;
return 1;
}
int dm_tree_node_add_mirror_target_log(struct dm_tree_node *node,
uint32_t region_size,
unsigned clustered,
const char *log_uuid,
unsigned area_count,
uint32_t flags)
{
struct dm_tree_node *log_node = NULL;
struct load_segment *seg;
if (!node->props.segment_count) {
log_error(INTERNAL_ERROR "Attempt to add target area to missing segment.");
return 0;
}
seg = dm_list_item(dm_list_last(&node->props.segs), struct load_segment);
if (log_uuid) {
if (!(seg->uuid = dm_pool_strdup(node->dtree->mem, log_uuid))) {
log_error("log uuid pool_strdup failed");
return 0;
}
if ((flags & DM_CORELOG))
/* For pvmove: immediate resume (for size validation) isn't needed. */
node->props.delay_resume_if_new = 1;
else {
if (!(log_node = dm_tree_find_node_by_uuid(node->dtree, log_uuid))) {
log_error("Couldn't find mirror log uuid %s.", log_uuid);
return 0;
}
if (clustered)
log_node->props.immediate_dev_node = 1;
/* The kernel validates the size of disk logs. */
/* FIXME Propagate to any devices below */
log_node->props.delay_resume_if_new = 0;
if (!_link_tree_nodes(node, log_node))
return_0;
}
}
seg->log = log_node;
seg->region_size = region_size;
seg->clustered = clustered;
seg->mirror_area_count = area_count;
seg->flags = flags;
return 1;
}
int dm_tree_node_add_mirror_target(struct dm_tree_node *node,
uint64_t size)
{
if (!_add_segment(node, SEG_MIRRORED, size))
return_0;
return 1;
}
int dm_tree_node_add_raid_target_with_params(struct dm_tree_node *node,
uint64_t size,
struct dm_tree_node_raid_params *p)
{
int i;
struct load_segment *seg = NULL;
for (i = 0; i < DM_ARRAY_SIZE(_dm_segtypes) && !seg; ++i)
if (!strcmp(p->raid_type, _dm_segtypes[i].target))
if (!(seg = _add_segment(node,
_dm_segtypes[i].type, size)))
return_0;
if (!seg)
return_0;
seg->region_size = p->region_size;
seg->stripe_size = p->stripe_size;
seg->area_count = 0;
seg->rebuilds = p->rebuilds;
seg->writemostly = p->writemostly;
seg->writebehind = p->writebehind;
seg->min_recovery_rate = p->min_recovery_rate;
seg->max_recovery_rate = p->max_recovery_rate;
seg->flags = p->flags;
return 1;
}
int dm_tree_node_add_raid_target(struct dm_tree_node *node,
uint64_t size,
const char *raid_type,
uint32_t region_size,
uint32_t stripe_size,
uint64_t rebuilds,
uint64_t flags)
{
struct dm_tree_node_raid_params params = {
.raid_type = raid_type,
.region_size = region_size,
.stripe_size = stripe_size,
.rebuilds = rebuilds,
.flags = flags
};
return dm_tree_node_add_raid_target_with_params(node, size, &params);
}
/*
* Various RAID status versions include:
* Versions < 1.5.0 (4 fields):
* <raid_type> <#devs> <health_str> <sync_ratio>
* Versions 1.5.0+ (6 fields):
* <raid_type> <#devs> <health_str> <sync_ratio> <sync_action> <mismatch_cnt>
*/
int dm_get_status_raid(struct dm_pool *mem, const char *params,
struct dm_status_raid **status)
{
int i;
const char *pp, *p;
struct dm_status_raid *s;
if (!params || !(p = strchr(params, ' '))) {
log_error("Failed to parse invalid raid params.");
return 0;
}
p++;
/* second field holds the device count */
if (sscanf(p, "%d", &i) != 1)
return_0;
if (!(s = dm_pool_zalloc(mem, sizeof(struct dm_status_raid))))
return_0;
if (!(s->raid_type = dm_pool_zalloc(mem, p - params)))
goto_bad; /* memory is freed went pool is destroyed */
if (!(s->dev_health = dm_pool_zalloc(mem, i + 1)))
goto_bad;
if (sscanf(params, "%s %u %s %" PRIu64 "/%" PRIu64,
s->raid_type,
&s->dev_count,
s->dev_health,
&s->insync_regions,
&s->total_regions) != 5) {
log_error("Failed to parse raid params: %s", params);
goto bad;
}
*status = s;
/*
* All pre-1.5.0 version parameters are read. Now we check
* for additional 1.5.0+ parameters.
