mirror of
git://sourceware.org/git/lvm2.git
synced 2025-01-10 05:18:36 +03:00
1645 lines
39 KiB
C
1645 lines
39 KiB
C
/*
|
|
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
|
|
* Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* This file is part of LVM2.
|
|
*
|
|
* This copyrighted material is made available to anyone wishing to use,
|
|
* modify, copy, or redistribute it subject to the terms and conditions
|
|
* of the GNU General Public License v.2.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include "lib.h"
|
|
#include "metadata.h"
|
|
#include "locking.h"
|
|
#include "pv_map.h"
|
|
#include "lvm-string.h"
|
|
#include "toolcontext.h"
|
|
#include "lv_alloc.h"
|
|
#include "pv_alloc.h"
|
|
#include "display.h"
|
|
#include "segtype.h"
|
|
|
|
/*
|
|
* PVs used by a segment of an LV
|
|
*/
|
|
struct seg_pvs {
|
|
struct list list;
|
|
|
|
struct list pvs; /* struct pv_list */
|
|
|
|
uint32_t le;
|
|
uint32_t len;
|
|
};
|
|
|
|
/*
|
|
* Find first unused LV number.
|
|
*/
|
|
uint32_t find_free_lvnum(struct logical_volume *lv)
|
|
{
|
|
int lvnum_used[MAX_RESTRICTED_LVS + 1];
|
|
uint32_t i = 0;
|
|
struct lv_list *lvl;
|
|
int lvnum;
|
|
|
|
memset(&lvnum_used, 0, sizeof(lvnum_used));
|
|
|
|
list_iterate_items(lvl, &lv->vg->lvs) {
|
|
lvnum = lvnum_from_lvid(&lvl->lv->lvid);
|
|
if (lvnum <= MAX_RESTRICTED_LVS)
|
|
lvnum_used[lvnum] = 1;
|
|
}
|
|
|
|
while (lvnum_used[i])
|
|
i++;
|
|
|
|
/* FIXME What if none are free? */
|
|
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* All lv_segments get created here.
|
|
*/
|
|
struct lv_segment *alloc_lv_segment(struct dm_pool *mem,
|
|
const struct segment_type *segtype,
|
|
struct logical_volume *lv,
|
|
uint32_t le, uint32_t len,
|
|
uint32_t status,
|
|
uint32_t stripe_size,
|
|
struct logical_volume *log_lv,
|
|
uint32_t area_count,
|
|
uint32_t area_len,
|
|
uint32_t chunk_size,
|
|
uint32_t region_size,
|
|
uint32_t extents_copied)
|
|
{
|
|
struct lv_segment *seg;
|
|
uint32_t areas_sz = area_count * sizeof(*seg->areas);
|
|
|
|
if (!(seg = dm_pool_zalloc(mem, sizeof(*seg)))) {
|
|
stack;
|
|
return NULL;
|
|
}
|
|
|
|
if (!(seg->areas = dm_pool_zalloc(mem, areas_sz))) {
|
|
dm_pool_free(mem, seg);
|
|
stack;
|
|
return NULL;
|
|
}
|
|
|
|
if (!segtype) {
|
|
log_error("alloc_lv_segment: Missing segtype.");
|
|
return NULL;
|
|
}
|
|
|
|
seg->segtype = segtype;
|
|
seg->lv = lv;
|
|
seg->le = le;
|
|
seg->len = len;
|
|
seg->status = status;
|
|
seg->stripe_size = stripe_size;
|
|
seg->area_count = area_count;
|
|
seg->area_len = area_len;
|
|
seg->chunk_size = chunk_size;
|
|
seg->region_size = region_size;
|
|
seg->extents_copied = extents_copied;
|
|
seg->log_lv = log_lv;
|
|
seg->mirror_seg = NULL;
|
|
list_init(&seg->tags);
|
|
|
|
if (log_lv) {
|
|
log_lv->status |= MIRROR_LOG;
|
|
first_seg(log_lv)->mirror_seg = seg;
|
|
}
|
|
|
|
return seg;
|
|
}
|
|
|
|
struct lv_segment *alloc_snapshot_seg(struct logical_volume *lv,
|
|
uint32_t status, uint32_t old_le_count)
|
|
{
|
|
struct lv_segment *seg;
|
|
const struct segment_type *segtype;
|
|
|
|
segtype = get_segtype_from_string(lv->vg->cmd, "snapshot");
|
|
if (!segtype) {
|
|
log_error("Failed to find snapshot segtype");
|
|
return NULL;
|
|
}
|
|
|
|
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem, segtype, lv, old_le_count,
|
|
lv->le_count - old_le_count, status, 0,
|
|
NULL, 0, lv->le_count - old_le_count,
|
|
0, 0, 0))) {
|
|
log_error("Couldn't allocate new snapshot segment.");
|
|
return NULL;
|
|
}
|
|
|
|
list_add(&lv->segments, &seg->list);
|
|
lv->status |= VIRTUAL;
|
|
|
|
return seg;
|
|
}
|
|
|
|
void release_lv_segment_area(struct lv_segment *seg, uint32_t s,
|
|
uint32_t area_reduction)
|
|
{
|
|
if (seg_type(seg, s) == AREA_UNASSIGNED)
|
|
return;
|
|
|
|
if (seg_type(seg, s) == AREA_PV) {
|
|
release_pv_segment(seg_pvseg(seg, s), area_reduction);
|
|
return;
|
|
}
|
|
|
|
if (seg_lv(seg, s)->status & MIRROR_IMAGE) {
|
|
lv_reduce(seg_lv(seg, s), area_reduction);
|
|
return;
|
|
}
|
|
|
|
if (area_reduction == seg->area_len) {
|
|
seg_lv(seg, s) = NULL;
|
|
seg_le(seg, s) = 0;
|
|
seg_type(seg, s) = AREA_UNASSIGNED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move a segment area from one segment to another
|
|
*/
|
|
int move_lv_segment_area(struct lv_segment *seg_to, uint32_t area_to,
|
|
struct lv_segment *seg_from, uint32_t area_from)
|
|
{
|
|
struct physical_volume *pv;
|
|
struct logical_volume *lv;
|
|
uint32_t pe, le;
|
|
|
|
switch (seg_type(seg_from, area_from)) {
|
|
case AREA_PV:
|
|
pv = seg_pv(seg_from, area_from);
|
|
pe = seg_pe(seg_from, area_from);
|
|
|
|
release_lv_segment_area(seg_from, area_from,
|
|
seg_from->area_len);
|
|
release_lv_segment_area(seg_to, area_to, seg_to->area_len);
|
|
|
|
if (!set_lv_segment_area_pv(seg_to, area_to, pv, pe)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
break;
|
|
|
|
case AREA_LV:
|
|
lv = seg_lv(seg_from, area_from);
|
|
le = seg_le(seg_from, area_from);
|
|
|
|
release_lv_segment_area(seg_from, area_from,
|
|
seg_from->area_len);
|
|
release_lv_segment_area(seg_to, area_to, seg_to->area_len);
|
|
|
|
set_lv_segment_area_lv(seg_to, area_to, lv, le, 0);
|
|
|
|
break;
|
|
|
|
case AREA_UNASSIGNED:
|
|
release_lv_segment_area(seg_to, area_to, seg_to->area_len);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Link part of a PV to an LV segment.
