1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-04 09:18:36 +03:00
lvm2/lib/metadata/metadata.c
2024-07-08 15:32:41 -05:00

5282 lines
140 KiB
C

/*
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004-2012 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "lib/misc/lib.h"
#include "lib/device/device.h"
#include "lib/metadata/metadata.h"
#include "lib/commands/toolcontext.h"
#include "lib/misc/lvm-string.h"
#include "lib/misc/lvm-file.h"
#include "lib/cache/lvmcache.h"
#include "lib/mm/memlock.h"
#include "lib/datastruct/str_list.h"
#include "lib/metadata/pv_alloc.h"
#include "lib/metadata/segtype.h"
#include "lib/activate/activate.h"
#include "lib/display/display.h"
#include "lib/locking/locking.h"
#include "lib/format_text/archiver.h"
#include "lib/format_text/format-text.h"
#include "lib/format_text/layout.h"
#include "lib/format_text/import-export.h"
#include "lib/config/defaults.h"
#include "lib/locking/lvmlockd.h"
#include "lib/notify/lvmnotify.h"
#include <time.h>
#include <math.h>
static struct physical_volume *_pv_read(struct cmd_context *cmd,
const struct format_type *fmt,
struct volume_group *vg,
struct lvmcache_info *info);
static int _check_pv_ext(struct cmd_context *cmd, struct volume_group *vg)
{
struct lvmcache_info *info;
uint32_t ext_version, ext_flags;
struct pv_list *pvl;
if (vg_is_foreign(vg))
return 1;
if (vg_is_shared(vg))
return 1;
dm_list_iterate_items(pvl, &vg->pvs) {
if (is_missing_pv(pvl->pv))
continue;
/* is_missing_pv doesn't catch NULL dev */
if (!pvl->pv->dev)
continue;
if (!(info = lvmcache_info_from_pvid(pvl->pv->dev->pvid, pvl->pv->dev, 0)))
continue;
ext_version = lvmcache_ext_version(info);
if (ext_version < PV_HEADER_EXTENSION_VSN) {
log_warn("WARNING: PV %s in VG %s is using an old PV header, modify the VG to update.",
dev_name(pvl->pv->dev), vg->name);
continue;
}
ext_flags = lvmcache_ext_flags(info);
if (!(ext_flags & PV_EXT_USED)) {
log_warn("WARNING: PV %s in VG %s is missing the used flag in PV header.",
dev_name(pvl->pv->dev), vg->name);
}
}
return 1;
}
/*
* Historically, DEFAULT_PVMETADATASIZE was 255 for many years,
* but that value was only used if default_data_alignment was
* disabled. Using DEFAULT_PVMETADATASIZE 255, pe_start was
* rounded up to 192KB from aligning it with 64K
* (DEFAULT_PE_ALIGN_OLD 128 sectors). Given a 4KB mda_start,
* and 192KB pe_start, the mda_size between the two was 188KB.
* This metadata area size was too small to be a good default,
* and disabling default_data_alignment, with no other change,
* does not imply that the default mda_size or pe_start should
* change.
*/
int get_default_pvmetadatasize_sectors(void)
{
int pagesize = lvm_getpagesize();
/*
* This returns the default size of the metadata area in units of
* 512 byte sectors.
*
* We want the default pe_start to consistently be 1 MiB (1024 KiB),
* (even if default_data_alignment is disabled.)
*
* The mda start is at pagesize offset from the start of the device.
*
* The metadata size is the space between mda start and pe_start.
*
* So, if set set default metadata size to 1024 KiB - <pagesize> KiB,
* it will consistently produce pe_start of 1 MiB.
*
* pe_start 1024 KiB = 2048 sectors.
*
* pagesizes:
* 4096 = 8 sectors.
* 8192 = 16 sectors.
* 16384 = 32 sectors.
* 65536 = 128 sectors.
*/
switch (pagesize) {
case 4096:
return 2040;
case 8192:
return 2032;
case 16384:
return 2016;
case 65536:
return 1920;
}
log_warn("Using metadata size 960 KiB for non-standard page size %d.", pagesize);
return 1920;
}
#define ONE_MB_IN_SECTORS 2048 /* 2048 * 512 = 1048576 */
void set_pe_align(struct physical_volume *pv, uint64_t data_alignment_sectors)
{
uint64_t default_data_alignment_mb;
uint64_t pe_align_sectors;
uint64_t temp_pe_align_sectors;
uint32_t page_size_sectors;
if (pv->pe_align)
goto out;
if (data_alignment_sectors) {
/* Always use specified alignment */
log_debug("Requested PE alignment is %llu sectors", (unsigned long long)data_alignment_sectors);
pe_align_sectors = data_alignment_sectors;
pv->pe_align = data_alignment_sectors;
goto out;
}
/*
* By default the first PE is placed at 1 MiB.
*
* If default_data_alignment is 2, then the first PE
* is placed at 2 * 1 MiB.
*
* If default_data_alignment is 3, then the first PE
* is placed at 3 * 1 MiB.