*
* Note that 'sync_action' will be NULL (and mismatch_count
* will be 0) if the kernel returns a pre-1.5.0 status.
*/
for (p = params, i = 0; i < 4; i++, p++)
if (!(p = strchr(p, ' ')))
return 1; /* return pre-1.5.0 status */
pp = p;
if (!(p = strchr(p, ' '))) {
log_error(INTERNAL_ERROR "Bad RAID status received.");
goto bad;
}
p++;
if (!(s->sync_action = dm_pool_zalloc(mem, p - pp)))
goto_bad;
if (sscanf(pp, "%s %" PRIu64, s->sync_action, &s->mismatch_count) != 2) {
log_error("Failed to parse raid params: %s", params);
goto bad;
}
return 1;
bad:
dm_pool_free(mem, s);
return 0;
}
int dm_tree_node_add_cache_target(struct dm_tree_node *node,
uint64_t size,
const char *metadata_uuid,
const char *data_uuid,
const char *origin_uuid,
uint32_t chunk_size,
uint32_t feature_flags, /* DM_CACHE_FEATURE_* */
unsigned core_argc,
const char *const *core_argv,
const char *policy_name,
unsigned policy_argc,
const char *const *policy_argv)
{
struct load_segment *seg;
if (!(seg = _add_segment(node, SEG_CACHE, size)))
return_0;
if (!(seg->pool = dm_tree_find_node_by_uuid(node->dtree,
data_uuid))) {
log_error("Missing cache's data uuid %s.",
data_uuid);
return 0;
}
if (!_link_tree_nodes(node, seg->pool))
return_0;
if (!(seg->metadata = dm_tree_find_node_by_uuid(node->dtree,
metadata_uuid))) {
log_error("Missing cache's metadata uuid %s.",
metadata_uuid);
return 0;
}
if (!_link_tree_nodes(node, seg->metadata))
return_0;
seg->chunk_size = chunk_size;
seg->flags = feature_flags;
/* FIXME: validation missing */
seg->core_argc = core_argc;
seg->core_argv = core_argv;
seg->policy_name = policy_name;
seg->policy_argc = policy_argc;
seg->policy_argv = policy_argv;
return 1;
}
static const char *advance_to_next_word(const char *str, int count)
{
int i;
const char *p;
for (p = str, i = 0; i < count; i++, p++)
if (!(p = strchr(p, ' ')))
return NULL;
return p;
}
/*
* <metadata block size> <#used metadata blocks>/<#total metadata blocks>
* <cache block size> <#used cache blocks>/<#total cache blocks>
* <#read hits> <#read misses> <#write hits> <#write misses>
* <#demotions> <#promotions> <#dirty> <#features> <features>*
* <#core args> <core args>* <policy name> <#policy args> <policy args>*
*
* metadata block size : Fixed block size for each metadata block in
* sectors
* #used metadata blocks : Number of metadata blocks used
* #total metadata blocks : Total number of metadata blocks
* cache block size : Configurable block size for the cache device
* in sectors
* #used cache blocks : Number of blocks resident in the cache
* #total cache blocks : Total number of cache blocks
* #read hits : Number of times a READ bio has been mapped
* to the cache
* #read misses : Number of times a READ bio has been mapped
* to the origin
* #write hits : Number of times a WRITE bio has been mapped
* to the cache
* #write misses : Number of times a WRITE bio has been
* mapped to the origin
* #demotions : Number of times a block has been removed
* from the cache
* #promotions : Number of times a block has been moved to
* the cache
* #dirty : Number of blocks in the cache that differ
* from the origin
* #feature args : Number of feature args to follow
* feature args : 'writethrough' (optional)
* #core args : Number of core arguments (must be even)