|
|
*/
|
|
int set_lv_segment_area_pv(struct lv_segment *seg, uint32_t area_num,
|
|
struct physical_volume *pv, uint32_t pe)
|
|
{
|
|
seg->areas[area_num].type = AREA_PV;
|
|
|
|
if (!(seg_pvseg(seg, area_num) =
|
|
assign_peg_to_lvseg(pv, pe, seg->area_len, seg, area_num))) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Link one LV segment to another. Assumes sizes already match.
|
|
*/
|
|
void set_lv_segment_area_lv(struct lv_segment *seg, uint32_t area_num,
|
|
struct logical_volume *lv, uint32_t le,
|
|
uint32_t flags)
|
|
{
|
|
seg->areas[area_num].type = AREA_LV;
|
|
seg_lv(seg, area_num) = lv;
|
|
seg_le(seg, area_num) = le;
|
|
lv->status |= flags;
|
|
}
|
|
|
|
/*
|
|
* Prepare for adding parallel areas to an existing segment.
|
|
*/
|
|
static int _lv_segment_add_areas(struct logical_volume *lv,
|
|
struct lv_segment *seg,
|
|
uint32_t new_area_count)
|
|
{
|
|
struct lv_segment_area *newareas;
|
|
uint32_t areas_sz = new_area_count * sizeof(*newareas);
|
|
|
|
if (!(newareas = dm_pool_zalloc(lv->vg->cmd->mem, areas_sz))) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
memcpy(newareas, seg->areas, seg->area_count * sizeof(*seg->areas));
|
|
|
|
seg->areas = newareas;
|
|
seg->area_count = new_area_count;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Reduce the size of an lv_segment. New size can be zero.
|
|
*/
|
|
static int _lv_segment_reduce(struct lv_segment *seg, uint32_t reduction)
|
|
{
|
|
uint32_t area_reduction, s;
|
|
|
|
/* Caller must ensure exact divisibility */
|
|
if (seg_is_striped(seg)) {
|
|
if (reduction % seg->area_count) {
|
|
log_error("Segment extent reduction %" PRIu32
|
|
"not divisible by #stripes %" PRIu32,
|
|
reduction, seg->area_count);
|
|
return 0;
|
|
}
|
|
area_reduction = (reduction / seg->area_count);
|
|
} else
|
|
area_reduction = reduction;
|
|
|
|
for (s = 0; s < seg->area_count; s++)
|
|
release_lv_segment_area(seg, s, area_reduction);
|
|
|
|
seg->len -= reduction;
|
|
seg->area_len -= area_reduction;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Entry point for all LV reductions in size.
|
|
*/
|
|
static int _lv_reduce(struct logical_volume *lv, uint32_t extents, int delete)
|
|
{
|
|
struct lv_list *lvl;
|
|
struct lv_segment *seg;
|
|
uint32_t count = extents;
|
|
uint32_t reduction;
|
|
|
|
list_iterate_back_items(seg, &lv->segments) {
|
|
if (!count)
|
|
break;
|
|
|
|
if (seg->len <= count) {
|
|
/* remove this segment completely */
|
|
/* FIXME Check this is safe */
|
|
if (seg->log_lv && !lv_remove(seg->log_lv)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
list_del(&seg->list);
|
|
reduction = seg->len;
|
|
} else
|
|
reduction = count;
|
|
|
|
if (!_lv_segment_reduce(seg, reduction)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
count -= reduction;
|
|
}
|
|
|
|
lv->le_count -= extents;
|
|
lv->size = (uint64_t) lv->le_count * lv->vg->extent_size;
|
|
|
|
if (!delete)
|
|
return 1;
|
|
|
|
/* Remove the LV if it is now empty */
|
|
if (!lv->le_count) {
|
|
if (!(lvl = find_lv_in_vg(lv->vg, lv->name))) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
list_del(&lvl->list);
|
|
|
|
lv->vg->lv_count--;
|
|
} else if (lv->vg->fid->fmt->ops->lv_setup &&
|
|
!lv->vg->fid->fmt->ops->lv_setup(lv->vg->fid, lv)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Empty an LV.
|
|
*/
|
|
int lv_empty(struct logical_volume *lv)
|
|
{
|
|
return _lv_reduce(lv, lv->le_count, 0);
|
|
}
|
|
|
|
/*
|
|
* Remove given number of extents from LV.
|
|
*/
|
|
int lv_reduce(struct logical_volume *lv, uint32_t extents)
|
|
{
|
|
return _lv_reduce(lv, extents, 1);
|
|
}
|
|
|
|
/*
|
|
* Completely remove an LV.
|
|
*/
|
|
int lv_remove(struct logical_volume *lv)
|
|
{
|
|
|
|
if (!lv_reduce(lv, lv->le_count)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* A set of contiguous physical extents allocated
|
|
*/
|
|
struct alloced_area {
|
|
struct list list;
|
|
|
|
struct physical_volume *pv;
|
|
uint32_t pe;
|
|
uint32_t len;
|
|
};
|
|
|
|
/*
|
|
* Details of an allocation attempt
|
|
*/
|
|
struct alloc_handle {
|
|
struct cmd_context *cmd;
|
|
struct dm_pool *mem;
|
|
|
|
alloc_policy_t alloc; /* Overall policy */
|
|
uint32_t area_count; /* Number of parallel areas */
|
|
uint32_t area_multiple; /* seg->len = area_len * area_multiple */
|
|
uint32_t log_count; /* Number of parallel 1-extent logs */
|
|
uint32_t total_area_len; /* Total number of parallel extents */
|
|
|
|
struct physical_volume *mirrored_pv; /* FIXME Remove this */
|
|
uint32_t mirrored_pe; /* FIXME Remove this */
|
|
struct list *parallel_areas; /* PVs to avoid */
|
|
|
|
struct alloced_area log_area; /* Extent used for log */
|
|
struct list alloced_areas[0]; /* Lists of areas in each stripe */
|
|
};
|
|
|
|
/*
|
|
* Preparation for a specific allocation attempt
|
|
*/
|
|
static struct alloc_handle *_alloc_init(struct cmd_context *cmd,
|
|
struct dm_pool *mem,
|
|
const struct segment_type *segtype,
|
|
alloc_policy_t alloc,
|
|
uint32_t mirrors,
|
|
uint32_t stripes,
|
|
uint32_t log_count,
|
|
struct physical_volume *mirrored_pv,
|
|
uint32_t mirrored_pe,
|
|
struct list *parallel_areas)
|
|
{
|
|
struct alloc_handle *ah;
|
|
uint32_t s, area_count;
|
|
|
|
if (stripes > 1 && mirrors > 1) {
|
|
log_error("Striped mirrors are not supported yet");
|
|
return NULL;
|
|
}
|
|
|
|
if ((stripes > 1 || mirrors > 1) && mirrored_pv) {
|
|
log_error("Can't mix striping or mirroring with "
|
|
"creation of a mirrored PV yet");
|
|
return NULL;
|
|
}
|
|
|
|
if (log_count && (stripes > 1 || mirrored_pv)) {
|
|
log_error("Can't mix striping or pvmove with "
|
|
"a mirror log yet.");
|
|
return NULL;
|
|
}
|
|
|
|
if (segtype_is_virtual(segtype))
|
|
area_count = 0;
|
|
else if (mirrors > 1)
|
|
area_count = mirrors;
