1
0
mirror of git://sourceware.org/git/lvm2.git synced 2024-12-21 13:34:40 +03:00
lvm2/lib/metadata/lv.c
Zdenek Kabelac 29b0e42be3 lv: fix lock holder for external origin
External origin could be reloaded via more locks.
It's actually even more complex then thin-pool,
as it may be active on more nodes for linear LVs
(and maybe even more types).

External origin is always read-only thus unmodifiable
device so there should not be a problem accesing it
through multiple nodes.

Also for thin-pool check first presence of active thin-pool.

FIXME:
It's not easy to detect on which nodes this device is active
Thus manipulation with such device may require checking every
node and it active state and refresh.

But since such setup is quite complex to prepare and use,
hopefully there are not user trying to 'explore' this usage yet.
2016-12-18 19:25:25 +01:00

1609 lines
40 KiB
C

/*
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004-2016 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "lib.h"
#include "metadata.h"
#include "display.h"
#include "activate.h"
#include "toolcontext.h"
#include "segtype.h"
#include "str_list.h"
#include "lvmlockd.h"
#include <time.h>
#include <sys/utsname.h>
static struct utsname _utsname;
static int _utsinit = 0;
int lv_is_historical(const struct logical_volume *lv)
{
return lv->this_glv && lv->this_glv->is_historical;
}
static struct dm_list *_format_pvsegs(struct dm_pool *mem, const struct lv_segment *seg,
int range_format, int metadata_areas_only,
int mark_hidden)
{
unsigned int s;
const char *name = NULL;
uint32_t extent = 0;
uint32_t seg_len = 0;
char extent_str[32];
struct logical_volume *lv;
int visible = 1;
char *list_item;
size_t list_item_len;
struct dm_list *result = NULL;
if (!(result = str_list_create(mem))) {
log_error("_format_pvsegs: str_list_create failed");
goto bad;
}
if (metadata_areas_only && (!seg_is_raid_with_meta(seg) || !seg->meta_areas || lv_is_raid_metadata(seg->lv) || lv_is_raid_image(seg->lv)))
goto out;
for (s = 0; s < seg->area_count; s++) {
switch (metadata_areas_only ? seg_metatype(seg, s) : seg_type(seg, s)) {
case AREA_LV:
lv = metadata_areas_only ? seg_metalv(seg, s) : seg_lv(seg, s);
seg_len = metadata_areas_only ? seg_metalv(seg, s)->le_count : seg_lv(seg, s)->le_count;
visible = lv_is_visible(lv);
name = lv->name;
extent = metadata_areas_only ? seg_le(seg, s) : 0;
break;
case AREA_PV:
/* Raid metadata never uses PVs directly */
if (metadata_areas_only)
continue;
name = dev_name(seg_dev(seg, s));
extent = seg_pe(seg, s);
seg_len = seg->area_len;
break;
case AREA_UNASSIGNED:
name = "unassigned";
extent = 0;
seg_len = 0;
break;
default:
log_error(INTERNAL_ERROR "Unknown area segtype.");
goto bad;
}
list_item_len = strlen(name);
if (!visible && mark_hidden)
/* +2 for [ ] */
list_item_len += 2;
if (range_format) {
if (dm_snprintf(extent_str, sizeof(extent_str),
":%" PRIu32 "-%" PRIu32,
extent, extent + seg_len - 1) < 0) {
log_error("_format_pvseggs: extent range dm_snprintf failed");
goto bad;
}
} else {
if (dm_snprintf(extent_str, sizeof(extent_str),
"(%" PRIu32 ")", extent) < 0) {
log_error("_format_pvsegs: extent number dm_snprintf failed");
goto bad;
}
}
list_item_len += strlen(extent_str);
/* trialing 0 */
list_item_len += 1;
if (!(list_item = dm_pool_zalloc(mem, list_item_len))) {
log_error("_format_pvsegs: list item dm_pool_zalloc failed");
goto bad;
}
if (dm_snprintf(list_item, list_item_len,
"%s%s%s%s",
(!visible && mark_hidden) ? "[" : "",
name,
(!visible && mark_hidden) ? "]" : "",
extent_str) < 0) {
log_error("_format_pvsegs: list item dmsnprintf failed");
goto bad;
}
if (!str_list_add_no_dup_check(mem, result, list_item)) {
log_error("_format_pvsegs: failed to add item to list");
goto bad;
}
}
out:
return result;
bad:
dm_pool_free(mem, result);
return NULL;
}
struct dm_list *lvseg_devices(struct dm_pool *mem, const struct lv_segment *seg)
{
return _format_pvsegs(mem, seg, 0, 0, 0);
}
char *lvseg_devices_str(struct dm_pool *mem, const struct lv_segment *seg)
{
struct dm_list *list;
if (!(list = lvseg_devices(mem, seg)))
return_NULL;
return str_list_to_str(mem, list, ",");
}
struct dm_list *lvseg_metadata_devices(struct dm_pool *mem, const struct lv_segment *seg)
{
return _format_pvsegs(mem, seg, 0, 1, 0);
}
char *lvseg_metadata_devices_str(struct dm_pool *mem, const struct lv_segment *seg)
{
struct dm_list *list;
if (!(list = lvseg_devices(mem, seg)))
return_NULL;
return str_list_to_str(mem, list, ",");
}
struct dm_list *lvseg_seg_pe_ranges(struct dm_pool *mem, const struct lv_segment *seg)
{
return _format_pvsegs(mem, seg, 1, 0, 0);
}
char *lvseg_seg_pe_ranges_str(struct dm_pool *mem, const struct lv_segment *seg)
{
struct dm_list *list;
if (!(list = lvseg_seg_pe_ranges(mem, seg)))
return_NULL;
return str_list_to_str(mem, list, " ");
}