* core args : Key/value pairs for tuning the core
* e.g. migration_threshold
* *policy name : Name of the policy
* #policy args : Number of policy arguments to follow (must be even)
* policy args : Key/value pairs
* e.g. sequential_threshold
*/
int dm_get_status_cache(struct dm_pool *mem, const char *params,
struct dm_status_cache **status)
{
int i, feature_argc;
char *str;
const char *p, *pp;
struct dm_status_cache *s;
if (!(s = dm_pool_zalloc(mem, sizeof(struct dm_status_cache))))
return_0;
/* Read in args that have definitive placement */
if (sscanf(params,
" %" PRIu32
" %" PRIu64 "/%" PRIu64
" %" PRIu32
" %" PRIu64 "/%" PRIu64
" %" PRIu64 " %" PRIu64
" %" PRIu64 " %" PRIu64
" %" PRIu64 " %" PRIu64
" %" PRIu64
" %d",
&s->metadata_block_size,
&s->metadata_used_blocks, &s->metadata_total_blocks,
&s->block_size, /* AKA, chunk_size */
&s->used_blocks, &s->total_blocks,
&s->read_hits, &s->read_misses,
&s->write_hits, &s->write_misses,
&s->demotions, &s->promotions,
&s->dirty_blocks,
&feature_argc) != 14)
goto bad;
/* Now jump to "features" section */
if (!(p = advance_to_next_word(params, 12)))
goto bad;
/* Read in features */
for (i = 0; i < feature_argc; i++) {
if (!strncmp(p, "writethrough ", 13))
s->feature_flags |= DM_CACHE_FEATURE_WRITETHROUGH;
else if (!strncmp(p, "writeback ", 10))
s->feature_flags |= DM_CACHE_FEATURE_WRITEBACK;
else
log_error("Unknown feature in status: %s", params);
if (!(p = advance_to_next_word(p, 1)))
goto bad;
}
/* Read in core_args. */
if (sscanf(p, "%d ", &s->core_argc) != 1)
goto bad;
if (s->core_argc &&
(!(s->core_argv = dm_pool_zalloc(mem, sizeof(char *) * s->core_argc)) ||
!(p = advance_to_next_word(p, 1)) ||
!(str = dm_pool_strdup(mem, p)) ||
!(p = advance_to_next_word(p, s->core_argc)) ||
(dm_split_words(str, s->core_argc, 0, s->core_argv) != s->core_argc)))
goto bad;
/* Read in policy args */
pp = p;
if (!(p = advance_to_next_word(p, 1)) ||
!(s->policy_name = dm_pool_zalloc(mem, (p - pp))))
goto bad;
if (sscanf(pp, "%s %d", s->policy_name, &s->policy_argc) != 2)
goto bad;
if (s->policy_argc &&
(!(s->policy_argv = dm_pool_zalloc(mem, sizeof(char *) * s->policy_argc)) ||
!(p = advance_to_next_word(p, 1)) ||
!(str = dm_pool_strdup(mem, p)) ||
(dm_split_words(str, s->policy_argc, 0, s->policy_argv) != s->policy_argc)))
goto bad;
*status = s;
return 1;
bad:
log_error("Failed to parse cache params: %s", params);
dm_pool_free(mem, s);
*status = NULL;
return 0;
}
int dm_tree_node_add_replicator_target(struct dm_tree_node *node,
uint64_t size,
const char *rlog_uuid,
const char *rlog_type,
unsigned rsite_index,
dm_replicator_mode_t mode,
uint32_t async_timeout,
uint64_t fall_behind_data,
uint32_t fall_behind_ios)
{
struct load_segment *rseg;
struct replicator_site *rsite;
/* Local site0 - adds replicator segment and links rlog device */
if (rsite_index == REPLICATOR_LOCAL_SITE) {
if (node->props.segment_count) {
log_error(INTERNAL_ERROR "Attempt to add replicator segment to already used node.");
return 0;
}
if (!(rseg = _add_segment(node, SEG_REPLICATOR, size)))
return_0;
if (!(rseg->log = dm_tree_find_node_by_uuid(node->dtree, rlog_uuid))) {
log_error("Missing replicator log uuid %s.", rlog_uuid);
return 0;
}