*/
default_data_alignment_mb = find_config_tree_int(pv->fmt->cmd, devices_default_data_alignment_CFG, NULL);
if (default_data_alignment_mb)
pe_align_sectors = default_data_alignment_mb * FIRST_PE_AT_ONE_MB_IN_SECTORS;
else
pe_align_sectors = FIRST_PE_AT_ONE_MB_IN_SECTORS;
pv->pe_align = pe_align_sectors;
log_debug("Standard PE alignment is %llu sectors", (unsigned long long)pe_align_sectors);
page_size_sectors = lvm_getpagesize() >> SECTOR_SHIFT;
if (page_size_sectors > pe_align_sectors) {
/* This shouldn't happen */
log_debug("Increasing PE alignment to page size %u sectors", page_size_sectors);
pe_align_sectors = page_size_sectors;
pv->pe_align = page_size_sectors;
}
if (!pv->dev)
goto out;
/*
* Align to stripe-width of underlying md device if present
*/
if (find_config_tree_bool(pv->fmt->cmd, devices_md_chunk_alignment_CFG, NULL)) {
temp_pe_align_sectors = dev_md_stripe_width(pv->fmt->cmd->dev_types, pv->dev);
if (temp_pe_align_sectors && (pe_align_sectors % temp_pe_align_sectors)) {
log_debug("Adjusting PE alignment from %llu sectors to md stripe width %llu sectors for %s",
(unsigned long long)pe_align_sectors,
(unsigned long long)temp_pe_align_sectors,
dev_name(pv->dev));
pe_align_sectors = temp_pe_align_sectors;
pv->pe_align = temp_pe_align_sectors;
}
}
/*
* Align to topology's minimum_io_size or optimal_io_size if present
* - minimum_io_size - the smallest request the device can perform
* w/o incurring a read-modify-write penalty (e.g. MD's chunk size)
* - optimal_io_size - the device's preferred unit of receiving I/O
* (e.g. MD's stripe width)
*/
if (find_config_tree_bool(pv->fmt->cmd, devices_data_alignment_detection_CFG, NULL)) {
temp_pe_align_sectors = dev_minimum_io_size(pv->fmt->cmd->dev_types, pv->dev);
if (temp_pe_align_sectors && (pe_align_sectors % temp_pe_align_sectors)) {
log_debug("Adjusting PE alignment from %llu sectors to mininum io size %llu sectors for %s",
(unsigned long long)pe_align_sectors,
(unsigned long long)temp_pe_align_sectors,
dev_name(pv->dev));
pe_align_sectors = temp_pe_align_sectors;
pv->pe_align = temp_pe_align_sectors;
}
temp_pe_align_sectors = dev_optimal_io_size(pv->fmt->cmd->dev_types, pv->dev);
if (temp_pe_align_sectors && (pe_align_sectors % temp_pe_align_sectors)) {
log_debug("Adjusting PE alignment from %llu sectors to optimal io size %llu sectors for %s",
(unsigned long long)pe_align_sectors,
(unsigned long long)temp_pe_align_sectors,
dev_name(pv->dev));
pe_align_sectors = temp_pe_align_sectors;
pv->pe_align = temp_pe_align_sectors;
}
}
out:
log_debug("Setting PE alignment to %llu sectors for %s.",
(unsigned long long)pv->pe_align, dev_name(pv->dev));
}
void set_pe_align_offset(struct physical_volume *pv, uint64_t data_alignment_offset_sectors)
{
if (pv->pe_align_offset)
goto out;
if (data_alignment_offset_sectors) {
/* Always use specified data_alignment_offset */
pv->pe_align_offset = data_alignment_offset_sectors;
goto out;
}
if (!pv->dev)
goto out;
if (find_config_tree_bool(pv->fmt->cmd, devices_data_alignment_offset_detection_CFG, NULL)) {
int align_offset = dev_alignment_offset(pv->fmt->cmd->dev_types, pv->dev);
/* must handle a -1 alignment_offset; means dev is misaligned */
if (align_offset < 0)
align_offset = 0;
pv->pe_align_offset = align_offset;
}
out:
log_debug("Setting PE alignment offset to %llu sectors for %s.",
(unsigned long long)pv->pe_align_offset, dev_name(pv->dev));
}
void add_pvl_to_vgs(struct volume_group *vg, struct pv_list *pvl)
{
dm_list_add(&vg->pvs, &pvl->list);
vg->pv_count++;
pvl->pv->vg = vg;
pv_set_fid(pvl->pv, vg->fid);
}
void del_pvl_from_vgs(struct volume_group *vg, struct pv_list *pvl)
{
char pvid[ID_LEN + 1] __attribute__((aligned(8)));
struct lvmcache_info *info;
vg->pv_count--;
dm_list_del(&pvl->list);
pvid[ID_LEN] = 0;
memcpy(pvid, &pvl->pv->id.uuid, ID_LEN);
pvl->pv->vg = vg->fid->fmt->orphan_vg; /* orphan */
if ((info = lvmcache_info_from_pvid(pvid, pvl->pv->dev, 0)))
lvmcache_fid_add_mdas(info, vg->fid->fmt->orphan_vg->fid, pvid, ID_LEN);
pv_set_fid(pvl->pv, vg->fid->fmt->orphan_vg->fid);
}
/**
* add_pv_to_vg - Add a physical volume to a volume group
* @vg - volume group to add to
* @pv_name - name of the pv (to be removed)
* @pv - physical volume to add to volume group
*
* Returns:
* 0 - failure
* 1 - success
* FIXME: remove pv_name - obtain safely from pv
*/
int add_pv_to_vg(struct volume_group *vg, const char *pv_name,
struct physical_volume *pv, int new_pv)
{
struct pv_list *pvl;
struct format_instance *fid = vg->fid;
struct dm_pool *mem = vg->vgmem;
char uuid[64] __attribute__((aligned(8)));
int used;
log_verbose("Adding physical volume '%s' to volume group '%s'",
pv_name, vg->name);
if (!(pvl = dm_pool_zalloc(mem, sizeof(*pvl)))) {
log_error("pv_list allocation for '%s' failed", pv_name);
return 0;
}
if (!is_orphan_vg(pv->vg_name)) {
log_error("Physical volume '%s' is already in volume group "
"'%s'", pv_name, pv->vg_name);
return 0;
}
if (!new_pv) {
if ((used = is_used_pv(pv)) < 0)
return_0;
if (used) {
log_error("PV %s is used by a VG but its metadata is missing.", pv_name);
return 0;
}
}
if (pv->fmt != fid->fmt) {
log_error("Physical volume %s is of different format type (%s)",
pv_name, pv->fmt->name);
return 0;
}
/* Ensure PV doesn't depend on another PV already in the VG */
if (pv_uses_vg(pv, vg)) {
log_error("Physical volume %s might be constructed from same "
"volume group %s", pv_name, vg->name);
return 0;
}
if (!(pv->vg_name = dm_pool_strdup(mem, vg->name))) {
log_error("vg->name allocation failed for '%s'", pv_name);
return 0;
}
/* both are struct id */
memcpy(&pv->vg_id, &vg->id, sizeof(struct id));
/* Units of 512-byte sectors */
pv->pe_size = vg->extent_size;
/*
* pe_count must always be calculated by pv_setup
*/
pv->pe_alloc_count = 0;
/* LVM1 stores this outside a VG; LVM2 only stores it inside */
/* FIXME Default from config file? vgextend cmdline flag? */
pv->status |= ALLOCATABLE_PV;
if (!fid->fmt->ops->pv_setup(fid->fmt, pv, vg)) {
log_error("Format-specific setup of physical volume '%s' "
"failed.", pv_name);
return 0;
}
if (find_pv_in_vg(vg, pv_name) ||
find_pv_in_vg_by_uuid(vg, &pv->id)) {
if (!id_write_format(&pv->id, uuid, sizeof(uuid))) {
stack;
uuid[0] = '\0';
}
log_error("Physical volume '%s (%s)' already in the VG.",
pv_name, uuid);
return 0;
}
if (vg->pv_count && (vg->pv_count == vg->max_pv)) {
log_error("No space for '%s' - volume group '%s' "
"holds max %d physical volume(s).", pv_name,
vg->name, vg->max_pv);
return 0;
}
if (!alloc_pv_segment_whole_pv(mem, pv))
return_0;
if ((uint64_t) vg->extent_count + pv->pe_count > MAX_EXTENT_COUNT) {
log_error("Unable to add %s to %s: new extent count (%"
PRIu64 ") exceeds limit (%" PRIu32 ").",
pv_name, vg->name,
(uint64_t) vg->extent_count + pv->pe_count,
MAX_EXTENT_COUNT);
return 0;
}
pvl->pv = pv;
add_pvl_to_vgs(vg, pvl);
vg->extent_count += pv->pe_count;
vg->free_count += pv->pe_count;
dm_list_iterate_items(pvl, &fid->fmt->orphan_vg->pvs)
if (pv == pvl->pv) { /* unlink from orphan */
dm_list_del(&pvl->list);
break;
}
return 1;
}
static int _move_pv(struct volume_group *vg_from, struct volume_group *vg_to,
const char *pv_name, int enforce_pv_from_source)
{
struct physical_volume *pv;
struct pv_list *pvl;
/* FIXME: handle tags */
if (!(pvl = find_pv_in_vg(vg_from, pv_name))) {
if (!enforce_pv_from_source &&
find_pv_in_vg(vg_to, pv_name))
/*
* PV has already been moved. This can happen if an
* LV is being moved that has multiple sub-LVs on the
* same PV.