struct dm_list *lvseg_seg_le_ranges(struct dm_pool *mem, const struct lv_segment *seg)
{
return _format_pvsegs(mem, seg, 1, 0, seg->lv->vg->cmd->report_mark_hidden_devices);
}
char *lvseg_seg_le_ranges_str(struct dm_pool *mem, const struct lv_segment *seg)
{
struct dm_list *list;
if (!(list = lvseg_seg_pe_ranges(mem, seg)))
return_NULL;
return str_list_to_str(mem, list, seg->lv->vg->cmd->report_list_item_separator);
}
struct dm_list *lvseg_seg_metadata_le_ranges(struct dm_pool *mem, const struct lv_segment *seg)
{
return _format_pvsegs(mem, seg, 1, 1, seg->lv->vg->cmd->report_mark_hidden_devices);
}
char *lvseg_seg_metadata_le_ranges_str(struct dm_pool *mem, const struct lv_segment *seg)
{
struct dm_list *list;
if (!(list = lvseg_seg_metadata_le_ranges(mem, seg)))
return_NULL;
return str_list_to_str(mem, list, seg->lv->vg->cmd->report_list_item_separator);
}
char *lvseg_tags_dup(const struct lv_segment *seg)
{
return tags_format_and_copy(seg->lv->vg->vgmem, &seg->tags);
}
char *lvseg_segtype_dup(struct dm_pool *mem, const struct lv_segment *seg)
{
return dm_pool_strdup(mem, lvseg_name(seg));
}
char *lvseg_discards_dup(struct dm_pool *mem, const struct lv_segment *seg)
{
return dm_pool_strdup(mem, get_pool_discards_name(seg->discards));
}
char *lvseg_kernel_discards_dup_with_info_and_seg_status(struct dm_pool *mem, const struct lv_with_info_and_seg_status *lvdm)
{
const char *s = "";
char *ret;
if (lvdm->seg_status.type == SEG_STATUS_THIN_POOL)
s = get_pool_discards_name(lvdm->seg_status.thin_pool->discards);
if (!(ret = dm_pool_strdup(mem, s))) {
log_error("lvseg_kernel_discards_dup_with_info_and_seg_status: dm_pool_strdup failed");
return NULL;
}
return ret;
}
char *lvseg_kernel_discards_dup(struct dm_pool *mem, const struct lv_segment *seg)
{
char *ret = NULL;
struct lv_with_info_and_seg_status status = {
.seg_status.type = SEG_STATUS_NONE
};
if (!lv_is_thin_pool(seg->lv))
return NULL;
if (!(status.seg_status.mem = dm_pool_create("reporter_pool", 1024)))
return_NULL;
if (!(status.info_ok = lv_info_with_seg_status(seg->lv->vg->cmd, seg, &status, 0, 0)))
goto_bad;
if (!(ret = lvseg_kernel_discards_dup_with_info_and_seg_status(mem, &status)))
stack;
bad:
dm_pool_destroy(status.seg_status.mem);
return ret;
}
char *lvseg_cachemode_dup(struct dm_pool *mem, const struct lv_segment *seg)
{
const char *name = get_cache_mode_name(seg);
if (!name)
return_NULL;
return dm_pool_strdup(mem, name);
}
#ifdef DMEVENTD
# include "libdevmapper-event.h"
#endif
char *lvseg_monitor_dup(struct dm_pool *mem, const struct lv_segment *seg)
{
const char *s = "";
#ifdef DMEVENTD
struct lvinfo info;
int pending = 0, monitored;
struct lv_segment *segm = (struct lv_segment *) seg;
if (lv_is_cow(seg->lv) && !lv_is_merging_cow(seg->lv))
segm = first_seg(seg->lv->snapshot->lv);
// log_debug("Query LV:%s mon:%s segm:%s tgtm:%p segmon:%d statusm:%d", seg->lv->name, segm->lv->name, segm->segtype->name, segm->segtype->ops->target_monitored, seg_monitored(segm), (int)(segm->status & PVMOVE));
if ((dmeventd_monitor_mode() != 1) ||
!segm->segtype->ops ||
!segm->segtype->ops->target_monitored)
/* Nothing to do, monitoring not supported */;
else if (lv_is_cow_covering_origin(seg->lv))
/* Nothing to do, snapshot already covers origin */;
else if (!seg_monitored(segm) || (segm->status & PVMOVE))
s = "not monitored";
else if (lv_info(seg->lv->vg->cmd, seg->lv, 1, &info, 0, 0) && info.exists) {
monitored = segm->segtype->ops->target_monitored(segm, &pending);
if (pending)
s = "pending";
else
s = (monitored) ? "monitored" : "not monitored";
} // else log_debug("Not active");
#endif
return dm_pool_strdup(mem, s);
}
uint64_t lvseg_chunksize(const struct lv_segment *seg)
{
uint64_t size;
if (lv_is_cow(seg->lv))
size = (uint64_t) find_snapshot(seg->lv)->chunk_size;
else if (seg_is_pool(seg))
size = (uint64_t) seg->chunk_size;
else if (seg_is_cache(seg))
return lvseg_chunksize(first_seg(seg->pool_lv));
else
size = UINT64_C(0);
return size;
}
const char *lvseg_name(const struct lv_segment *seg)
{
/* Support even segtypes without 'ops' */
if (seg->segtype->ops &&
seg->segtype->ops->name)
return seg->segtype->ops->name(seg);
return seg->segtype->name;
}
uint64_t lvseg_start(const struct lv_segment *seg)
{
return (uint64_t) seg->le * seg->lv->vg->extent_size;
}
uint64_t lvseg_size(const struct lv_segment *seg)
{
return (uint64_t) seg->len * seg->lv->vg->extent_size;
}
dm_percent_t lvseg_percent_with_info_and_seg_status(const struct lv_with_info_and_seg_status *lvdm,
percent_get_t type)
{
dm_percent_t p;
uint64_t csize;
const struct lv_segment *seg;
const struct lv_seg_status *s = &lvdm->seg_status;
/*
* TODO:
* Later move to segment methods, instead of using single place.
* Also handle logic for mirror segments and it total_* summing
* Esentially rework _target_percent API for segtype.