if (!_link_tree_nodes(node, rseg->log))
return_0;
if (strcmp(rlog_type, "ringbuffer") != 0) {
log_error("Unsupported replicator log type %s.", rlog_type);
return 0;
}
if (!(rseg->rlog_type = dm_pool_strdup(node->dtree->mem, rlog_type)))
return_0;
dm_list_init(&rseg->rsites);
rseg->rdevice_count = 0;
node->activation_priority = 1;
}
/* Add site to segment */
if (mode == DM_REPLICATOR_SYNC
&& (async_timeout || fall_behind_ios || fall_behind_data)) {
log_error("Async parameters passed for synchronnous replicator.");
return 0;
}
if (node->props.segment_count != 1) {
log_error(INTERNAL_ERROR "Attempt to add remote site area before setting replicator log.");
return 0;
}
rseg = dm_list_item(dm_list_last(&node->props.segs), struct load_segment);
if (rseg->type != SEG_REPLICATOR) {
log_error(INTERNAL_ERROR "Attempt to use non replicator segment %s.",
_dm_segtypes[rseg->type].target);
return 0;
}
if (!(rsite = dm_pool_zalloc(node->dtree->mem, sizeof(*rsite)))) {
log_error("Failed to allocate remote site segment.");
return 0;
}
dm_list_add(&rseg->rsites, &rsite->list);
rseg->rsite_count++;
rsite->mode = mode;
rsite->async_timeout = async_timeout;
rsite->fall_behind_data = fall_behind_data;
rsite->fall_behind_ios = fall_behind_ios;
rsite->rsite_index = rsite_index;
return 1;
}
/* Appends device node to Replicator */
int dm_tree_node_add_replicator_dev_target(struct dm_tree_node *node,
uint64_t size,
const char *replicator_uuid,
uint64_t rdevice_index,
const char *rdev_uuid,
unsigned rsite_index,
const char *slog_uuid,
uint32_t slog_flags,
uint32_t slog_region_size)
{
struct seg_area *area;
struct load_segment *rseg;
struct load_segment *rep_seg;
if (rsite_index == REPLICATOR_LOCAL_SITE) {
/* Site index for local target */
if (!(rseg = _add_segment(node, SEG_REPLICATOR_DEV, size)))
return_0;
if (!(rseg->replicator = dm_tree_find_node_by_uuid(node->dtree, replicator_uuid))) {
log_error("Missing replicator uuid %s.", replicator_uuid);
return 0;
}
/* Local slink0 for replicator must be always initialized first */
if (rseg->replicator->props.segment_count != 1) {
log_error(INTERNAL_ERROR "Attempt to use non replicator segment.");
return 0;
}
rep_seg = dm_list_item(dm_list_last(&rseg->replicator->props.segs), struct load_segment);
if (rep_seg->type != SEG_REPLICATOR) {
log_error(INTERNAL_ERROR "Attempt to use non replicator segment %s.",
_dm_segtypes[rep_seg->type].target);
return 0;
}
rep_seg->rdevice_count++;
if (!_link_tree_nodes(node, rseg->replicator))
return_0;
rseg->rdevice_index = rdevice_index;
} else {
/* Local slink0 for replicator must be always initialized first */
if (node->props.segment_count != 1) {
log_error(INTERNAL_ERROR "Attempt to use non replicator-dev segment.");
return 0;
}
rseg = dm_list_item(dm_list_last(&node->props.segs), struct load_segment);
if (rseg->type != SEG_REPLICATOR_DEV) {
log_error(INTERNAL_ERROR "Attempt to use non replicator-dev segment %s.",
_dm_segtypes[rseg->type].target);
return 0;
}
}
if (!(slog_flags & DM_CORELOG) && !slog_uuid) {
log_error("Unspecified sync log uuid.");
return 0;
}
if (!dm_tree_node_add_target_area(node, NULL, rdev_uuid, 0))
return_0;
area = dm_list_item(dm_list_last(&rseg->areas), struct seg_area);
if (!(slog_flags & DM_CORELOG)) {