*/
return 1;
log_error("Physical volume %s not in volume group %s",
pv_name, vg_from->name);
return 0;
}
if (vg_bad_status_bits(vg_from, RESIZEABLE_VG) ||
vg_bad_status_bits(vg_to, RESIZEABLE_VG))
return 0;
del_pvl_from_vgs(vg_from, pvl);
add_pvl_to_vgs(vg_to, pvl);
pv = pvl->pv;
vg_from->extent_count -= pv_pe_count(pv);
vg_to->extent_count += pv_pe_count(pv);
vg_from->free_count -= pv_pe_count(pv) - pv_pe_alloc_count(pv);
vg_to->free_count += pv_pe_count(pv) - pv_pe_alloc_count(pv);
return 1;
}
int move_pv(struct volume_group *vg_from, struct volume_group *vg_to,
const char *pv_name)
{
return _move_pv(vg_from, vg_to, pv_name, 1);
}
struct vg_from_to {
struct volume_group *from;
struct volume_group *to;
};
static int _move_pvs_used_by_lv_cb(struct logical_volume *lv, void *data)
{
struct vg_from_to *v = (struct vg_from_to*) data;
struct lv_segment *lvseg;
unsigned s;
dm_list_iterate_items(lvseg, &lv->segments)
for (s = 0; s < lvseg->area_count; s++)
if (seg_type(lvseg, s) == AREA_PV)
if (!_move_pv(v->from, v->to,
pv_dev_name(seg_pv(lvseg, s)), 0))
return_0;
return 1;
}
int move_pvs_used_by_lv(struct volume_group *vg_from,
struct volume_group *vg_to,
const char *lv_name)
{
struct vg_from_to data = { .from = vg_from, .to = vg_to };
struct lv_list *lvl;
/* FIXME: handle tags */
if (!(lvl = find_lv_in_vg(vg_from, lv_name))) {
log_error("Logical volume %s not in volume group %s",
lv_name, vg_from->name);
return 0;
}
if (vg_bad_status_bits(vg_from, RESIZEABLE_VG)) {
log_error("Cannot move PV(s) from non resize volume group %s.", vg_from->name);
return 0;
}
if (vg_bad_status_bits(vg_to, RESIZEABLE_VG)) {
log_error("Cannot move PV(s) to non resize volume group %s.", vg_to->name);
return 0;
}
if (!for_each_sub_lv(lvl->lv, _move_pvs_used_by_lv_cb, &data))
return_0;
if (!_move_pvs_used_by_lv_cb(lvl->lv, &data))
return_0;
return 1;
}
int validate_new_vg_name(struct cmd_context *cmd, const char *vg_name)
{
static char vg_path[PATH_MAX];
name_error_t name_error;
name_error = validate_name_detailed(vg_name);
if (NAME_VALID != name_error) {
display_name_error(name_error);
log_error("New volume group name \"%s\" is invalid.", vg_name);
return 0;
}
snprintf(vg_path, sizeof(vg_path), "%s%s", cmd->dev_dir, vg_name);
if (path_exists(vg_path)) {
log_error("%s: already exists in filesystem", vg_path);
return 0;
}
return 1;
}
int validate_vg_rename_params(struct cmd_context *cmd,
const char *vg_name_old,
const char *vg_name_new)
{
unsigned length;
char *dev_dir;
dev_dir = cmd->dev_dir;
length = strlen(dev_dir);
/* Check sanity of new name */
if (strlen(vg_name_new) > NAME_LEN - length - 2) {
log_error("New volume group path exceeds maximum length "
"of %d!", NAME_LEN - length - 2);
return 0;
}
if (!validate_new_vg_name(cmd, vg_name_new))
return_0;
if (!strcmp(vg_name_old, vg_name_new)) {
log_error("Old and new volume group names must differ");
return 0;
}
return 1;
}
int vg_rename(struct cmd_context *cmd, struct volume_group *vg,
const char *new_name)
{
struct dm_pool *mem = vg->vgmem;
struct pv_list *pvl;
vg->old_name = vg->name;
if (!(vg->name = dm_pool_strdup(mem, new_name))) {
log_error("vg->name allocation failed for '%s'", new_name);
return 0;
}
dm_list_iterate_items(pvl, &vg->pvs) {
/* Skip if VG didn't change e.g. with vgsplit */
if (pvl->pv->vg_name && !strcmp(new_name, pvl->pv->vg_name))
continue;
if (!(pvl->pv->vg_name = dm_pool_strdup(mem, new_name))) {
log_error("pv->vg_name allocation failed for '%s'",
pv_dev_name(pvl->pv));
return 0;
}
/* Mark the PVs that still hold metadata with the old VG name */
log_debug_metadata("Marking PV %s as moved to VG %s", dev_name(pvl->pv->dev), new_name);
pvl->pv->status |= PV_MOVED_VG;
}
return 1;
}
int vg_remove_check(struct volume_group *vg)
{
unsigned lv_count;
if (vg_missing_pv_count(vg)) {
log_error("Volume group \"%s\" not found, is inconsistent "
"or has PVs missing.", vg ? vg->name : "");
log_error("Consider vgreduce --removemissing if metadata "
"is inconsistent.");
return 0;
}
lv_count = vg_visible_lvs(vg);
if (lv_count) {
log_error("Volume group \"%s\" still contains %u "
"logical volume(s)", vg->name, lv_count);
return 0;
}
return 1;
}
void vg_remove_pvs(struct volume_group *vg)
{
struct pv_list *pvl, *tpvl;
dm_list_iterate_items_safe(pvl, tpvl, &vg->pvs) {
del_pvl_from_vgs(vg, pvl);
dm_list_add(&vg->removed_pvs, &pvl->list);
}
}
int vg_remove_direct(struct volume_group *vg)
{
struct physical_volume *pv;
struct pv_list *pvl;
int ret = 1;
if (!vg_remove_mdas(vg)) {
log_error("vg_remove_mdas %s failed", vg->name);
return 0;
}
/* init physical volumes */
dm_list_iterate_items(pvl, &vg->removed_pvs) {
pv = pvl->pv;
if (is_missing_pv(pv))
continue;
log_verbose("Removing physical volume \"%s\" from "
"volume group \"%s\"", pv_dev_name(pv), vg->name);
pv->vg_name = vg->fid->fmt->orphan_vg_name;
pv->status &= ~ALLOCATABLE_PV;
if (!dev_get_size(pv_dev(pv), &pv->size)) {
log_error("%s: Couldn't get size.", pv_dev_name(pv));
ret = 0;
continue;
}
/* FIXME Write to same sector label was read from */
if (!pv_write(vg->cmd, pv, 0)) {
log_error("Failed to remove physical volume \"%s\""
" from volume group \"%s\"",
pv_dev_name(pv), vg->name);
ret = 0;
}
}
lockd_vg_update(vg);
set_vg_notify(vg->cmd);
if (!backup_remove(vg->cmd, vg->name))
stack;
if (ret)