|
|
else if (mirrored_pv)
|
|
area_count = 1;
|
|
else
|
|
area_count = stripes;
|
|
|
|
if (!(ah = dm_pool_zalloc(mem, sizeof(*ah) + sizeof(ah->alloced_areas[0]) * area_count))) {
|
|
log_error("allocation handle allocation failed");
|
|
return NULL;
|
|
}
|
|
|
|
if (segtype_is_virtual(segtype))
|
|
return ah;
|
|
|
|
ah->cmd = cmd;
|
|
|
|
if (!(ah->mem = dm_pool_create("allocation", 1024))) {
|
|
log_error("allocation pool creation failed");
|
|
return NULL;
|
|
}
|
|
|
|
ah->area_count = area_count;
|
|
ah->log_count = log_count;
|
|
ah->alloc = alloc;
|
|
ah->area_multiple = segtype_is_striped(segtype) ? ah->area_count : 1;
|
|
|
|
for (s = 0; s < ah->area_count; s++)
|
|
list_init(&ah->alloced_areas[s]);
|
|
|
|
ah->mirrored_pv = mirrored_pv;
|
|
ah->mirrored_pe = mirrored_pe;
|
|
ah->parallel_areas = parallel_areas;
|
|
|
|
return ah;
|
|
}
|
|
|
|
void alloc_destroy(struct alloc_handle *ah)
|
|
{
|
|
if (ah->mem)
|
|
dm_pool_destroy(ah->mem);
|
|
}
|
|
|
|
static int _log_parallel_areas(struct dm_pool *mem, struct list *parallel_areas)
|
|
{
|
|
struct seg_pvs *spvs;
|
|
struct pv_list *pvl;
|
|
char *pvnames;
|
|
|
|
if (!parallel_areas)
|
|
return 1;
|
|
|
|
if (!dm_pool_begin_object(mem, 256)) {
|
|
log_error("dm_pool_begin_object failed");
|
|
return 0;
|
|
}
|
|
|
|
list_iterate_items(spvs, parallel_areas) {
|
|
list_iterate_items(pvl, &spvs->pvs) {
|
|
if (!dm_pool_grow_object(mem, dev_name(pvl->pv->dev), strlen(dev_name(pvl->pv->dev)))) {
|
|
log_error("dm_pool_grow_object failed");
|
|
dm_pool_abandon_object(mem);
|
|
return 0;
|
|
}
|
|
if (!dm_pool_grow_object(mem, " ", 1)) {
|
|
log_error("dm_pool_grow_object failed");
|
|
dm_pool_abandon_object(mem);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (!dm_pool_grow_object(mem, "\0", 1)) {
|
|
log_error("dm_pool_grow_object failed");
|
|
dm_pool_abandon_object(mem);
|
|
return 0;
|
|
}
|
|
|
|
pvnames = dm_pool_end_object(mem);
|
|
log_debug("Parallel PVs at LE %" PRIu32 " length %" PRIu32 ": %s",
|
|
spvs->le, spvs->len, pvnames);
|
|
dm_pool_free(mem, pvnames);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _setup_alloced_segment(struct logical_volume *lv, uint32_t status,
|
|
uint32_t area_count,
|
|
uint32_t stripe_size,
|
|
const struct segment_type *segtype,
|
|
struct alloced_area *aa,
|
|
struct physical_volume *mirrored_pv,
|
|
uint32_t mirrored_pe,
|
|
uint32_t region_size,
|
|
struct logical_volume *log_lv __attribute((unused)))
|
|
{
|
|
uint32_t s, extents, area_multiple, extra_areas = 0;
|
|
struct lv_segment *seg;
|
|
|
|
if (mirrored_pv)
|
|
extra_areas = 1;
|
|
|
|
area_multiple = segtype_is_striped(segtype) ? area_count : 1;
|
|
|
|
/* log_lv gets set up elsehere */
|
|
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem, segtype, lv,
|
|
lv->le_count,
|
|
aa[0].len * area_multiple,
|
|
status, stripe_size, NULL,
|
|
area_count + extra_areas,
|
|
aa[0].len, 0u, region_size, 0u))) {
|
|
log_error("Couldn't allocate new LV segment.");
|
|
return 0;
|
|
}
|
|
|
|
if (extra_areas) {
|
|
if (!set_lv_segment_area_pv(seg, 0, mirrored_pv, mirrored_pe)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
for (s = 0; s < area_count; s++) {
|
|
if (!set_lv_segment_area_pv(seg, s + extra_areas, aa[s].pv,
|
|
aa[s].pe)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
list_add(&lv->segments, &seg->list);
|
|
|
|
extents = aa[0].len * area_multiple;
|
|
lv->le_count += extents;
|
|
lv->size += (uint64_t) extents *lv->vg->extent_size;
|
|
|
|
if (segtype_is_mirrored(segtype))
|
|
lv->status |= MIRRORED;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _setup_alloced_segments(struct logical_volume *lv,
|
|
struct list *alloced_areas,
|
|
uint32_t area_count,
|
|
uint32_t status,
|
|
uint32_t stripe_size,
|
|
const struct segment_type *segtype,
|
|
struct physical_volume *mirrored_pv,
|
|
uint32_t mirrored_pe,
|
|
uint32_t region_size,
|
|
struct logical_volume *log_lv)
|
|
{
|
|
struct alloced_area *aa;
|
|
|
|
list_iterate_items(aa, &alloced_areas[0]) {
|
|
if (!_setup_alloced_segment(lv, status, area_count,
|
|
stripe_size, segtype, aa,
|
|
mirrored_pv, mirrored_pe,
|
|
region_size, log_lv)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This function takes a list of pv_areas and adds them to allocated_areas.
|
|
* If the complete area is not needed then it gets split.
|
|
* The part used is removed from the pv_map so it can't be allocated twice.
|
|
*/
|
|
static int _alloc_parallel_area(struct alloc_handle *ah, uint32_t needed,
|
|
struct pv_area **areas,
|
|
uint32_t *ix, struct pv_area *log_area)
|
|
{
|
|
uint32_t area_len, smallest, remaining;
|
|
uint32_t s;
|
|
struct alloced_area *aa;
|
|
|
|
remaining = needed - *ix;
|
|
area_len = remaining / ah->area_multiple;
|
|
|
|
smallest = areas[ah->area_count - 1]->count;
|
|
|
|
if (area_len > smallest)
|
|
area_len = smallest;
|
|
|
|
if (!(aa = dm_pool_alloc(ah->mem, sizeof(*aa) *
|
|
(ah->area_count + (log_area ? 1 : 0))))) {
|
|
log_error("alloced_area allocation failed");
|
|
return 0;
|
|
}
|
|
|
|
for (s = 0; s < ah->area_count; s++) {
|
|
aa[s].pv = areas[s]->map->pv;
|
|
aa[s].pe = areas[s]->start;
|
|
aa[s].len = area_len;
|
|
list_add(&ah->alloced_areas[s], &aa[s].list);
|
|
}
|
|
|
|
ah->total_area_len += area_len;
|
|
|
|
for (s = 0; s < ah->area_count; s++)
|
|
consume_pv_area(areas[s], area_len);
|
|
|
|
if (log_area) {
|
|
ah->log_area.pv = log_area->map->pv;
|
|
ah->log_area.pe = log_area->start;
|
|
ah->log_area.len = MIRROR_LOG_SIZE; /* FIXME Calculate & check this */
|
|
consume_pv_area(log_area, ah->log_area.len);
|
|
}
|
|
|
|
*ix += area_len * ah->area_multiple;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Call fn for each AREA_PV used by the LV segment at lv:le of length *max_seg_len.