if (!(area->slog = dm_tree_find_node_by_uuid(node->dtree, slog_uuid))) {
log_error("Couldn't find sync log uuid %s.", slog_uuid);
return 0;
}
if (!_link_tree_nodes(node, area->slog))
return_0;
}
area->flags = slog_flags;
area->region_size = slog_region_size;
area->rsite_index = rsite_index;
return 1;
}
static struct load_segment *_get_single_load_segment(struct dm_tree_node *node,
unsigned type)
{
struct load_segment *seg;
if (node->props.segment_count != 1) {
log_error("Node %s must have only one segment.",
_dm_segtypes[type].target);
return NULL;
}
seg = dm_list_item(dm_list_last(&node->props.segs), struct load_segment);
if (seg->type != type) {
log_error("Node %s has segment type %s.",
_dm_segtypes[type].target,
_dm_segtypes[seg->type].target);
return NULL;
}
return seg;
}
static int _thin_validate_device_id(uint32_t device_id)
{
if (device_id > DM_THIN_MAX_DEVICE_ID) {
log_error("Device id %u is higher then %u.",
device_id, DM_THIN_MAX_DEVICE_ID);
return 0;
}
return 1;
}
int dm_tree_node_add_thin_pool_target(struct dm_tree_node *node,
uint64_t size,
uint64_t transaction_id,
const char *metadata_uuid,
const char *pool_uuid,
uint32_t data_block_size,
uint64_t low_water_mark,
unsigned skip_block_zeroing)
{
struct load_segment *seg, *mseg;
uint64_t devsize = 0;
if (data_block_size < DM_THIN_MIN_DATA_BLOCK_SIZE) {
log_error("Data block size %u is lower then %u sectors.",
data_block_size, DM_THIN_MIN_DATA_BLOCK_SIZE);
return 0;
}
if (data_block_size > DM_THIN_MAX_DATA_BLOCK_SIZE) {
log_error("Data block size %u is higher then %u sectors.",
data_block_size, DM_THIN_MAX_DATA_BLOCK_SIZE);
return 0;
}
if (!(seg = _add_segment(node, SEG_THIN_POOL, size)))
return_0;
if (!(seg->metadata = dm_tree_find_node_by_uuid(node->dtree, metadata_uuid))) {
log_error("Missing metadata uuid %s.", metadata_uuid);
return 0;
}
if (!_link_tree_nodes(node, seg->metadata))
return_0;
/* FIXME: more complex target may need more tweaks */
dm_list_iterate_items(mseg, &seg->metadata->props.segs) {
devsize += mseg->size;
if (devsize > DM_THIN_MAX_METADATA_SIZE) {
log_debug_activation("Ignoring %" PRIu64 " of device.",
devsize - DM_THIN_MAX_METADATA_SIZE);
mseg->size -= (devsize - DM_THIN_MAX_METADATA_SIZE);
devsize = DM_THIN_MAX_METADATA_SIZE;
/* FIXME: drop remaining segs */
}
}
if (!(seg->pool = dm_tree_find_node_by_uuid(node->dtree, pool_uuid))) {
log_error("Missing pool uuid %s.", pool_uuid);
return 0;
}
if (!_link_tree_nodes(node, seg->pool))
return_0;
/* Clean flag delay_resume_if_new - so corelog gets resumed */
seg->metadata->props.delay_resume_if_new = 0;
seg->pool->props.delay_resume_if_new = 0;
node->props.send_messages = 1;
seg->transaction_id = transaction_id;
seg->low_water_mark = low_water_mark;
seg->data_block_size = data_block_size;
seg->skip_block_zeroing = skip_block_zeroing;
dm_list_init(&seg->thin_messages);
return 1;
}
int dm_tree_node_add_thin_pool_message(struct dm_tree_node *node,
dm_thin_message_t type,
uint64_t id1, uint64_t id2)
{
struct thin_message *tm;
struct load_segment *seg;
if (!(seg = _get_single_load_segment(node, SEG_THIN_POOL)))
return_0;
if (!(tm = dm_pool_zalloc(node->dtree->mem, sizeof (*tm)))) {
log_error("Failed to allocate thin message.");
return 0;
}
switch (type) {