log_print_unless_silent("Volume group \"%s\" successfully removed", vg->name);
else
log_error("Volume group \"%s\" not properly removed", vg->name);
return ret;
}
int vg_remove(struct volume_group *vg)
{
int ret;
ret = vg_remove_direct(vg);
return ret;
}
int check_dev_block_size_for_vg(struct device *dev, const struct volume_group *vg,
unsigned int *max_logical_block_size_found)
{
unsigned int physical_block_size, logical_block_size;
if (!(dev_get_direct_block_sizes(dev, &physical_block_size, &logical_block_size)))
return_0;
/* FIXME: max_logical_block_size_found does not seem to be used anywhere */
if (logical_block_size > *max_logical_block_size_found)
*max_logical_block_size_found = logical_block_size;
if (logical_block_size >> SECTOR_SHIFT > vg->extent_size) {
log_error("Physical extent size used for volume group %s "
"is less than logical block size (%u bytes) that %s uses.",
vg->name, logical_block_size, dev_name(dev));
return 0;
}
return 1;
}
int vg_check_pv_dev_block_sizes(const struct volume_group *vg)
{
struct pv_list *pvl;
unsigned int max_logical_block_size_found = 0;
dm_list_iterate_items(pvl, &vg->pvs) {
if (!check_dev_block_size_for_vg(pvl->pv->dev, vg, &max_logical_block_size_found))
return 0;
}
return 1;
}
int check_pv_dev_sizes(struct volume_group *vg)
{
struct pv_list *pvl;
uint64_t dev_size, size;
int r = 1;
if (!vg->cmd->check_pv_dev_sizes ||
is_orphan_vg(vg->name))
return 1;
dm_list_iterate_items(pvl, &vg->pvs) {
if (is_missing_pv(pvl->pv))
continue;
/*
* Don't compare the sizes if we're not able
* to determine the real dev_size. This may
* happen if the device has gone since we did
* VG read.
*/
if (!dev_get_size(pvl->pv->dev, &dev_size))
continue;
size = pv_size(pvl->pv);
if (dev_size < size) {
log_warn("WARNING: Device %s has size of %" PRIu64 " sectors which "
"is smaller than corresponding PV size of %" PRIu64
" sectors. Was device resized?",
pv_dev_name(pvl->pv), dev_size, size);
r = 0;
}
}
return r;
}
int vg_extend_each_pv(struct volume_group *vg, struct pvcreate_params *pp)
{
struct pv_list *pvl;
unsigned int max_logical_block_size = 0;
unsigned int physical_block_size, logical_block_size;
unsigned int prev_lbs = 0;
int inconsistent_existing_lbs = 0;
log_debug_metadata("Adding PVs to VG %s.", vg->name);
if (vg_bad_status_bits(vg, RESIZEABLE_VG))
return_0;
/*
* Check if existing PVs have inconsistent block sizes.
* If so, do not enforce new devices to be consistent.
*/
dm_list_iterate_items(pvl, &vg->pvs) {
logical_block_size = 0;
physical_block_size = 0;
if (!pvl->pv->dev)
continue;
if (!dev_get_direct_block_sizes(pvl->pv->dev, &physical_block_size, &logical_block_size))
continue;
if (!logical_block_size)
continue;
if (!prev_lbs) {
prev_lbs = logical_block_size;
continue;
}
if (prev_lbs != logical_block_size) {
inconsistent_existing_lbs = 1;
break;
}
}
dm_list_iterate_items(pvl, &pp->pvs) {
log_debug_metadata("Adding PV %s to VG %s.", pv_dev_name(pvl->pv), vg->name);
if (!(check_dev_block_size_for_vg(pvl->pv->dev,
(const struct volume_group *) vg,
&max_logical_block_size))) {
log_error("PV %s has wrong block size.", pv_dev_name(pvl->pv));
return 0;
}
logical_block_size = 0;
physical_block_size = 0;
if (!dev_get_direct_block_sizes(pvl->pv->dev, &physical_block_size, &logical_block_size))
log_warn("WARNING: PV %s has unknown block size.", pv_dev_name(pvl->pv));
else if (prev_lbs && logical_block_size && (logical_block_size != prev_lbs)) {
if (vg->cmd->allow_mixed_block_sizes || inconsistent_existing_lbs)
log_debug("Devices have inconsistent block sizes (%u and %u)", prev_lbs, logical_block_size);
else {
log_error("Devices have inconsistent logical block sizes (%u and %u).",
prev_lbs, logical_block_size);
return 0;
}
}
if (!add_pv_to_vg(vg, pv_dev_name(pvl->pv), pvl->pv, 0)) {
log_error("PV %s cannot be added to VG %s.",
pv_dev_name(pvl->pv), vg->name);
return 0;
}
}
(void) check_pv_dev_sizes(vg);
dm_list_splice(&vg->pv_write_list, &pp->pvs);
return 1;
}
int lv_change_tag(struct logical_volume *lv, const char *tag, int add_tag)
{
char *tag_new;
if (!(lv->vg->fid->fmt->features & FMT_TAGS)) {
log_error("Logical volume %s/%s does not support tags",
lv->vg->name, lv->name);
return 0;
}
if (add_tag) {
if (!(tag_new = dm_pool_strdup(lv->vg->vgmem, tag))) {
log_error("Failed to duplicate tag %s from %s/%s",
tag, lv->vg->name, lv->name);
return 0;
}
if (!str_list_add(lv->vg->vgmem, &lv->tags, tag_new)) {
log_error("Failed to add tag %s to %s/%s",
tag, lv->vg->name, lv->name);
return 0;
}
} else
str_list_del(&lv->tags, tag);
return 1;
}
int vg_change_tag(struct volume_group *vg, const char *tag, int add_tag)
{
char *tag_new;
if (!(vg->fid->fmt->features & FMT_TAGS)) {
log_error("Volume group %s does not support tags", vg->name);
return 0;
}
if (add_tag) {
if (!(tag_new = dm_pool_strdup(vg->vgmem, tag))) {
log_error("Failed to duplicate tag %s from %s",
tag, vg->name);
return 0;
}
if (!str_list_add(vg->vgmem, &vg->tags, tag_new)) {
log_error("Failed to add tag %s to volume group %s",
tag, vg->name);
return 0;
}
} else
str_list_del(&vg->tags, tag);
return 1;
}
const char *strip_dir(const char *vg_name, const char *dev_dir)
{
size_t len = strlen(dev_dir);
if (!strncmp(vg_name, dev_dir, len))
vg_name += len;
return vg_name;
}
/*
* Validates major and minor numbers.