|
|
* If any constituent area contains more than one segment, max_seg_len is
|
|
* reduced to cover only the first.
|
|
* fn should return 0 on error, 1 to continue scanning or >1 to terminate without error.
|
|
* In the last case, this function passes on the return code.
|
|
*/
|
|
static int _for_each_pv(struct cmd_context *cmd, struct logical_volume *lv,
|
|
uint32_t le, uint32_t len, uint32_t *max_seg_len,
|
|
uint32_t first_area, uint32_t max_areas,
|
|
int top_level_area_index,
|
|
int only_single_area_segments,
|
|
int (*fn)(struct cmd_context *cmd,
|
|
struct pv_segment *peg, uint32_t s,
|
|
void *data),
|
|
void *data)
|
|
{
|
|
struct lv_segment *seg;
|
|
uint32_t s;
|
|
uint32_t remaining_seg_len, area_len, area_multiple;
|
|
int r = 1;
|
|
|
|
if (!(seg = find_seg_by_le(lv, le))) {
|
|
log_error("Failed to find segment for %s extent %" PRIu32,
|
|
lv->name, le);
|
|
return 0;
|
|
}
|
|
|
|
/* Remaining logical length of segment */
|
|
remaining_seg_len = seg->len - (le - seg->le);
|
|
|
|
if (remaining_seg_len > len)
|
|
remaining_seg_len = len;
|
|
|
|
if (max_seg_len && *max_seg_len > remaining_seg_len)
|
|
*max_seg_len = remaining_seg_len;
|
|
|
|
area_multiple = segtype_is_striped(seg->segtype) ? seg->area_count : 1;
|
|
area_len = remaining_seg_len / area_multiple ? : 1;
|
|
|
|
for (s = first_area;
|
|
s < seg->area_count && (!max_areas || s <= max_areas);
|
|
s++) {
|
|
if (seg_type(seg, s) == AREA_LV) {
|
|
if (!(r = _for_each_pv(cmd, seg_lv(seg, s),
|
|
seg_le(seg, s) +
|
|
(le - seg->le) / area_multiple,
|
|
area_len, max_seg_len,
|
|
only_single_area_segments ? 0 : 0,
|
|
only_single_area_segments ? 1 : 0,
|
|
top_level_area_index != -1 ? top_level_area_index : s,
|
|
only_single_area_segments, fn,
|
|
data)))
|
|
stack;
|
|
} else if (seg_type(seg, s) == AREA_PV)
|
|
if (!(r = fn(cmd, seg_pvseg(seg, s), top_level_area_index != -1 ? top_level_area_index : s, data)))
|
|
stack;
|
|
if (r != 1)
|
|
return r;
|
|
}
|
|
|
|
/* FIXME only_single_area_segments used as workaround to skip log LV - needs new param? */
|
|
if (!only_single_area_segments && seg_is_mirrored(seg) && seg->log_lv) {
|
|
if (!(r = _for_each_pv(cmd, seg->log_lv, 0, MIRROR_LOG_SIZE,
|
|
NULL, 0, 0, 0, only_single_area_segments,
|
|
fn, data)))
|
|
stack;
|
|
if (r != 1)
|
|
return r;
|
|
}
|
|
|
|
/* FIXME Add snapshot cow LVs etc. */
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _comp_area(const void *l, const void *r)
|
|
{
|
|
const struct pv_area *lhs = *((const struct pv_area **) l);
|
|
const struct pv_area *rhs = *((const struct pv_area **) r);
|
|
|
|
if (lhs->count < rhs->count)
|
|
return 1;
|
|
|
|
else if (lhs->count > rhs->count)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Search for pvseg that matches condition
|
|
*/
|
|
struct pv_match {
|
|
int (*condition)(struct pv_segment *pvseg, struct pv_area *pva);
|
|
|
|
struct pv_area **areas;
|
|
struct pv_area *pva;
|
|
uint32_t areas_size;
|
|
int s; /* Area index of match */
|
|
};
|
|
|
|
/*
|
|
* Is PV area on the same PV?
|
|
*/
|
|
static int _is_same_pv(struct pv_segment *pvseg, struct pv_area *pva)
|
|
{
|
|
if (pvseg->pv != pva->map->pv)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Is PV area contiguous to PV segment?
|
|
*/
|
|
static int _is_contiguous(struct pv_segment *pvseg, struct pv_area *pva)
|
|
{
|
|
if (pvseg->pv != pva->map->pv)
|
|
return 0;
|
|
|
|
if (pvseg->pe + pvseg->len != pva->start)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _is_condition(struct cmd_context *cmd,
|
|
struct pv_segment *pvseg, uint32_t s,
|
|
void *data)
|
|
{
|
|
struct pv_match *pvmatch = data;
|
|
|
|
if (!pvmatch->condition(pvseg, pvmatch->pva))
|
|
return 1; /* Continue */
|
|
|
|
if (s >= pvmatch->areas_size)
|
|
return 1;
|
|
|
|
pvmatch->areas[s] = pvmatch->pva;
|
|
|
|
return 2; /* Finished */
|
|
}
|
|
|
|
/*
|
|
* Is pva on same PV as any existing areas?
|
|
*/
|
|
static int _check_cling(struct cmd_context *cmd,
|
|
struct lv_segment *prev_lvseg, struct pv_area *pva,
|
|
struct pv_area **areas, uint32_t areas_size)
|
|
{
|
|
struct pv_match pvmatch;
|
|
int r;
|
|
|
|
pvmatch.condition = _is_same_pv;
|
|
pvmatch.areas = areas;
|
|
pvmatch.areas_size = areas_size;
|
|
pvmatch.pva = pva;
|
|
|
|
/* FIXME Cope with stacks by flattening */
|
|
if (!(r = _for_each_pv(cmd, prev_lvseg->lv,
|
|
prev_lvseg->le + prev_lvseg->len - 1, 1, NULL,
|
|
0, 0, -1, 1,
|
|
_is_condition, &pvmatch)))
|
|
stack;
|
|
|
|
if (r != 2)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Is pva contiguous to any existing areas or on the same PV?