*/
switch (s->type) {
case SEG_STATUS_CACHE:
if (s->cache->fail || s->cache->error)
p = DM_PERCENT_INVALID;
else {
switch (type) {
case PERCENT_GET_DIRTY:
p = (s->cache->used_blocks) ?
dm_make_percent(s->cache->dirty_blocks,
s->cache->used_blocks) : DM_PERCENT_0;
break;
case PERCENT_GET_METADATA:
p = dm_make_percent(s->cache->metadata_used_blocks,
s->cache->metadata_total_blocks);
break;
default:
p = dm_make_percent(s->cache->used_blocks,
s->cache->total_blocks);
}
}
break;
case SEG_STATUS_SNAPSHOT:
if (s->snapshot->merge_failed)
p = DM_PERCENT_INVALID;
else if (s->snapshot->invalid)
p = DM_PERCENT_100; /* Shown as 100% full */
else if (s->snapshot->has_metadata_sectors &&
(s->snapshot->used_sectors == s->snapshot->metadata_sectors))
p = DM_PERCENT_0;
else
p = dm_make_percent(s->snapshot->used_sectors,
s->snapshot->total_sectors);
break;
case SEG_STATUS_THIN_POOL:
if (s->thin_pool->fail || s->thin_pool->error)
p = DM_PERCENT_INVALID;
else if (type == PERCENT_GET_METADATA)
p = dm_make_percent(s->thin_pool->used_metadata_blocks,
s->thin_pool->total_metadata_blocks);
else
p = dm_make_percent(s->thin_pool->used_data_blocks,
s->thin_pool->total_data_blocks);
break;
case SEG_STATUS_THIN:
if (s->thin->fail || (type != PERCENT_GET_DATA))
/* TODO: expose highest mapped sector */
p = DM_PERCENT_INVALID;
else {
seg = lvdm->seg_status.seg;
/* Pool allocates whole chunk so round-up to nearest one */
csize = first_seg(seg->pool_lv)->chunk_size;
csize = ((seg->lv->size + csize - 1) / csize) * csize;
if (s->thin->mapped_sectors <= csize)
p = dm_make_percent(s->thin->mapped_sectors, csize);
else {
log_warn("WARNING: Thin volume %s maps %s while the size is only %s.",
display_lvname(seg->lv),
display_size(seg->lv->vg->cmd, s->thin->mapped_sectors),
display_size(seg->lv->vg->cmd, csize));
/* Don't show nonsense numbers like i.e. 1000% full */
p = DM_PERCENT_100;
}
}
break;
default:
p = DM_PERCENT_INVALID;
}
return p;
}
uint32_t lv_kernel_read_ahead(const struct logical_volume *lv)
{
struct lvinfo info;
if (!lv_info(lv->vg->cmd, lv, 0, &info, 0, 1) || !info.exists)
return UINT32_MAX;
return info.read_ahead;
}
struct pv_and_int {
struct physical_volume *pv;
int *i;
};
static int _lv_is_on_pv(struct logical_volume *lv, void *data)
{
int *is_on_pv = ((struct pv_and_int *)data)->i;
struct physical_volume *pv = ((struct pv_and_int *)data)->pv;
uint32_t s;
struct physical_volume *pv2;
struct lv_segment *seg;
if (!lv || !(first_seg(lv)))
return_0;
/*
* If the LV has already been found to be on the PV, then
* we don't need to continue checking - just return.
*/
if (*is_on_pv)
return 1;
dm_list_iterate_items(seg, &lv->segments) {
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_PV)
continue;
pv2 = seg_pv(seg, s);
if (id_equal(&pv->id, &pv2->id)) {
*is_on_pv = 1;
return 1;
}
if (pv->dev && pv2->dev &&
(pv->dev->dev == pv2->dev->dev)) {
*is_on_pv = 1;
return 1;
}
}
}
return 1;
}
/*
* lv_is_on_pv
* @lv:
* @pv:
*
* If any of the component devices of the LV are on the given PV, 1
* is returned; otherwise 0. For example if one of the images of a RAID
* (or its metadata device) is on the PV, 1 would be returned for the
* top-level LV.
* If you wish to check the images themselves, you should pass them.
*
* Returns: 1 if LV (or part of LV) is on PV, 0 otherwise
*/
int lv_is_on_pv(struct logical_volume *lv, struct physical_volume *pv)
{
int is_on_pv = 0;
struct pv_and_int context = { pv, &is_on_pv };
if (!_lv_is_on_pv(lv, &context) ||
!for_each_sub_lv(lv, _lv_is_on_pv, &context))
/* Failure only happens if bad arguments are passed */
log_error(INTERNAL_ERROR "for_each_sub_lv failure.");
log_debug_metadata("%s is %son %s", lv->name,
is_on_pv ? "" : "not ", pv_dev_name(pv));
return is_on_pv;
}
/*
* lv_is_on_pvs
* @lv
* @pvs
*
* Returns 1 if the LV (or part of the LV) is on any of the pvs
* in the list, 0 otherwise.