* On >2.4 kernel we only support dynamic major number.
*/
int validate_major_minor(const struct cmd_context *cmd,
const struct format_type *fmt,
int32_t major, int32_t minor)
{
int r = 1;
if (!strncmp(cmd->kernel_vsn, "2.4.", 4) ||
(fmt->features & FMT_RESTRICTED_LVIDS)) {
if (major < 0 || major > 255) {
log_error("Major number %d outside range 0-255.", major);
r = 0;
}
if (minor < 0 || minor > 255) {
log_error("Minor number %d outside range 0-255.", minor);
r = 0;
}
} else {
/* 12 bits for major number */
if ((major != -1) &&
(major != (int)cmd->dev_types->device_mapper_major)) {
/* User supplied some major number */
if (major < 0 || major > 4095) {
log_error("Major number %d outside range 0-4095.", major);
r = 0;
} else
log_print_unless_silent("Ignoring supplied major %d number - "
"kernel assigns major numbers dynamically.",
major);
}
/* 20 bits for minor number */
if (minor < 0 || minor > 1048575) {
log_error("Minor number %d outside range 0-1048575.", minor);
r = 0;
}
}
return r;
}
/*
* Validate parameters to vg_create() before calling.
* FIXME: Move inside vg_create library function.
* FIXME: Change vgcreate_params struct to individual gets/sets
*/
int vgcreate_params_validate(struct cmd_context *cmd,
struct vgcreate_params *vp)
{
if (!validate_new_vg_name(cmd, vp->vg_name))
return_0;
if (vp->alloc == ALLOC_INHERIT) {
log_error("Volume Group allocation policy cannot inherit "
"from anything");
return 0;
}
if (!vp->extent_size) {
log_error("Physical extent size may not be zero");
return 0;
}
if (!(cmd->fmt->features & FMT_UNLIMITED_VOLS)) {
if (!vp->max_lv)
vp->max_lv = 255;
if (!vp->max_pv)
vp->max_pv = 255;
if (vp->max_lv > 255 || vp->max_pv > 255) {
log_error("Number of volumes may not exceed 255");
return 0;
}
}
return 1;
}
static void _vg_wipe_cached_precommitted(struct volume_group *vg)
{
release_vg(vg->vg_precommitted);
vg->vg_precommitted = NULL;
}
static void _vg_move_cached_precommitted_to_committed(struct volume_group *vg)
{
release_vg(vg->vg_committed);
vg->vg_committed = vg->vg_precommitted;
vg->vg_precommitted = NULL;
vg->needs_backup = 1;
}
int lv_has_unknown_segments(const struct logical_volume *lv)
{
struct lv_segment *seg;
/* foreach segment */
dm_list_iterate_items(seg, &lv->segments)
if (seg_unknown(seg))
return 1;
return 0;
}
int vg_has_unknown_segments(const struct volume_group *vg)
{
struct lv_list *lvl;
/* foreach LV */
dm_list_iterate_items(lvl, &vg->lvs)
if (lv_has_unknown_segments(lvl->lv))
return 1;
return 0;
}
/*
* Create a VG with default parameters.
*/
struct volume_group *vg_create(struct cmd_context *cmd, const char *vg_name)
{
struct volume_group *vg;
struct format_instance_ctx fic = {
.type = FMT_INSTANCE_MDAS | FMT_INSTANCE_AUX_MDAS,
.context.vg_ref.vg_name = vg_name
};
struct format_instance *fid;
if (!(vg = alloc_vg("vg_create", cmd, vg_name)))
goto_bad;
if (!id_create(&vg->id)) {
log_error("Couldn't create uuid for volume group '%s'.",
vg_name);
goto bad;
}
vg->status = (RESIZEABLE_VG | LVM_READ | LVM_WRITE);
vg->system_id = NULL;
vg->extent_size = DEFAULT_EXTENT_SIZE * 2;
vg->max_lv = DEFAULT_MAX_LV;
vg->max_pv = DEFAULT_MAX_PV;
vg->alloc = DEFAULT_ALLOC_POLICY;
vg->mda_copies = DEFAULT_VGMETADATACOPIES;
if (!(fid = cmd->fmt->ops->create_instance(cmd->fmt, &fic))) {
log_error("Failed to create format instance");
goto bad;
}
vg_set_fid(vg, fid);
if (vg->fid->fmt->ops->vg_setup &&
!vg->fid->fmt->ops->vg_setup(vg->fid, vg)) {
log_error("Format specific setup of volume group '%s' failed.",
vg_name);
goto bad;
}
return vg;
bad:
unlock_and_release_vg(cmd, vg, vg_name);
return NULL;
}
/* Rounds up by default */
uint32_t extents_from_size(struct cmd_context *cmd, uint64_t size,
uint32_t extent_size)
{
if (size % extent_size) {
size += extent_size - size % extent_size;
log_print_unless_silent("Rounding up size to full physical extent %s",
display_size(cmd, size));
}
if (size > (uint64_t) MAX_EXTENT_COUNT * extent_size) {
log_error("Volume too large (%s) for extent size %s. "
"Upper limit is less than %s.",
display_size(cmd, size),
display_size(cmd, (uint64_t) extent_size),
display_size(cmd, (uint64_t) MAX_EXTENT_COUNT *
extent_size));
return 0;
}
return (uint32_t) (size / extent_size);
}
/*
* Converts size according to percentage with specified rounding to extents
*
* For PERCENT_NONE size is in standard sector units.
* For all other percent type is in DM_PERCENT_1 base unit (supports decimal point)
*
* Return value of 0 extents is an error.