|
|
*/
|
|
static int _check_contiguous(struct cmd_context *cmd,
|
|
struct lv_segment *prev_lvseg, struct pv_area *pva,
|
|
struct pv_area **areas, uint32_t areas_size)
|
|
{
|
|
struct pv_match pvmatch;
|
|
int r;
|
|
|
|
pvmatch.condition = _is_contiguous;
|
|
pvmatch.areas = areas;
|
|
pvmatch.areas_size = areas_size;
|
|
pvmatch.pva = pva;
|
|
|
|
/* FIXME Cope with stacks by flattening */
|
|
if (!(r = _for_each_pv(cmd, prev_lvseg->lv,
|
|
prev_lvseg->le + prev_lvseg->len - 1, 1, NULL,
|
|
0, 0, -1, 1,
|
|
_is_condition, &pvmatch)))
|
|
stack;
|
|
|
|
if (r != 2)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Choose sets of parallel areas to use, respecting any constraints.
|
|
*/
|
|
static int _find_parallel_space(struct alloc_handle *ah, alloc_policy_t alloc,
|
|
struct list *pvms, struct pv_area **areas,
|
|
uint32_t areas_size, unsigned can_split,
|
|
struct lv_segment *prev_lvseg,
|
|
uint32_t *allocated, uint32_t needed)
|
|
{
|
|
struct pv_map *pvm;
|
|
struct pv_area *pva;
|
|
struct pv_list *pvl;
|
|
unsigned already_found_one = 0;
|
|
unsigned contiguous = 0, cling = 0, preferred_count = 0;
|
|
unsigned ix;
|
|
unsigned ix_offset = 0; /* Offset for non-preferred allocations */
|
|
uint32_t max_parallel; /* Maximum extents to allocate */
|
|
uint32_t next_le;
|
|
struct seg_pvs *spvs;
|
|
struct list *parallel_pvs;
|
|
uint32_t free_pes;
|
|
|
|
/* Is there enough total space? */
|
|
free_pes = pv_maps_size(pvms);
|
|
if (needed - *allocated > free_pes) {
|
|
log_error("Insufficient free space: %" PRIu32 " extents needed,"
|
|
" but only %" PRIu32 " available",
|
|
needed - *allocated, free_pes);
|
|
return 0;
|
|
}
|
|
|
|
/* FIXME Select log PV appropriately if there isn't one yet */
|
|
|
|
/* Are there any preceding segments we must follow on from? */
|
|
if (prev_lvseg) {
|
|
ix_offset = prev_lvseg->area_count;
|
|
if ((alloc == ALLOC_CONTIGUOUS))
|
|
contiguous = 1;
|
|
else if ((alloc == ALLOC_CLING))
|
|
cling = 1;
|
|
else
|
|
ix_offset = 0;
|
|
}
|
|
|
|
/* FIXME This algorithm needs a lot of cleaning up! */
|
|
/* FIXME anywhere doesn't find all space yet */
|
|
/* ix_offset holds the number of allocations that must be contiguous */
|
|
/* ix holds the number of areas found on other PVs */
|
|
do {
|
|
ix = 0;
|
|
preferred_count = 0;
|
|
|
|
parallel_pvs = NULL;
|
|
max_parallel = needed;
|
|
|
|
/*
|
|
* If there are existing parallel PVs, avoid them and reduce
|
|
* the maximum we can allocate in one go accordingly.
|
|
*/
|
|
if (ah->parallel_areas) {
|
|
next_le = (prev_lvseg ? prev_lvseg->le + prev_lvseg->len : 0) + *allocated / ah->area_multiple;
|
|
list_iterate_items(spvs, ah->parallel_areas) {
|
|
if (next_le >= spvs->le + spvs->len)
|
|
continue;
|
|
|
|
if (max_parallel > (spvs->le + spvs->len) * ah->area_multiple)
|
|
max_parallel = (spvs->le + spvs->len) * ah->area_multiple;
|
|
parallel_pvs = &spvs->pvs;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Put the smallest area of each PV that is at least the
|
|
* size we need into areas array. If there isn't one
|
|
* that fits completely and we're allowed more than one
|
|
* LV segment, then take the largest remaining instead.
|
|
*/
|
|
list_iterate_items(pvm, pvms) {
|
|
if (list_empty(&pvm->areas))
|
|
continue; /* Next PV */
|
|
|
|
if (alloc != ALLOC_ANYWHERE) {
|
|
/* Don't allocate onto the log pv */
|
|
if (ah->log_count &&
|
|
pvm->pv == ah->log_area.pv)
|
|
continue; /* Next PV */
|
|
|
|
/* Avoid PVs used by existing parallel areas */
|
|
if (parallel_pvs)
|
|
list_iterate_items(pvl, parallel_pvs)
|
|
if (pvm->pv == pvl->pv)
|
|
goto next_pv;
|
|
}
|
|
|
|
already_found_one = 0;
|
|
/* First area in each list is the largest */
|
|
list_iterate_items(pva, &pvm->areas) {
|
|
if (contiguous) {
|
|
if (prev_lvseg &&
|
|
_check_contiguous(ah->cmd,
|
|
prev_lvseg,
|
|
pva, areas,
|
|
areas_size)) {
|
|
preferred_count++;
|
|
goto next_pv;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (cling) {
|
|
if (prev_lvseg &&
|
|
_check_cling(ah->cmd,
|
|
prev_lvseg,
|
|
pva, areas,
|
|
areas_size)) {
|
|
preferred_count++;
|
|
}
|
|
goto next_pv;
|
|
}
|
|
|
|
/* Is it big enough on its own? */
|
|
if (pva->count * ah->area_multiple <
|
|
max_parallel - *allocated &&
|
|
((!can_split && !ah->log_count) ||
|
|
(already_found_one &&
|
|
!(alloc == ALLOC_ANYWHERE))))
|
|
goto next_pv;
|
|
|
|
if (!already_found_one ||
|
|
alloc == ALLOC_ANYWHERE) {
|
|
ix++;
|
|
already_found_one = 1;
|
|
}
|
|
|
|
areas[ix + ix_offset - 1] = pva;
|
|
|
|
goto next_pv;
|
|
}
|
|
next_pv:
|
|
if (ix >= areas_size)
|
|
break;
|
|
}
|
|
|
|
if ((contiguous || cling) && (preferred_count < ix_offset))
|
|
break;
|
|
|
|
/* Only allocate log_area the first time around */
|
|
if (ix + ix_offset < ah->area_count +
|
|
((ah->log_count && !ah->log_area.len) ?
|
|
ah->log_count : 0))
|
|
/* FIXME With ALLOC_ANYWHERE, need to split areas */
|
|
break;
|
|
|
|
/* sort the areas so we allocate from the biggest */
|
|
if (ix > 1)
|
|
qsort(areas + ix_offset, ix, sizeof(*areas),
|
|
_comp_area);
|
|
|
|
/* First time around, use smallest area as log_area */
|
|
/* FIXME decide which PV to use at top of function instead */
|
|
if (!_alloc_parallel_area(ah, max_parallel, areas,
|
|
allocated,
|
|
(ah->log_count && !ah->log_area.len) ?
|
|
*(areas + ix_offset + ix - 1) :
|
|
NULL)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
} while (!contiguous && *allocated != needed && can_split);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Allocate several segments, each the same size, in parallel.
|
|
* If mirrored_pv and mirrored_pe are supplied, it is used as
|
|
* the first area, and additional areas are allocated parallel to it.