*/
int lv_is_on_pvs(struct logical_volume *lv, struct dm_list *pvs)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, pvs)
if (lv_is_on_pv(lv, pvl->pv))
return 1;
return 0;
}
struct logical_volume *lv_origin_lv(const struct logical_volume *lv)
{
struct logical_volume *origin = NULL;
if (lv_is_cow(lv))
origin = origin_from_cow(lv);
else if (lv_is_cache(lv) && !lv_is_pending_delete(lv))
origin = seg_lv(first_seg(lv), 0);
else if (lv_is_thin_volume(lv) && first_seg(lv)->origin)
origin = first_seg(lv)->origin;
else if (lv_is_thin_volume(lv) && first_seg(lv)->external_lv)
origin = first_seg(lv)->external_lv;
return origin;
}
static char *_do_lv_origin_dup(struct dm_pool *mem, const struct logical_volume *lv,
int uuid)
{
struct logical_volume *origin_lv = lv_origin_lv(lv);
if (!origin_lv)
return NULL;
if (uuid)
return lv_uuid_dup(mem, origin_lv);
else
return lv_name_dup(mem, origin_lv);
}
char *lv_origin_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_origin_dup(mem, lv, 0);
}
char *lv_origin_uuid_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_origin_dup(mem, lv, 1);
}
char *lv_name_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return dm_pool_strdup(mem, lv->name);
}
char *lv_fullname_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
char lvfullname[NAME_LEN * 2 + 2];
if (dm_snprintf(lvfullname, sizeof(lvfullname), "%s/%s", lv->vg->name, lv->name) < 0) {
log_error("lvfullname snprintf failed");
return NULL;
}
return dm_pool_strdup(mem, lvfullname);
}
struct logical_volume *lv_parent(const struct logical_volume *lv)
{
struct logical_volume *parent_lv = NULL;
struct lv_segment *seg;
if (lv_is_visible(lv))
;
else if ((lv_is_mirror_image(lv) || lv_is_mirror_log(lv)) ||
(lv_is_raid_image(lv) || lv_is_raid_metadata(lv)) ||
(lv_is_cache_pool_data(lv) || lv_is_cache_pool_metadata(lv)) ||
(lv_is_thin_pool_data(lv) || lv_is_thin_pool_metadata(lv))) {
if (!(seg = get_only_segment_using_this_lv(lv)))
stack;
else
parent_lv = seg->lv;
}
return parent_lv;
}
char *lv_parent_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
struct logical_volume *parent_lv = lv_parent(lv);
return dm_pool_strdup(mem, parent_lv ? parent_lv->name : "");
}
char *lv_modules_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
struct dm_list *modules;
if (!(modules = str_list_create(mem))) {
log_error("modules str_list allocation failed");
return NULL;
}
if (!list_lv_modules(mem, lv, modules))
return_NULL;
return tags_format_and_copy(mem, modules);
}
struct logical_volume *lv_mirror_log_lv(const struct logical_volume *lv)
{
struct lv_segment *seg;
dm_list_iterate_items(seg, &lv->segments) {
if (seg_is_mirrored(seg) && seg->log_lv)
return seg->log_lv;
}
return NULL;
}
static char *_do_lv_mirror_log_dup(struct dm_pool *mem, const struct logical_volume *lv,
int uuid)
{
struct logical_volume *mirror_log_lv = lv_mirror_log_lv(lv);
if (!mirror_log_lv)
return NULL;
if (uuid)
return lv_uuid_dup(mem, mirror_log_lv);
else
return lv_name_dup(mem, mirror_log_lv);
}
char *lv_mirror_log_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_mirror_log_dup(mem, lv, 0);
}
char *lv_mirror_log_uuid_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_mirror_log_dup(mem, lv, 1);
}
struct logical_volume *lv_pool_lv(const struct logical_volume *lv)
{
struct lv_segment *seg = (lv_is_thin_volume(lv) || lv_is_cache(lv)) ?
first_seg(lv) : NULL;
struct logical_volume *pool_lv = seg ? seg->pool_lv : NULL;
return pool_lv;
}
static char *_do_lv_pool_lv_dup(struct dm_pool *mem, const struct logical_volume *lv,
int uuid)
{
struct logical_volume *pool_lv = lv_pool_lv(lv);
if (!pool_lv)
return NULL;
if (uuid)
return lv_uuid_dup(mem, pool_lv);
else
return lv_name_dup(mem, pool_lv);
}
char *lv_pool_lv_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_pool_lv_dup(mem, lv, 0);
}
char *lv_pool_lv_uuid_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_pool_lv_dup(mem, lv, 1);
}
struct logical_volume *lv_data_lv(const struct logical_volume *lv)
{
struct lv_segment *seg = (lv_is_thin_pool(lv) || lv_is_cache_pool(lv)) ?
first_seg(lv) : NULL;
struct logical_volume *data_lv = seg ? seg_lv(seg, 0) : NULL;
return data_lv;
}
static char *_do_lv_data_lv_dup(struct dm_pool *mem, const struct logical_volume *lv,
int uuid)
{
struct logical_volume *data_lv = lv_data_lv(lv);
if (!data_lv)
return NULL;
if (uuid)
return lv_uuid_dup(mem, data_lv);
else
return lv_name_dup(mem, data_lv);
}
char *lv_data_lv_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_data_lv_dup(mem, lv, 0);
}
char *lv_data_lv_uuid_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_data_lv_dup(mem, lv, 1);
}
struct logical_volume *lv_metadata_lv(const struct logical_volume *lv)
{
struct lv_segment *seg = (lv_is_thin_pool(lv) || lv_is_cache_pool(lv)) ?
first_seg(lv) : NULL;
struct logical_volume *metadata_lv = seg ? seg->metadata_lv : NULL;
return metadata_lv;
}
static char *_do_lv_metadata_lv_dup(struct dm_pool *mem, const struct logical_volume *lv,
int uuid)
{
struct logical_volume *metadata_lv = lv_metadata_lv(lv);
if (!metadata_lv)
return NULL;
if (uuid)
return lv_uuid_dup(mem, metadata_lv);
else
return lv_name_dup(mem, metadata_lv);
}
char *lv_metadata_lv_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_metadata_lv_dup(mem, lv, 0);
}
char *lv_metadata_lv_uuid_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_metadata_lv_dup(mem, lv, 1);
}
const char *lv_layer(const struct logical_volume *lv)
{
if (lv_is_thin_pool(lv))
return "tpool";
else if (lv_is_origin(lv) || lv_is_external_origin(lv))
return "real";