*/
uint32_t extents_from_percent_size(struct volume_group *vg, const struct dm_list *pvh,
uint32_t extents, int roundup,
percent_type_t percent, uint64_t size)
{
uint32_t count;
switch (percent) {
case PERCENT_NONE:
if (!roundup && (size % vg->extent_size)) {
if (!(size -= size % vg->extent_size)) {
log_error("Specified size is smaller then physical extent boundary.");
return 0;
}
log_print_unless_silent("Rounding size to boundary between physical extents: %s.",
display_size(vg->cmd, size));
}
return extents_from_size(vg->cmd, size, vg->extent_size);
case PERCENT_LV:
break; /* Base extents already passed in. */
case PERCENT_VG:
extents = vg->extent_count;
break;
case PERCENT_PVS:
if (pvh != &vg->pvs) {
/* Physical volumes are specified on cmdline */
if (!(extents = pv_list_extents_free(pvh))) {
log_error("No free extents in the list of physical volumes.");
return 0;
}
break;
}
/* fall through */ /* to use all PVs in VG like %FREE */
case PERCENT_FREE:
if (!(extents = vg->free_count)) {
log_error("No free extents in Volume group %s.", vg->name);
return 0;
}
break;
default:
log_error(INTERNAL_ERROR "Unsupported percent type %u.", percent);
return 0;
}
if (!(count = percent_of_extents(size, extents, roundup)))
log_error("Converted %s%%%s into 0 extents.",
display_percent(vg->cmd, size), get_percent_string(percent));
else
log_verbose("Converted %s%%%s into %" PRIu32 " extents.",
display_percent(vg->cmd, size), get_percent_string(percent), count);
return count;
}
static dm_bitset_t _bitset_with_random_bits(struct dm_pool *mem, uint32_t num_bits,
uint32_t num_set_bits, unsigned *seed)
{
dm_bitset_t bs;
unsigned bit_selected;
char buf[32];
uint32_t i = num_bits - num_set_bits;
if (!(bs = dm_bitset_create(mem, num_bits))) {
log_error("Failed to allocate bitset for setting random bits.");
return NULL;
}
if (!dm_pool_begin_object(mem, 512)) {
log_error("dm_pool_begin_object failed for random list of bits.");
dm_pool_free(mem, bs);
return NULL;
}
/* Perform loop num_set_bits times, selecting one bit each time */
while (i++ < num_bits) {
/* Select a random bit between 0 and (i-1) inclusive. */
bit_selected = lvm_even_rand(seed, i);
/*
* If the bit was already set, set the new bit that became
* choosable for the first time during this pass.
* This maintains a uniform probability distribution by compensating
* for being unable to select it until this pass.
*/
if (dm_bit(bs, bit_selected))
bit_selected = i - 1;
dm_bit_set(bs, bit_selected);
if (dm_snprintf(buf, sizeof(buf), "%u ", bit_selected) < 0) {
log_error("snprintf random bit failed.");
dm_pool_free(mem, bs);
return NULL;
}
if (!dm_pool_grow_object(mem, buf, strlen(buf))) {
log_error("Failed to generate list of random bits.");
dm_pool_free(mem, bs);
return NULL;
}
}
if (!dm_pool_grow_object(mem, "\0", 1)) {
log_error("Failed to finish list of random bits.");
dm_pool_free(mem, bs);
return NULL;
}
log_debug_metadata("Selected %" PRIu32 " random bits from %" PRIu32 ": %s", num_set_bits, num_bits, (char *) dm_pool_end_object(mem));
return bs;
}
static int _vg_ignore_mdas(struct volume_group *vg, uint32_t num_to_ignore)
{
struct metadata_area *mda;
uint32_t mda_used_count = vg_mda_used_count(vg);
dm_bitset_t mda_to_ignore_bs;
int r = 1;
log_debug_metadata("Adjusting ignored mdas for %s: %" PRIu32 " of %" PRIu32 " mdas in use "
"but %" PRIu32 " required. Changing %" PRIu32 " mda.",
vg->name, mda_used_count, vg_mda_count(vg), vg_mda_copies(vg), num_to_ignore);
if (!num_to_ignore)
return 1;
if (!(mda_to_ignore_bs = _bitset_with_random_bits(vg->vgmem, mda_used_count,
num_to_ignore, &vg->cmd->rand_seed)))
return_0;
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use)
if (!mda_is_ignored(mda) && (--mda_used_count,
dm_bit(mda_to_ignore_bs, mda_used_count))) {
mda_set_ignored(mda, 1);
if (!--num_to_ignore)
goto out;
}
log_error(INTERNAL_ERROR "Unable to find %"PRIu32" metadata areas to ignore "
"on volume group %s", num_to_ignore, vg->name);
r = 0;
out:
dm_pool_free(vg->vgmem, mda_to_ignore_bs);
return r;
}
static int _vg_unignore_mdas(struct volume_group *vg, uint32_t num_to_unignore)
{
struct metadata_area *mda, *tmda;
uint32_t mda_used_count = vg_mda_used_count(vg);
uint32_t mda_count = vg_mda_count(vg);
uint32_t mda_free_count = mda_count - mda_used_count;
dm_bitset_t mda_to_unignore_bs;
int r = 1;
if (!num_to_unignore)
return 1;
log_debug_metadata("Adjusting ignored mdas for %s: %" PRIu32 " of %" PRIu32 " mdas in use "
"but %" PRIu32 " required. Changing %" PRIu32 " mda.",
vg->name, mda_used_count, mda_count, vg_mda_copies(vg), num_to_unignore);
if (!(mda_to_unignore_bs = _bitset_with_random_bits(vg->vgmem, mda_free_count,
num_to_unignore, &vg->cmd->rand_seed)))
return_0;
dm_list_iterate_items_safe(mda, tmda, &vg->fid->metadata_areas_ignored)
if (mda_is_ignored(mda) && (--mda_free_count,
dm_bit(mda_to_unignore_bs, mda_free_count))) {
mda_set_ignored(mda, 0);
dm_list_move(&vg->fid->metadata_areas_in_use,
&mda->list);
if (!--num_to_unignore)
goto out;
}
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use)
if (mda_is_ignored(mda) && (--mda_free_count,
dm_bit(mda_to_unignore_bs, mda_free_count))) {
mda_set_ignored(mda, 0);
if (!--num_to_unignore)
goto out;
}
log_error(INTERNAL_ERROR "Unable to find %"PRIu32" metadata areas to unignore "
"on volume group %s", num_to_unignore, vg->name);
r = 0;
out:
dm_pool_free(vg->vgmem, mda_to_unignore_bs);
return r;
}
static int _vg_adjust_ignored_mdas(struct volume_group *vg)
{
uint32_t mda_copies_used = vg_mda_used_count(vg);
if (vg->mda_copies == VGMETADATACOPIES_UNMANAGED) {
/* Ensure at least one mda is in use. */
if (!mda_copies_used && vg_mda_count(vg) && !_vg_unignore_mdas(vg, 1))
return_0;
else
return 1;
}
/* Not an error to have vg_mda_count larger than total mdas. */
if (vg->mda_copies == VGMETADATACOPIES_ALL ||
vg->mda_copies >= vg_mda_count(vg)) {
/* Use all */
if (!_vg_unignore_mdas(vg, vg_mda_count(vg) - mda_copies_used))
return_0;
} else if (mda_copies_used < vg->mda_copies) {
if (!_vg_unignore_mdas(vg, vg->mda_copies - mda_copies_used))
return_0;
} else if (mda_copies_used > vg->mda_copies)
if (!_vg_ignore_mdas(vg, mda_copies_used - vg->mda_copies))
return_0;
/*
* The VGMETADATACOPIES_ALL value will never be written disk.