|
|
*/
|
|
static int _allocate(struct alloc_handle *ah,
|
|
struct volume_group *vg,
|
|
struct logical_volume *lv, uint32_t status,
|
|
uint32_t new_extents,
|
|
struct list *allocatable_pvs,
|
|
uint32_t stripes, uint32_t mirrors,
|
|
const struct segment_type *segtype)
|
|
{
|
|
struct pv_area **areas;
|
|
uint32_t allocated = lv ? lv->le_count : 0;
|
|
uint32_t old_allocated;
|
|
struct lv_segment *prev_lvseg = NULL;
|
|
unsigned can_split = 1; /* Are we allowed more than one segment? */
|
|
int r = 0;
|
|
struct list *pvms;
|
|
uint32_t areas_size;
|
|
|
|
if (allocated >= new_extents && !ah->log_count) {
|
|
log_error("_allocate called with no work to do!");
|
|
return 1;
|
|
}
|
|
|
|
if (ah->mirrored_pv || (ah->alloc == ALLOC_CONTIGUOUS))
|
|
can_split = 0;
|
|
|
|
if (lv && !list_empty(&lv->segments))
|
|
prev_lvseg = list_item(list_last(&lv->segments),
|
|
struct lv_segment);
|
|
/*
|
|
* Build the sets of available areas on the pv's.
|
|
*/
|
|
if (!(pvms = create_pv_maps(ah->mem, vg, allocatable_pvs))) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
if (!_log_parallel_areas(ah->mem, ah->parallel_areas))
|
|
stack;
|
|
|
|
areas_size = list_size(pvms);
|
|
if (areas_size < ah->area_count + ah->log_count) {
|
|
if (ah->alloc != ALLOC_ANYWHERE) {
|
|
log_error("Not enough PVs with free space available "
|
|
"for parallel allocation.");
|
|
log_error("Consider --alloc anywhere if desperate.");
|
|
return 0;
|
|
}
|
|
areas_size = ah->area_count + ah->log_count;
|
|
}
|
|
|
|
/* Upper bound if none of the PVs in prev_lvseg is in pvms */
|
|
/* FIXME Work size out properly */
|
|
if (prev_lvseg)
|
|
areas_size += prev_lvseg->area_count;
|
|
|
|
/* Allocate an array of pv_areas to hold the largest space on each PV */
|
|
if (!(areas = dm_malloc(sizeof(*areas) * areas_size))) {
|
|
log_err("Couldn't allocate areas array.");
|
|
return 0;
|
|
}
|
|
|
|
old_allocated = allocated;
|
|
if (!_find_parallel_space(ah, ALLOC_CONTIGUOUS, pvms, areas,
|
|
areas_size, can_split,
|
|
prev_lvseg, &allocated, new_extents)) {
|
|
stack;
|
|
goto out;
|
|
}
|
|
|
|
if ((allocated == new_extents) || (ah->alloc == ALLOC_CONTIGUOUS) ||
|
|
(!can_split && (allocated != old_allocated)))
|
|
goto finished;
|
|
|
|
old_allocated = allocated;
|
|
if (!_find_parallel_space(ah, ALLOC_CLING, pvms, areas,
|
|
areas_size, can_split,
|
|
prev_lvseg, &allocated, new_extents)) {
|
|
stack;
|
|
goto out;
|
|
}
|
|
|
|
if ((allocated == new_extents) || (ah->alloc == ALLOC_CLING) ||
|
|
(!can_split && (allocated != old_allocated)))
|
|
goto finished;
|
|
|
|
old_allocated = allocated;
|
|
if (!_find_parallel_space(ah, ALLOC_NORMAL, pvms, areas,
|
|
areas_size, can_split,
|
|
prev_lvseg, &allocated, new_extents)) {
|
|
stack;
|
|
goto out;
|
|
}
|
|
|
|
if ((allocated == new_extents) || (ah->alloc == ALLOC_NORMAL) ||
|
|
(!can_split && (allocated != old_allocated)))
|
|
goto finished;
|
|
|
|
if (!_find_parallel_space(ah, ALLOC_ANYWHERE, pvms, areas,
|
|
areas_size, can_split,
|
|
prev_lvseg, &allocated, new_extents)) {
|
|
stack;
|
|
goto out;
|
|
}
|
|
|
|
finished:
|
|
if (allocated != new_extents) {
|
|
log_error("Insufficient suitable %sallocatable extents "
|
|
"for logical volume %s: %u more required",
|
|
can_split ? "" : "contiguous ",
|
|
lv ? lv->name : "",
|
|
(new_extents - allocated) * ah->area_count
|
|
/ ah->area_multiple);
|
|
goto out;
|
|
}
|
|
|
|
r = 1;
|
|
|
|
out:
|
|
dm_free(areas);
|
|
return r;
|
|
}
|
|
|
|
int lv_add_virtual_segment(struct logical_volume *lv, uint32_t status,
|
|
uint32_t extents, const struct segment_type *segtype)
|
|
{
|
|
struct lv_segment *seg;
|
|
|
|
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem, segtype, lv,
|
|
lv->le_count, extents, status, 0,
|
|
NULL, 0, extents, 0, 0, 0))) {
|
|
log_error("Couldn't allocate new zero segment.");
|
|
return 0;
|
|
}
|
|
|
|
list_add(&lv->segments, &seg->list);
|
|
|
|
lv->le_count += extents;
|
|
lv->size += (uint64_t) extents *lv->vg->extent_size;
|
|
|
|
lv->status |= VIRTUAL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Entry point for all extent allocations.
|
|
*/
|
|
struct alloc_handle *allocate_extents(struct volume_group *vg,
|
|
struct logical_volume *lv,
|
|
const struct segment_type *segtype,
|
|
uint32_t stripes,
|
|
uint32_t mirrors, uint32_t log_count,
|
|
uint32_t extents,
|
|
struct physical_volume *mirrored_pv,
|
|
uint32_t mirrored_pe,
|
|
uint32_t status,
|
|
struct list *allocatable_pvs,
|
|
alloc_policy_t alloc,
|
|
struct list *parallel_areas)
|
|
{
|
|
struct alloc_handle *ah;
|
|
|
|
if (segtype_is_virtual(segtype)) {
|
|
log_error("allocate_extents does not handle virtual segments");
|
|
return NULL;
|
|
}
|
|
|
|
if (vg->fid->fmt->ops->segtype_supported &&
|
|
!vg->fid->fmt->ops->segtype_supported(vg->fid, segtype)) {
|
|
log_error("Metadata format (%s) does not support required "
|
|
"LV segment type (%s).", vg->fid->fmt->name,
|
|
segtype->name);
|
|
log_error("Consider changing the metadata format by running "
|
|
"vgconvert.");
|
|
return NULL;
|
|
}
|
|
|
|
if (alloc == ALLOC_INHERIT)
|
|
alloc = vg->alloc;
|
|
|
|
if (!(ah = _alloc_init(vg->cmd, vg->cmd->mem, segtype, alloc, mirrors,
|
|
stripes, log_count, mirrored_pv,
|
|
mirrored_pe, parallel_areas))) {
|
|
stack;
|
|
return NULL;
|
|
}
|
|
|
|
if (!segtype_is_virtual(segtype) &&
|
|
!_allocate(ah, vg, lv, status, (lv ? lv->le_count : 0) + extents,
|
|
allocatable_pvs, stripes, mirrors, segtype)) {
|
|
stack;
|
|
alloc_destroy(ah);
|
|
return NULL;
|
|
}
|
|
|
|
return ah;
|
|
}
|
|
|
|
/*
|
|
* Add new segments to an LV from supplied list of areas.