return NULL;
}
int lv_kernel_minor(const struct logical_volume *lv)
{
struct lvinfo info;
if (lv_info(lv->vg->cmd, lv, 0, &info, 0, 0) && info.exists)
return info.minor;
return -1;
}
int lv_kernel_major(const struct logical_volume *lv)
{
struct lvinfo info;
if (lv_info(lv->vg->cmd, lv, 0, &info, 0, 0) && info.exists)
return info.major;
return -1;
}
struct logical_volume *lv_convert_lv(const struct logical_volume *lv)
{
struct lv_segment *seg;
if (lv_is_converting(lv) || lv_is_mirrored(lv)) {
seg = first_seg(lv);
/* Temporary mirror is always area_num == 0 */
if (seg_type(seg, 0) == AREA_LV &&
is_temporary_mirror_layer(seg_lv(seg, 0)))
return seg_lv(seg, 0);
}
return NULL;
}
static char *_do_lv_convert_lv_dup(struct dm_pool *mem, const struct logical_volume *lv,
int uuid)
{
struct logical_volume *convert_lv = lv_convert_lv(lv);
if (!convert_lv)
return NULL;
if (uuid)
return lv_uuid_dup(mem, convert_lv);
else
return lv_name_dup(mem, convert_lv);
}
char *lv_convert_lv_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_convert_lv_dup(mem, lv, 0);
}
char *lv_convert_lv_uuid_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_convert_lv_dup(mem, lv, 1);
}
static char *_do_lv_move_pv_dup(struct dm_pool *mem, const struct logical_volume *lv,
int uuid)
{
struct logical_volume *mimage0_lv;
struct lv_segment *seg;
struct pv_segment *pvseg;
dm_list_iterate_items(seg, &lv->segments) {
if (seg->status & PVMOVE) {
if (seg_type(seg, 0) == AREA_LV) { /* atomic pvmove */
mimage0_lv = seg_lv(seg, 0);
if (!lv_is_mirror_image(mimage0_lv)) {
log_error(INTERNAL_ERROR
"Bad pvmove structure");
return NULL;
}
pvseg = seg_pvseg(first_seg(mimage0_lv), 0);
} else /* Segment pvmove */
pvseg = seg_pvseg(seg, 0);
if (uuid)
return pv_uuid_dup(mem, pvseg->pv);
else
return pv_name_dup(mem, pvseg->pv);
}
}
return NULL;
}
char *lv_move_pv_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_move_pv_dup(mem, lv, 0);
}
char *lv_move_pv_uuid_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return _do_lv_move_pv_dup(mem, lv, 1);
}
uint64_t lv_origin_size(const struct logical_volume *lv)
{
struct lv_segment *seg;
if (lv_is_cow(lv))
return (uint64_t) find_snapshot(lv)->len * lv->vg->extent_size;
if (lv_is_thin_volume(lv) && (seg = first_seg(lv)) &&
seg->external_lv)
return seg->external_lv->size;
if (lv_is_origin(lv))
return lv->size;
return 0;
}
uint64_t lv_metadata_size(const struct logical_volume *lv)
{
struct lv_segment *seg = (lv_is_thin_pool(lv) || lv_is_cache_pool(lv)) ?
first_seg(lv) : NULL;
return seg ? seg->metadata_lv->size : 0;
}
char *lv_path_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
char *repstr;
size_t len;
/* Only for visible devices that get a link from /dev/vg */
if (!*lv->vg->name || !lv_is_visible(lv) || lv_is_thin_pool(lv))
return dm_pool_strdup(mem, "");
len = strlen(lv->vg->cmd->dev_dir) + strlen(lv->vg->name) +
strlen(lv->name) + 2;
if (!(repstr = dm_pool_zalloc(mem, len))) {
log_error("dm_pool_alloc failed");
return NULL;
}
if (dm_snprintf(repstr, len, "%s%s/%s",
lv->vg->cmd->dev_dir, lv->vg->name, lv->name) < 0) {
log_error("lvpath snprintf failed");
return NULL;
}
return repstr;
}
char *lv_dmpath_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
char *name;
char *repstr;
size_t len;
if (!*lv->vg->name)
return dm_pool_strdup(mem, "");
if (!(name = dm_build_dm_name(mem, lv->vg->name, lv->name, NULL))) {
log_error("dm_build_dm_name failed");
return NULL;
}
len = strlen(dm_dir()) + strlen(name) + 2;
if (!(repstr = dm_pool_zalloc(mem, len))) {
log_error("dm_pool_alloc failed");
return NULL;
}
if (dm_snprintf(repstr, len, "%s/%s", dm_dir(), name) < 0) {
log_error("lv_dmpath snprintf failed");
return NULL;
}
return repstr;
}
char *lv_uuid_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return id_format_and_copy(mem ? mem : lv->vg->vgmem, &lv->lvid.id[1]);
}
char *lv_tags_dup(const struct logical_volume *lv)
{
return tags_format_and_copy(lv->vg->vgmem, &lv->tags);
}
uint64_t lv_size(const struct logical_volume *lv)
{
return lv->size;
}
int lv_mirror_image_in_sync(const struct logical_volume *lv)
{
dm_percent_t percent;
struct lv_segment *seg = first_seg(lv);
struct lv_segment *mirror_seg;
if (!lv_is_mirror_image(lv) || !seg ||
!(mirror_seg = find_mirror_seg(seg))) {
log_error(INTERNAL_ERROR "Cannot find mirror segment.");
return 0;
}
if (!lv_mirror_percent(lv->vg->cmd, mirror_seg->lv, 0, &percent,
NULL))
return_0;
return (percent == DM_PERCENT_100) ? 1 : 0;
}
int lv_raid_image_in_sync(const struct logical_volume *lv)
{
unsigned s;
char *raid_health;
struct lv_segment *seg, *raid_seg = NULL;
/*
* If the LV is not active locally,
* it doesn't make sense to check status
*/
if (!lv_is_active_locally(lv))
return 0; /* Assume not in-sync */
if (!lv_is_raid_image(lv)) {
log_error(INTERNAL_ERROR "%s is not a RAID image", lv->name);
return 0;
}
if ((seg = first_seg(lv)))
raid_seg = get_only_segment_using_this_lv(seg->lv);
if (!raid_seg) {
log_error("Failed to find RAID segment for %s", lv->name);
return 0;
}
if (!seg_is_raid(raid_seg)) {
log_error("%s on %s is not a RAID segment",
raid_seg->lv->name, lv->name);
return 0;
}
/* Find out which sub-LV this is. */
for (s = 0; s < raid_seg->area_count; s++)
if (seg_lv(raid_seg, s) == lv)
break;
if (s == raid_seg->area_count) {
log_error(INTERNAL_ERROR
"sub-LV %s was not found in raid segment",
lv->name);
return 0;
}
if (!lv_raid_dev_health(raid_seg->lv, &raid_health))
return_0;
if (raid_health[s] == 'A')
return 1;
return 0;
}
/*
* _lv_raid_healthy
* @lv: A RAID_IMAGE, RAID_META, or RAID logical volume.