* It is a special cmdline value that means 2 things:
* 1. clear all ignore bits in all mdas in this vg
* 2. set the "unmanaged" policy going forward for metadata balancing
*/
if (vg->mda_copies == VGMETADATACOPIES_ALL)
vg->mda_copies = VGMETADATACOPIES_UNMANAGED;
return 1;
}
uint64_t find_min_mda_size(struct dm_list *mdas)
{
uint64_t min_mda_size = UINT64_MAX, mda_size;
struct metadata_area *mda;
dm_list_iterate_items(mda, mdas) {
if (!mda->ops->mda_total_sectors)
continue;
mda_size = mda->ops->mda_total_sectors(mda);
if (mda_size < min_mda_size)
min_mda_size = mda_size;
}
if (min_mda_size == UINT64_MAX)
min_mda_size = UINT64_C(0);
return min_mda_size;
}
static int _move_mdas(struct volume_group *vg_from, struct volume_group *vg_to,
struct dm_list *mdas_from, struct dm_list *mdas_to)
{
struct metadata_area *mda, *mda2;
int common_mda = 0;
dm_list_iterate_items_safe(mda, mda2, mdas_from) {
if (!mda->ops->mda_in_vg) {
common_mda = 1;
continue;
}
if (!mda->ops->mda_in_vg(vg_from->fid, vg_from, mda)) {
if (is_orphan_vg(vg_to->name))
dm_list_del(&mda->list);
else
dm_list_move(mdas_to, &mda->list);
}
}
return common_mda;
}
/*
* Separate metadata areas after splitting a VG.
* Also accepts orphan VG as destination (for vgreduce).
*/
int vg_split_mdas(struct cmd_context *cmd __attribute__((unused)),
struct volume_group *vg_from, struct volume_group *vg_to)
{
struct dm_list *mdas_from_in_use, *mdas_to_in_use;
struct dm_list *mdas_from_ignored, *mdas_to_ignored;
int common_mda = 0;
mdas_from_in_use = &vg_from->fid->metadata_areas_in_use;
mdas_from_ignored = &vg_from->fid->metadata_areas_ignored;
mdas_to_in_use = &vg_to->fid->metadata_areas_in_use;
mdas_to_ignored = &vg_to->fid->metadata_areas_ignored;
common_mda = _move_mdas(vg_from, vg_to,
mdas_from_in_use, mdas_to_in_use);
common_mda = _move_mdas(vg_from, vg_to,
mdas_from_ignored, mdas_to_ignored);
if ((dm_list_empty(mdas_from_in_use) &&
dm_list_empty(mdas_from_ignored)) ||
((!is_orphan_vg(vg_to->name) &&
dm_list_empty(mdas_to_in_use) &&
dm_list_empty(mdas_to_ignored))))
return common_mda;
return 1;
}
void pvcreate_params_set_defaults(struct pvcreate_params *pp)
{
memset(pp, 0, sizeof(*pp));
pp->zero = 1;
pp->force = PROMPT;
pp->yes = 0;
pp->restorefile = NULL;
pp->uuid_str = NULL;
pp->pva.size = 0;
pp->pva.data_alignment = 0;
pp->pva.data_alignment_offset = 0;
pp->pva.pvmetadatacopies = DEFAULT_PVMETADATACOPIES;
pp->pva.pvmetadatasize = get_default_pvmetadatasize_sectors();
pp->pva.label_sector = DEFAULT_LABELSECTOR;
pp->pva.metadataignore = DEFAULT_PVMETADATAIGNORE;
pp->pva.ba_start = 0;
pp->pva.ba_size = 0;
pp->pva.pe_start = PV_PE_START_CALC;
pp->pva.extent_count = 0;
pp->pva.extent_size = 0;
dm_list_init(&pp->prompts);
dm_list_init(&pp->arg_devices);
dm_list_init(&pp->arg_process);
dm_list_init(&pp->arg_confirm);
dm_list_init(&pp->arg_create);
dm_list_init(&pp->arg_remove);
dm_list_init(&pp->arg_fail);
dm_list_init(&pp->pvs);
}
static struct physical_volume *_alloc_pv(struct dm_pool *mem, struct device *dev)
{
struct physical_volume *pv;
if (!(pv = dm_pool_zalloc(mem, sizeof(*pv)))) {
log_error("Failed to allocate pv structure.");
return NULL;
}
pv->dev = dev;
dm_list_init(&pv->tags);
dm_list_init(&pv->segments);
return pv;
}
/**
* pv_create - initialize a physical volume for use with a volume group
* created PV belongs to Orphan VG.
*
* Returns:
* PV handle - physical volume initialized successfully
* NULL - invalid parameter or problem initializing the physical volume
*/
struct physical_volume *pv_create(const struct cmd_context *cmd,
struct device *dev,
struct pv_create_args *pva)
{
const struct format_type *fmt = cmd->fmt;
struct dm_pool *mem = fmt->orphan_vg->vgmem;
struct physical_volume *pv = _alloc_pv(mem, dev);
unsigned mda_index;
struct pv_list *pvl;
uint64_t size = pva->size;
uint64_t data_alignment = pva->data_alignment;
uint64_t data_alignment_offset = pva->data_alignment_offset;
unsigned pvmetadatacopies = pva->pvmetadatacopies;
uint64_t pvmetadatasize = pva->pvmetadatasize;
unsigned metadataignore = pva->metadataignore;
if (!pv)
return_NULL;
if (pva->idp)
memcpy(&pv->id, pva->idp, sizeof(*pva->idp));
else if (!id_create(&pv->id)) {
log_error("Failed to create random uuid for %s.",
dev_name(dev));
goto bad;
}
if (!dev_get_size(pv->dev, &pv->size)) {
log_error("%s: Couldn't get size.", pv_dev_name(pv));
goto bad;
}
if (size) {
if (size > pv->size)
log_warn("WARNING: %s: Overriding real size. "
"You could lose data.", pv_dev_name(pv));
log_verbose("%s: Pretending size is %" PRIu64 " sectors.",
pv_dev_name(pv), size);
pv->size = size;
}
if (pv->size < pv_min_size()) {
log_error("%s: Size must exceed minimum of %" PRIu64 " sectors.",
pv_dev_name(pv), pv_min_size());
goto bad;
}
if (pv->size < data_alignment + data_alignment_offset) {
log_error("%s: Data alignment must not exceed device size.",
pv_dev_name(pv));
goto bad;
}
if (!(pvl = dm_pool_zalloc(mem, sizeof(*pvl)))) {
log_error("pv_list allocation in pv_create failed");
goto bad;
}
pvl->pv = pv;
add_pvl_to_vgs(fmt->orphan_vg, pvl);
fmt->orphan_vg->extent_count += pv->pe_count;
fmt->orphan_vg->free_count += pv->pe_count;
pv->fmt = fmt;
pv->vg_name = fmt->orphan_vg_name;
/*
* Sets pv: pe_align, pe_align_offset, pe_start, pe_size
* Does not write to device.