|
|
*/
|
|
int lv_add_segment(struct alloc_handle *ah,
|
|
uint32_t first_area, uint32_t num_areas,
|
|
struct logical_volume *lv,
|
|
const struct segment_type *segtype,
|
|
uint32_t stripe_size,
|
|
struct physical_volume *mirrored_pv,
|
|
uint32_t mirrored_pe,
|
|
uint32_t status,
|
|
uint32_t region_size,
|
|
struct logical_volume *log_lv)
|
|
{
|
|
if (!segtype) {
|
|
log_error("Missing segtype in lv_add_segment().");
|
|
return 0;
|
|
}
|
|
|
|
if (segtype_is_virtual(segtype)) {
|
|
log_error("lv_add_segment cannot handle virtual segments");
|
|
return 0;
|
|
}
|
|
|
|
if (!_setup_alloced_segments(lv, &ah->alloced_areas[first_area],
|
|
num_areas, status,
|
|
stripe_size, segtype,
|
|
mirrored_pv, mirrored_pe,
|
|
region_size, log_lv)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
if ((segtype->flags & SEG_CAN_SPLIT) && !lv_merge_segments(lv)) {
|
|
log_err("Couldn't merge segments after extending "
|
|
"logical volume.");
|
|
return 0;
|
|
}
|
|
|
|
if (lv->vg->fid->fmt->ops->lv_setup &&
|
|
!lv->vg->fid->fmt->ops->lv_setup(lv->vg->fid, lv)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Turn an empty LV into a mirror log.
|
|
*/
|
|
int lv_add_log_segment(struct alloc_handle *ah, struct logical_volume *log_lv)
|
|
{
|
|
struct lv_segment *seg;
|
|
|
|
if (list_size(&log_lv->segments)) {
|
|
log_error("Log segments can only be added to an empty LV");
|
|
return 0;
|
|
}
|
|
|
|
if (!(seg = alloc_lv_segment(log_lv->vg->cmd->mem,
|
|
get_segtype_from_string(log_lv->vg->cmd,
|
|
"striped"),
|
|
log_lv, 0, ah->log_area.len, MIRROR_LOG,
|
|
0, NULL, 1, ah->log_area.len, 0, 0, 0))) {
|
|
log_error("Couldn't allocate new mirror log segment.");
|
|
return 0;
|
|
}
|
|
|
|
if (!set_lv_segment_area_pv(seg, 0, ah->log_area.pv, ah->log_area.pe)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
list_add(&log_lv->segments, &seg->list);
|
|
log_lv->le_count += ah->log_area.len;
|
|
log_lv->size += (uint64_t) log_lv->le_count *log_lv->vg->extent_size;
|
|
|
|
if (log_lv->vg->fid->fmt->ops->lv_setup &&
|
|
!log_lv->vg->fid->fmt->ops->lv_setup(log_lv->vg->fid, log_lv)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Add a mirror segment
|
|
*/
|
|
int lv_add_mirror_segment(struct alloc_handle *ah,
|
|
struct logical_volume *lv,
|
|
struct logical_volume **sub_lvs,
|
|
uint32_t mirrors,
|
|
const struct segment_type *segtype,
|
|
uint32_t status,
|
|
uint32_t region_size,
|
|
struct logical_volume *log_lv)
|
|
{
|
|
struct lv_segment *seg;
|
|
uint32_t m;
|
|
|
|
if (log_lv && list_empty(&log_lv->segments)) {
|
|
log_error("Log LV %s is empty.", log_lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!(seg = alloc_lv_segment(lv->vg->cmd->mem,
|
|
get_segtype_from_string(lv->vg->cmd,
|
|
"mirror"),
|
|
lv, lv->le_count, ah->total_area_len, 0,
|
|
0, log_lv, mirrors, ah->total_area_len, 0,
|
|
region_size, 0))) {
|
|
log_error("Couldn't allocate new mirror segment.");
|
|
return 0;
|
|
}
|
|
|
|
for (m = 0; m < mirrors; m++) {
|
|
set_lv_segment_area_lv(seg, m, sub_lvs[m], 0, MIRROR_IMAGE);
|
|
first_seg(sub_lvs[m])->mirror_seg = seg;
|
|
}
|
|
|
|
list_add(&lv->segments, &seg->list);
|
|
lv->le_count += ah->total_area_len;
|
|
lv->size += (uint64_t) lv->le_count *lv->vg->extent_size;
|
|
|
|
if (lv->vg->fid->fmt->ops->lv_setup &&
|
|
!lv->vg->fid->fmt->ops->lv_setup(lv->vg->fid, lv)) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Add parallel areas to an existing mirror
|
|
*/
|
|
int lv_add_more_mirrored_areas(struct logical_volume *lv,
|
|
struct logical_volume **sub_lvs,
|
|
uint32_t num_extra_areas,
|
|
uint32_t status)
|
|
{
|
|
struct lv_segment *seg;
|
|
uint32_t old_area_count, new_area_count;
|
|
uint32_t m;
|
|
|
|
if (list_size(&lv->segments) != 1) {
|
|
log_error("Mirrored LV must only have one segment.");
|
|
return 0;
|
|
}
|
|
|
|
seg = first_seg(lv);
|
|
|
|
old_area_count = seg->area_count;
|
|
new_area_count = old_area_count + num_extra_areas;
|
|
|
|
if (!_lv_segment_add_areas(lv, seg, new_area_count)) {
|
|
log_error("Failed to allocate widened LV segment for %s.",
|
|
lv->name);
|
|
return 0;
|
|
}
|
|
|
|
for (m = old_area_count; m < new_area_count; m++) {
|
|
set_lv_segment_area_lv(seg, m, sub_lvs[m - old_area_count], 0, status);
|
|
first_seg(sub_lvs[m - old_area_count])->mirror_seg = seg;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Entry point for single-step LV allocation + extension.