*
* Returns: 1 if healthy, 0 if device is not health
*/
int lv_raid_healthy(const struct logical_volume *lv)
{
unsigned s;
char *raid_health;
struct lv_segment *seg, *raid_seg = NULL;
/*
* If the LV is not active locally,
* it doesn't make sense to check status
*/
if (!lv_is_active_locally(lv))
return 1; /* assume healthy */
if (!lv_is_raid_type(lv)) {
log_error(INTERNAL_ERROR "%s is not of RAID type", lv->name);
return 0;
}
if (lv_is_raid(lv))
raid_seg = first_seg(lv);
else if ((seg = first_seg(lv)))
raid_seg = get_only_segment_using_this_lv(seg->lv);
if (!raid_seg) {
log_error("Failed to find RAID segment for %s", lv->name);
return 0;
}
if (!seg_is_raid(raid_seg)) {
log_error("%s on %s is not a RAID segment",
raid_seg->lv->name, lv->name);
return 0;
}
if (!lv_raid_dev_health(raid_seg->lv, &raid_health))
return_0;
if (lv_is_raid(lv)) {
if (strchr(raid_health, 'D'))
return 0;
else
return 1;
}
/* Find out which sub-LV this is. */
for (s = 0; s < raid_seg->area_count; s++)
if ((lv_is_raid_image(lv) && (seg_lv(raid_seg, s) == lv)) ||
(lv_is_raid_metadata(lv) && (seg_metalv(raid_seg, s) == lv)))
break;
if (s == raid_seg->area_count) {
log_error(INTERNAL_ERROR
"sub-LV %s was not found in raid segment",
lv->name);
return 0;
}
if (raid_health[s] == 'D')
return 0;
return 1;
}
char *lv_attr_dup_with_info_and_seg_status(struct dm_pool *mem, const struct lv_with_info_and_seg_status *lvdm)
{
const struct logical_volume *lv = lvdm->lv;
struct lv_segment *seg;
char *repstr;
if (!(repstr = dm_pool_zalloc(mem, 11))) {
log_error("dm_pool_alloc failed");
return 0;
}
/* Blank if this is a "free space" LV. */
if (!*lv->name && !lv_is_historical(lv))
goto out;
if (lv_is_pvmove(lv))
repstr[0] = 'p';
else if (lv->status & CONVERTING)
repstr[0] = 'c';
/* Origin takes precedence over mirror and thin volume */
else if (lv_is_origin(lv) || lv_is_external_origin(lv))
repstr[0] = (lv_is_merging_origin(lv)) ? 'O' : 'o';
else if (lv_is_pool_metadata(lv) ||
lv_is_pool_metadata_spare(lv) ||
lv_is_raid_metadata(lv))
repstr[0] = 'e';
else if (lv_is_cache_type(lv))
repstr[0] = 'C';
else if (lv_is_raid(lv))
repstr[0] = (lv_is_not_synced(lv)) ? 'R' : 'r';
else if (lv_is_mirror(lv))
repstr[0] = (lv_is_not_synced(lv)) ? 'M' : 'm';
else if (lv_is_thin_volume(lv))
repstr[0] = lv_is_merging_origin(lv) ?
'O' : (lv_is_merging_thin_snapshot(lv) ? 'S' : 'V');
else if (lv_is_virtual(lv))
repstr[0] = 'v';
else if (lv_is_thin_pool(lv))
repstr[0] = 't';
else if (lv_is_thin_pool_data(lv))
repstr[0] = 'T';
else if (lv_is_mirror_image(lv))
repstr[0] = (lv_mirror_image_in_sync(lv)) ? 'i' : 'I';
else if (lv_is_raid_image(lv))
/*
* Visible RAID_IMAGES are sub-LVs that have been exposed for
* top-level use by being split from the RAID array with
* '--splitmirrors 1 --trackchanges'. They always report 'I'.
*/
repstr[0] = (!lv_is_visible(lv) && lv_raid_image_in_sync(lv)) ?
'i' : 'I';
else if (lv_is_mirror_log(lv))
repstr[0] = 'l';
else if (lv_is_cow(lv))
repstr[0] = (lv_is_merging_cow(lv)) ? 'S' : 's';
else if (lv_is_cache_origin(lv))
repstr[0] = 'o';
else
repstr[0] = '-';
if (lv_is_pvmove(lv))
repstr[1] = '-';
else if (lv->status & LVM_WRITE)
repstr[1] = 'w';
else if (lv->status & LVM_READ)
repstr[1] = 'r';
else
repstr[1] = '-';
repstr[2] = alloc_policy_char(lv->alloc);
if (lv_is_locked(lv))
repstr[2] = toupper(repstr[2]);
repstr[3] = (lv->status & FIXED_MINOR) ? 'm' : '-';
if (lv_is_historical(lv)) {
repstr[4] = 'h';
repstr[5] = '-';
} else if (!activation() || !lvdm->info_ok ||
(lvdm->seg_status.type == SEG_STATUS_UNKNOWN)) {
repstr[4] = 'X'; /* Unknown */
repstr[5] = 'X'; /* Unknown */
} else if (lvdm->info.exists) {
if (lvdm->info.suspended)
repstr[4] = 's'; /* Suspended */
else if (lvdm->info.live_table)
repstr[4] = 'a'; /* Active */
else if (lvdm->info.inactive_table)
repstr[4] = 'i'; /* Inactive with table */
else
repstr[4] = 'd'; /* Inactive without table */
/* Snapshot dropped? */
if (lvdm->info.live_table &&
(lvdm->seg_status.type == SEG_STATUS_SNAPSHOT)) {
if (lvdm->seg_status.snapshot->invalid) {
if (lvdm->info.suspended)
repstr[4] = 'S'; /* Susp Inv snapshot */
else
repstr[4] = 'I'; /* Invalid snapshot */
} else if (lvdm->seg_status.snapshot->merge_failed) {
if (lvdm->info.suspended)
repstr[4] = 'M'; /* Susp snapshot merge failed */
else
repstr[4] = 'm'; /* Snapshot merge failed */
}
}
/* 'c' when cache/thin-pool is active with needs_check flag
* 'C' for suspend */
if ((lv_is_thin_pool(lv) &&
(lvdm->seg_status.type == SEG_STATUS_THIN_POOL) &&
lvdm->seg_status.thin_pool->needs_check) ||
(lv_is_cache(lv) &&
(lvdm->seg_status.type == SEG_STATUS_CACHE) &&
lvdm->seg_status.cache->needs_check))
repstr[4] = lvdm->info.suspended ? 'C' : 'c';
/*
* 'R' indicates read-only activation of a device that
* does not have metadata flagging it as read-only.