case DM_THIN_MESSAGE_CREATE_SNAP:
/* If the thin origin is active, it must be suspend first! */
if (id1 == id2) {
log_error("Cannot use same device id for origin and its snapshot.");
return 0;
}
if (!_thin_validate_device_id(id1) ||
!_thin_validate_device_id(id2))
return_0;
tm->message.u.m_create_snap.device_id = id1;
tm->message.u.m_create_snap.origin_id = id2;
break;
case DM_THIN_MESSAGE_CREATE_THIN:
if (!_thin_validate_device_id(id1))
return_0;
tm->message.u.m_create_thin.device_id = id1;
tm->expected_errno = EEXIST;
break;
case DM_THIN_MESSAGE_DELETE:
if (!_thin_validate_device_id(id1))
return_0;
tm->message.u.m_delete.device_id = id1;
tm->expected_errno = ENODATA;
break;
case DM_THIN_MESSAGE_SET_TRANSACTION_ID:
if ((id1 + 1) != id2) {
log_error("New transaction id must be sequential.");
return 0; /* FIXME: Maybe too strict here? */
}
if (id2 != seg->transaction_id) {
log_error("Current transaction id is different from thin pool.");
return 0; /* FIXME: Maybe too strict here? */
}
tm->message.u.m_set_transaction_id.current_id = id1;
tm->message.u.m_set_transaction_id.new_id = id2;
break;
default:
log_error("Unsupported message type %d.", (int) type);
return 0;
}
tm->message.type = type;
dm_list_add(&seg->thin_messages, &tm->list);
return 1;
}
int dm_tree_node_set_thin_pool_discard(struct dm_tree_node *node,
unsigned ignore,
unsigned no_passdown)
{
struct load_segment *seg;
if (!(seg = _get_single_load_segment(node, SEG_THIN_POOL)))
return_0;
seg->ignore_discard = ignore;
seg->no_discard_passdown = no_passdown;
return 1;
}
int dm_tree_node_add_thin_target(struct dm_tree_node *node,
uint64_t size,
const char *pool_uuid,
uint32_t device_id)
{
struct dm_tree_node *pool;
struct load_segment *seg;
if (!(pool = dm_tree_find_node_by_uuid(node->dtree, pool_uuid))) {
log_error("Missing thin pool uuid %s.", pool_uuid);
return 0;
}
if (!_link_tree_nodes(node, pool))
return_0;
if (!_thin_validate_device_id(device_id))
return_0;
if (!(seg = _add_segment(node, SEG_THIN, size)))
return_0;
seg->pool = pool;
seg->device_id = device_id;
return 1;
}
int dm_tree_node_set_thin_external_origin(struct dm_tree_node *node,
const char *external_uuid)
{
struct dm_tree_node *external;
struct load_segment *seg;
if (!(seg = _get_single_load_segment(node, SEG_THIN)))
return_0;
if (!(external = dm_tree_find_node_by_uuid(node->dtree,
external_uuid))) {
log_error("Missing thin external origin uuid %s.",
external_uuid);
return 0;
}
if (!_link_tree_nodes(node, external))
return_0;
seg->external = external;
return 1;
}
int dm_get_status_thin_pool(struct dm_pool *mem, const char *params,
struct dm_status_thin_pool **status)
{
struct dm_status_thin_pool *s;
int pos;
if (!params) {
log_error("Failed to parse invalid thin pool params.");
return 0;
}
if (!(s = dm_pool_zalloc(mem, sizeof(struct dm_status_thin_pool)))) {
log_error("Failed to allocate thin_pool status structure.");
return 0;
}
/* FIXME: add support for held metadata root */
if (sscanf(params, "%" PRIu64 " %" PRIu64 "/%" PRIu64 " %" PRIu64 "/%" PRIu64 "%n",
&s->transaction_id,
&s->used_metadata_blocks,
&s->total_metadata_blocks,
&s->used_data_blocks,
&s->total_data_blocks, &pos) < 5) {
dm_pool_free(mem, s);
log_error("Failed to parse thin pool params: %s.", params);