|
|
*/
|
|
int lv_extend(struct logical_volume *lv,
|
|
const struct segment_type *segtype,
|
|
uint32_t stripes, uint32_t stripe_size,
|
|
uint32_t mirrors, uint32_t extents,
|
|
struct physical_volume *mirrored_pv, uint32_t mirrored_pe,
|
|
uint32_t status, struct list *allocatable_pvs,
|
|
alloc_policy_t alloc)
|
|
{
|
|
int r = 1;
|
|
uint32_t m;
|
|
struct alloc_handle *ah;
|
|
struct lv_segment *seg;
|
|
|
|
if (segtype_is_virtual(segtype))
|
|
return lv_add_virtual_segment(lv, status, extents, segtype);
|
|
|
|
if (!(ah = allocate_extents(lv->vg, lv, segtype, stripes, mirrors, 0,
|
|
extents, mirrored_pv, mirrored_pe, status,
|
|
allocatable_pvs, alloc, NULL))) {
|
|
stack;
|
|
return 0;
|
|
}
|
|
|
|
if (mirrors < 2) {
|
|
if (!lv_add_segment(ah, 0, ah->area_count, lv, segtype, stripe_size,
|
|
mirrored_pv, mirrored_pe, status, 0, NULL)) {
|
|
stack;
|
|
goto out;
|
|
}
|
|
} else {
|
|
seg = first_seg(lv);
|
|
for (m = 0; m < mirrors; m++) {
|
|
if (!lv_add_segment(ah, m, 1, seg_lv(seg, m),
|
|
get_segtype_from_string(lv->vg->cmd,
|
|
"striped"),
|
|
0, NULL, 0, 0, 0, NULL)) {
|
|
log_error("Aborting. Failed to extend %s.",
|
|
seg_lv(seg, m)->name);
|
|
return 0;
|
|
}
|
|
}
|
|
seg->area_len += extents;
|
|
seg->len += extents;
|
|
lv->le_count += extents;
|
|
lv->size += (uint64_t) extents *lv->vg->extent_size;
|
|
}
|
|
|
|
out:
|
|
alloc_destroy(ah);
|
|
return r;
|
|
}
|
|
|
|
char *generate_lv_name(struct volume_group *vg, const char *format,
|
|
char *buffer, size_t len)
|
|
{
|
|
struct lv_list *lvl;
|
|
int high = -1, i;
|
|
|
|
list_iterate_items(lvl, &vg->lvs) {
|
|
if (sscanf(lvl->lv->name, format, &i) != 1)
|
|
continue;
|
|
|
|
if (i > high)
|
|
high = i;
|
|
}
|
|
|
|
if (dm_snprintf(buffer, len, format, high + 1) < 0)
|
|
return NULL;
|
|
|
|
return buffer;
|
|
}
|
|
|
|
/*
|
|
* Create a new empty LV.
|
|
*/
|
|
struct logical_volume *lv_create_empty(struct format_instance *fi,
|
|
const char *name,
|
|
union lvid *lvid,
|
|
uint32_t status,
|
|
alloc_policy_t alloc,
|
|
int import,
|
|
struct volume_group *vg)
|
|
{
|
|
struct cmd_context *cmd = vg->cmd;
|
|
struct lv_list *ll = NULL;
|
|
struct logical_volume *lv;
|
|
char dname[32];
|
|
|
|
if (vg->max_lv && (vg->max_lv == vg->lv_count)) {
|
|
log_error("Maximum number of logical volumes (%u) reached "
|
|
"in volume group %s", vg->max_lv, vg->name);
|
|
return NULL;
|
|
}
|
|
|
|
if (strstr(name, "%d") &&
|
|
!(name = generate_lv_name(vg, name, dname, sizeof(dname)))) {
|
|
log_error("Failed to generate unique name for the new "
|
|
"logical volume");
|
|
return NULL;
|
|
}
|
|
|
|
if (!import)
|
|
log_verbose("Creating logical volume %s", name);
|
|
|
|
if (!(ll = dm_pool_zalloc(cmd->mem, sizeof(*ll))) ||
|
|
!(ll->lv = dm_pool_zalloc(cmd->mem, sizeof(*ll->lv)))) {
|
|
log_error("lv_list allocation failed");
|
|
if (ll)
|
|
dm_pool_free(cmd->mem, ll);
|
|
return NULL;
|
|
}
|
|
|
|
lv = ll->lv;
|
|
lv->vg = vg;
|
|
|
|
if (!(lv->name = dm_pool_strdup(cmd->mem, name))) {
|
|
log_error("lv name strdup failed");
|
|
if (ll)
|
|
dm_pool_free(cmd->mem, ll);
|
|
return NULL;
|
|
}
|
|
|
|
lv->status = status;
|
|
lv->alloc = alloc;
|
|
lv->read_ahead = 0;
|
|
lv->major = -1;
|
|
lv->minor = -1;
|
|
lv->size = UINT64_C(0);
|
|
lv->le_count = 0;
|
|
lv->snapshot = NULL;
|
|
list_init(&lv->snapshot_segs);
|
|
list_init(&lv->segments);
|
|
list_init(&lv->tags);
|
|
|
|
if (lvid)
|
|
lv->lvid = *lvid;
|
|
|
|
if (fi->fmt->ops->lv_setup && !fi->fmt->ops->lv_setup(fi, lv)) {
|
|
stack;
|
|
if (ll)
|
|
dm_pool_free(cmd->mem, ll);
|
|
return NULL;
|
|
}
|
|
|
|
if (!import)
|
|
vg->lv_count++;
|
|
|
|
list_add(&vg->lvs, &ll->list);
|
|
|
|
return lv;
|
|
}
|
|
|
|
static int _add_pvs(struct cmd_context *cmd, struct pv_segment *peg,
|
|
uint32_t s __attribute((unused)), void *data)
|
|
{
|
|
struct seg_pvs *spvs = (struct seg_pvs *) data;
|
|
struct pv_list *pvl;
|
|
|
|
/* Don't add again if it's already on list. */
|
|
list_iterate_items(pvl, &spvs->pvs)
|
|
if (pvl->pv == peg->pv)
|
|
return 1;
|
|
|
|
if (!(pvl = dm_pool_alloc(cmd->mem, sizeof(*pvl)))) {
|
|
log_error("pv_list allocation failed");
|
|
return 0;
|
|
}
|
|
|
|
pvl->pv = peg->pv;
|
|
|
|
list_add(&spvs->pvs, &pvl->list);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Construct list of segments of LVs showing which PVs they use.
|
|
*/
|
|
struct list *build_parallel_areas_from_lv(struct cmd_context *cmd,
|
|
struct logical_volume *lv)
|
|
{
|
|
struct list *parallel_areas;
|
|
struct seg_pvs *spvs;
|
|
uint32_t current_le = 0;
|
|
|
|
if (!(parallel_areas = dm_pool_alloc(cmd->mem, sizeof(*parallel_areas)))) {
|
|
log_error("parallel_areas allocation failed");
|
|
return NULL;
|
|
}
|
|
|
|
list_init(parallel_areas);
|
|
|
|
do {
|
|
if (!(spvs = dm_pool_zalloc(cmd->mem, sizeof(*spvs)))) {
|
|
log_error("allocation failed");
|
|
return NULL;
|
|
}
|
|
|
|
list_init(&spvs->pvs);
|
|
|
|
spvs->le = current_le;
|
|
spvs->len = lv->le_count - current_le;
|
|
|
|
list_add(parallel_areas, &spvs->list);
|
|
|
|
/* Find next segment end */
|
|
/* FIXME Unnecessary nesting! */
|
|
if (!_for_each_pv(cmd, lv, current_le, spvs->len, &spvs->len,
|
|
0, 0, -1, 0, _add_pvs, (void *) spvs)) {
|
|
stack;
|
|
return NULL;
|
|
}
|
|
|
|
current_le = spvs->le + spvs->len;
|
|
} while (current_le < lv->le_count);
|
|
|
|
/* FIXME Merge adjacent segments with identical PV lists (avoids need for contiguous allocation attempts between successful allocations) */
|
|
|
|
return parallel_areas;
|
|
}
|