*/
if (repstr[1] != 'r' && lvdm->info.read_only)
repstr[1] = 'R';
repstr[5] = (lvdm->info.open_count) ? 'o' : '-';
} else {
repstr[4] = '-';
repstr[5] = '-';
}
if (lv_is_thin_pool(lv) || lv_is_thin_volume(lv))
repstr[6] = 't';
else if (lv_is_cache_pool(lv) || lv_is_cache(lv) || lv_is_cache_origin(lv))
repstr[6] = 'C';
else if (lv_is_raid_type(lv))
repstr[6] = 'r';
else if (lv_is_mirror_type(lv) || lv_is_pvmove(lv))
repstr[6] = 'm';
else if (lv_is_cow(lv) || lv_is_origin(lv))
repstr[6] = 's';
else if (lv_has_unknown_segments(lv))
repstr[6] = 'u';
else if (lv_is_virtual(lv))
repstr[6] = 'v';
else
repstr[6] = '-';
if (((lv_is_thin_volume(lv) && (seg = first_seg(lv)) && seg->pool_lv && (seg = first_seg(seg->pool_lv))) ||
(lv_is_thin_pool(lv) && (seg = first_seg(lv)))) &&
seg->zero_new_blocks)
repstr[7] = 'z';
else
repstr[7] = '-';
repstr[8] = '-';
/* TODO: also convert raid health
* lv_is_raid_type() is to wide
* NOTE: snapshot origin is 'mostly' showing it's layered status
*/
if (lv_is_partial(lv))
repstr[8] = 'p';
else if (lv_is_raid_type(lv)) {
uint64_t n;
if (!activation())
repstr[8] = 'X'; /* Unknown */
else if (!lv_raid_healthy(lv))
repstr[8] = 'r'; /* RAID needs 'r'efresh */
else if (lv_is_raid(lv)) {
if (lv_raid_mismatch_count(lv, &n) && n)
repstr[8] = 'm'; /* RAID has 'm'ismatches */
} else if (lv->status & LV_WRITEMOSTLY)
repstr[8] = 'w'; /* sub-LV has 'w'ritemostly */
} else if (lvdm->seg_status.type == SEG_STATUS_CACHE) {
if (lvdm->seg_status.cache->fail)
repstr[8] = 'F';
else if (lvdm->seg_status.cache->read_only)
repstr[8] = 'M';
} else if (lvdm->seg_status.type == SEG_STATUS_THIN_POOL) {
if (lvdm->seg_status.thin_pool->fail)
repstr[8] = 'F';
else if (lvdm->seg_status.thin_pool->out_of_data_space)
repstr[8] = 'D';
else if (lvdm->seg_status.thin_pool->read_only)
repstr[8] = 'M';
} else if (lvdm->seg_status.type == SEG_STATUS_THIN) {
if (lvdm->seg_status.thin->fail)
repstr[8] = 'F';
} else if (lvdm->seg_status.type == SEG_STATUS_UNKNOWN)
repstr[8] = 'X'; /* Unknown */
if (lv->status & LV_ACTIVATION_SKIP)
repstr[9] = 'k';
else
repstr[9] = '-';
out:
return repstr;
}
/* backward compatible internal API for lvm2api, TODO improve it */
char *lv_attr_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
char *ret = NULL;
struct lv_with_info_and_seg_status status = {
.seg_status.type = SEG_STATUS_NONE,
};
if (!(status.seg_status.mem = dm_pool_create("reporter_pool", 1024)))
return_0;
if (!(status.info_ok = lv_info_with_seg_status(lv->vg->cmd, first_seg(lv), &status, 1, 1)))
goto_bad;
ret = lv_attr_dup_with_info_and_seg_status(mem, &status);
bad:
dm_pool_destroy(status.seg_status.mem);
return ret;
}
int lv_set_creation(struct logical_volume *lv,
const char *hostname, uint64_t timestamp)
{
const char *hn;
if (!hostname) {
if (!_utsinit) {
if (uname(&_utsname)) {
log_error("uname failed: %s", strerror(errno));
memset(&_utsname, 0, sizeof(_utsname));
}
_utsinit = 1;
}
hostname = _utsname.nodename;
}
if (!(hn = dm_hash_lookup(lv->vg->hostnames, hostname))) {
if (!(hn = dm_pool_strdup(lv->vg->vgmem, hostname))) {
log_error("Failed to duplicate hostname");
return 0;
}
if (!dm_hash_insert(lv->vg->hostnames, hostname, (void*)hn))
return_0;
}
lv->hostname = hn;
lv->timestamp = timestamp ? : (uint64_t) time(NULL);
return 1;
}
static char *_time_dup(struct cmd_context *cmd, struct dm_pool *mem,
time_t ts, int iso_mode)
{
char buffer[4096];
struct tm *local_tm;
const char *format = iso_mode ? DEFAULT_TIME_FORMAT
: cmd->time_format;
if (!ts ||
!(local_tm = localtime(&ts)) ||
!strftime(buffer, sizeof(buffer), format, local_tm))
buffer[0] = 0;
return dm_pool_strdup(mem, buffer);
}
char *lv_creation_time_dup(struct dm_pool *mem, const struct logical_volume *lv, int iso_mode)
{
time_t ts = lv_is_historical(lv) ? (time_t) lv->this_glv->historical->timestamp
: (time_t) lv->timestamp;
return _time_dup(lv->vg->cmd, mem, ts, iso_mode);
}
char *lv_removal_time_dup(struct dm_pool *mem, const struct logical_volume *lv, int iso_mode)
{
time_t ts = lv_is_historical(lv) ? (time_t)lv->this_glv->historical->timestamp_removed
: (time_t)0;
return _time_dup(lv->vg->cmd, mem, ts, iso_mode);
}
char *lv_host_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
return dm_pool_strdup(mem, lv->hostname ? : "");
}
static int _lv_is_exclusive(struct logical_volume *lv)
{
struct lv_segment *seg;
/* Some seg types require exclusive activation */
/* FIXME Scan recursively */
dm_list_iterate_items(seg, &lv->segments)
if (seg_only_exclusive(seg))
return 1;
/* Origin has no seg type require exlusiveness */
return lv_is_origin(lv);
}
int lv_active_change(struct cmd_context *cmd, struct logical_volume *lv,
enum activation_change activate, int needs_exclusive)
{
const char *ay_with_mode = NULL;
struct lv_segment *seg = first_seg(lv);