return 0;
}
/* New status flags */
if (strstr(params + pos, "no_discard_passdown"))
s->discards = DM_THIN_DISCARDS_NO_PASSDOWN;
else if (strstr(params + pos, "ignore_discard"))
s->discards = DM_THIN_DISCARDS_IGNORE;
else /* default discard_passdown */
s->discards = DM_THIN_DISCARDS_PASSDOWN;
s->read_only = (strstr(params + pos, "ro ")) ? 1 : 0;
*status = s;
return 1;
}
int dm_get_status_thin(struct dm_pool *mem, const char *params,
struct dm_status_thin **status)
{
struct dm_status_thin *s;
if (!params) {
log_error("Failed to parse invalid thin params.");
return 0;
}
if (!(s = dm_pool_zalloc(mem, sizeof(struct dm_status_thin)))) {
log_error("Failed to allocate thin status structure.");
return 0;
}
if (strchr(params, '-')) {
s->mapped_sectors = 0;
s->highest_mapped_sector = 0;
} else if (sscanf(params, "%" PRIu64 " %" PRIu64,
&s->mapped_sectors,
&s->highest_mapped_sector) != 2) {
dm_pool_free(mem, s);
log_error("Failed to parse thin params: %s.", params);
return 0;
}
*status = s;
return 1;
}
static int _add_area(struct dm_tree_node *node, struct load_segment *seg, struct dm_tree_node *dev_node, uint64_t offset)
{
struct seg_area *area;
if (!(area = dm_pool_zalloc(node->dtree->mem, sizeof (*area)))) {
log_error("Failed to allocate target segment area.");
return 0;
}
area->dev_node = dev_node;
area->offset = offset;
dm_list_add(&seg->areas, &area->list);
seg->area_count++;
return 1;
}
int dm_tree_node_add_target_area(struct dm_tree_node *node,
const char *dev_name,
const char *uuid,
uint64_t offset)
{
struct load_segment *seg;
struct stat info;
struct dm_tree_node *dev_node;
if ((!dev_name || !*dev_name) && (!uuid || !*uuid)) {
log_error("dm_tree_node_add_target_area called without device");
return 0;
}
if (uuid) {
if (!(dev_node = dm_tree_find_node_by_uuid(node->dtree, uuid))) {
log_error("Couldn't find area uuid %s.", uuid);
return 0;
}
if (!_link_tree_nodes(node, dev_node))
return_0;
} else {
if (stat(dev_name, &info) < 0) {
log_error("Device %s not found.", dev_name);
return 0;
}
if (!S_ISBLK(info.st_mode)) {
log_error("Device %s is not a block device.", dev_name);
return 0;
}
/* FIXME Check correct macro use */
if (!(dev_node = _add_dev(node->dtree, node, MAJOR(info.st_rdev),
MINOR(info.st_rdev), 0, 0)))
return_0;
}
if (!node->props.segment_count) {
log_error(INTERNAL_ERROR "Attempt to add target area to missing segment.");
return 0;
}
seg = dm_list_item(dm_list_last(&node->props.segs), struct load_segment);
if (!_add_area(node, seg, dev_node, offset))
return_0;
return 1;
}
int dm_tree_node_add_null_area(struct dm_tree_node *node, uint64_t offset)
{
struct load_segment *seg;
seg = dm_list_item(dm_list_last(&node->props.segs), struct load_segment);
switch (seg->type) {
case SEG_RAID1:
case SEG_RAID4:
case SEG_RAID5_LA:
case SEG_RAID5_RA:
case SEG_RAID5_LS:
case SEG_RAID5_RS:
case SEG_RAID6_ZR:
case SEG_RAID6_NR:
case SEG_RAID6_NC:
break;
default:
log_error("dm_tree_node_add_null_area() called on an unsupported segment type");
return 0;
}
if (!_add_area(node, seg, NULL, offset))
return_0;
return 1;
}
void dm_tree_node_set_callback(struct dm_tree_node *dnode,
dm_node_callback_fn cb, void *data)
{
dnode->callback = cb;
dnode->callback_data = data;
}