if (activate == CHANGE_ASY)
ay_with_mode = "sh";
if (activate == CHANGE_AEY)
ay_with_mode = "ex";
if (is_change_activating(activate) &&
!lockd_lv(cmd, lv, ay_with_mode, LDLV_PERSISTENT)) {
log_error("Failed to lock logical volume %s.", display_lvname(lv));
return 0;
}
switch (activate) {
case CHANGE_AN:
deactivate:
log_verbose("Deactivating logical volume %s.", display_lvname(lv));
if (!deactivate_lv(cmd, lv))
return_0;
break;
case CHANGE_ALN:
if (vg_is_clustered(lv->vg) && (needs_exclusive || _lv_is_exclusive(lv))) {
if (!lv_is_active_locally(lv)) {
log_error("Cannot deactivate remotely exclusive device %s locally.",
display_lvname(lv));
return 0;
}
/* Unlock whole exclusive activation */
goto deactivate;
}
log_verbose("Deactivating logical volume %s locally.",
display_lvname(lv));
if (!deactivate_lv_local(cmd, lv))
return_0;
break;
case CHANGE_ALY:
case CHANGE_AAY:
if (!raid4_is_supported(cmd, seg->segtype))
goto no_raid4;
if (needs_exclusive || _lv_is_exclusive(lv)) {
log_verbose("Activating logical volume %s exclusively locally.",
display_lvname(lv));
if (!activate_lv_excl_local(cmd, lv))
return_0;
} else {
log_verbose("Activating logical volume %s locally.",
display_lvname(lv));
if (!activate_lv_local(cmd, lv))
return_0;
}
break;
case CHANGE_AEY:
exclusive:
if (!raid4_is_supported(cmd, seg->segtype))
goto no_raid4;
log_verbose("Activating logical volume %s exclusively.",
display_lvname(lv));
if (!activate_lv_excl(cmd, lv))
return_0;
break;
case CHANGE_ASY:
case CHANGE_AY:
default:
if (!raid4_is_supported(cmd, seg->segtype))
goto no_raid4;
if (needs_exclusive || _lv_is_exclusive(lv))
goto exclusive;
log_verbose("Activating logical volume %s.", display_lvname(lv));
if (!activate_lv(cmd, lv))
return_0;
}
if (!is_change_activating(activate) &&
!lockd_lv(cmd, lv, "un", LDLV_PERSISTENT))
log_error("Failed to unlock logical volume %s.", display_lvname(lv));
return 1;
no_raid4:
log_error("Failed to activate %s LV %s", lvseg_name(seg), display_lvname(lv));
return 0;
}
char *lv_active_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
const char *s;
if (!activation()) {
s = "unknown";
goto out;
}
if (vg_is_clustered(lv->vg)) {
//const struct logical_volume *lvo = lv;
lv = lv_lock_holder(lv);
//log_debug("Holder for %s => %s.", lvo->name, lv->name);
}
if (!lv_is_active(lv))
s = ""; /* not active */
else if (!vg_is_clustered(lv->vg))
s = "active";
else if (lv_is_active_exclusive(lv))
/* exclusive cluster activation */
s = lv_is_active_exclusive_locally(lv) ?
"local exclusive" : "remote exclusive";
else /* locally active */
s = lv_is_active_but_not_locally(lv) ?
"remotely" : "locally";
out:
return dm_pool_strdup(mem, s);
}
char *lv_profile_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
const char *profile_name = lv->profile ? lv->profile->name : "";
return dm_pool_strdup(mem, profile_name);
}
char *lv_lock_args_dup(struct dm_pool *mem, const struct logical_volume *lv)
{
const char *lock_args = lv->lock_args ? lv->lock_args : "";
return dm_pool_strdup(mem, lock_args);
}
/* For given LV find recursively the LV which holds lock for it */
const struct logical_volume *lv_lock_holder(const struct logical_volume *lv)
{
const struct seg_list *sl;
if (lv_is_cow(lv))
return lv_lock_holder(origin_from_cow(lv));
if (lv_is_thin_pool(lv) ||
lv_is_external_origin(lv)) {
/* FIXME: Ensure cluster keeps thin-pool active exlusively.
* External origin can be activated on more nodes (depends on type).
*/
if (!lv_is_active(lv))
/* Find any active LV from the pool or external origin */
dm_list_iterate_items(sl, &lv->segs_using_this_lv)
if (lv_is_active(sl->seg->lv)) {
log_debug_activation("Thin volume %s is active.",
display_lvname(lv));
return sl->seg->lv;
}
return lv;
}
/* RAID changes visibility of splitted LVs but references them still as leg/meta */
if ((lv_is_raid_image(lv) || lv_is_raid_metadata(lv)) && lv_is_visible(lv))
return lv;
/* For other types, by default look for the first user */
dm_list_iterate_items(sl, &lv->segs_using_this_lv) {
/* FIXME: complete this exception list */
if (lv_is_thin_volume(lv) &&
lv_is_thin_volume(sl->seg->lv) &&
first_seg(lv)->pool_lv == sl->seg->pool_lv)
continue; /* Skip thin snaphost */
if (lv_is_pending_delete(sl->seg->lv))
continue; /* Skip deleted LVs */
return lv_lock_holder(sl->seg->lv);
}
return lv;
}
struct profile *lv_config_profile(const struct logical_volume *lv)
{
return lv->profile ? : lv->vg->profile;
}
int lv_has_constant_stripes(struct logical_volume *lv)
{
uint32_t previous_area_count = 0;
struct lv_segment *seg;
dm_list_iterate_items(seg, &lv->segments) {
if (!seg_is_striped(seg))
return 0;
if (previous_area_count && previous_area_count != seg->area_count)
return 0;
previous_area_count = seg->area_count;
}
return 1;
}