*/
if (!fmt->ops->pv_initialise(fmt, pva, pv)) {
log_error("Format-specific initialisation of physical "
"volume %s failed.", pv_dev_name(pv));
goto bad;
}
for (mda_index = 0; mda_index < pvmetadatacopies; mda_index++) {
if (pv->fmt->ops->pv_add_metadata_area &&
!pv->fmt->ops->pv_add_metadata_area(pv->fmt, pv,
pva->pe_start != PV_PE_START_CALC,
mda_index, pvmetadatasize,
metadataignore)) {
log_error("Failed to add metadata area for "
"new physical volume %s", pv_dev_name(pv));
goto bad;
}
}
return pv;
bad:
// FIXME: detach from orphan in error path
//free_pv_fid(pv);
//dm_pool_free(mem, pv);
return NULL;
}
/* FIXME: liblvm todo - make into function that returns handle */
struct pv_list *find_pv_in_vg(const struct volume_group *vg,
const char *pv_name)
{
struct pv_list *pvl;
struct device *dev = dev_cache_get(vg->cmd, pv_name, vg->cmd->filter);
/*
* If the device does not exist or is filtered out, don't bother trying
* to find it in the list. This also prevents accidentally finding a
* non-NULL PV which happens to be missing (i.e. its pv->dev is NULL)
* for such devices.
*/
if (!dev)
return NULL;
dm_list_iterate_items(pvl, &vg->pvs)
if (pvl->pv->dev == dev)
return pvl;
return NULL;
}
struct pv_list *find_pv_in_pv_list(const struct dm_list *pl,
const struct physical_volume *pv)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, pl)
if (pvl->pv == pv)
return pvl;
return NULL;
}
int pv_is_in_vg(struct volume_group *vg, struct physical_volume *pv)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, &vg->pvs)
if (pv == pvl->pv)
return 1;
return 0;
}
/**
* find_pv_in_vg_by_uuid - Find PV in VG by PV UUID
* @vg: volume group to search
* @id: UUID of the PV to match
*
* Returns:
* struct pv_list within owning struct volume_group - if UUID of PV found in VG
* NULL - invalid parameter or UUID of PV not found in VG
*
* Note
* FIXME - liblvm todo - make into function that takes VG handle
*/
struct pv_list *find_pv_in_vg_by_uuid(const struct volume_group *vg,
const struct id *id)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, &vg->pvs)
if (id_equal(&pvl->pv->id, id))
return pvl;
return NULL;
}
struct lv_list *find_lv_in_vg(const struct volume_group *vg,
const char *lv_name)
{
struct lv_list *lvl;
const char *ptr;
/* Use last component */
if ((ptr = strrchr(lv_name, '/')))
ptr++;
else
ptr = lv_name;
dm_list_iterate_items(lvl, &vg->lvs)
if (!strcmp(lvl->lv->name, ptr))
return lvl;
return NULL;
}
struct logical_volume *find_lv_in_vg_by_lvid(const struct volume_group *vg,
const union lvid *lvid)
{
struct lv_list *lvl;
if (memcmp(&lvid->id[0], &vg->id, ID_LEN))
return NULL; /* Check VG does not match */
dm_list_iterate_items(lvl, &vg->lvs)
if (!memcmp(&lvid->id[1], &lvl->lv->lvid.id[1], sizeof(lvid->id[1])))
return lvl->lv; /* LV uuid match */
return NULL;
}
struct logical_volume *find_lv(const struct volume_group *vg,
const char *lv_name)
{
struct lv_list *lvl = find_lv_in_vg(vg, lv_name);
return lvl ? lvl->lv : NULL;
}
struct generic_logical_volume *find_historical_glv(const struct volume_group *vg,
const char *historical_lv_name,
int check_removed_list,
struct glv_list **glvl_found)
{
struct glv_list *glvl;
const char *ptr;
const struct dm_list *list = check_removed_list ? &vg->removed_historical_lvs
: &vg->historical_lvs;
/* Use last component */
if ((ptr = strrchr(historical_lv_name, '/')))
ptr++;
else
ptr = historical_lv_name;
dm_list_iterate_items(glvl, list) {
if (!strcmp(glvl->glv->historical->name, ptr)) {
if (glvl_found)
*glvl_found = glvl;
return glvl->glv;
}
}
if (glvl_found)
*glvl_found = NULL;
return NULL;
}
int lv_name_is_used_in_vg(const struct volume_group *vg, const char *name, int *historical)
{
int found;
if (historical)
*historical = 0;
if (find_lv(vg, name))
found = 1;
else if (find_historical_glv(vg, name, 0, NULL)) {
found = 1;
if (historical)
*historical = 1;
} else
found = 0;
return found;
}
struct physical_volume *find_pv(struct volume_group *vg, struct device *dev)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, &vg->pvs)
if (dev == pvl->pv->dev)
return pvl->pv;
return NULL;
}
/* Find segment at a given logical extent in an LV */
struct lv_segment *find_seg_by_le(const struct logical_volume *lv, uint32_t le)
{
struct lv_segment *seg;
dm_list_iterate_items(seg, &lv->segments)
if (le >= seg->le && le < seg->le + seg->len)
return seg;
return NULL;
}
struct lv_segment *first_seg(const struct logical_volume *lv)
{
struct lv_segment *seg;
dm_list_iterate_items(seg, &lv->segments)
return seg;
return NULL;
}
struct lv_segment *last_seg(const struct logical_volume *lv)
{
struct lv_segment *seg;
dm_list_iterate_back_items(seg, &lv->segments)
return seg;
return NULL;
}
int vg_remove_mdas(struct volume_group *vg)
{
struct metadata_area *mda;
/* FIXME Improve recovery situation? */
/* Remove each copy of the metadata */
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) {
if (mda->ops->vg_remove &&
!mda->ops->vg_remove(vg->fid, vg, mda))
return_0;
}
return 1;
}
/*
* Determine whether two vgs are compatible for merging.
*/
int vgs_are_compatible(struct cmd_context *cmd __attribute__((unused)),
struct volume_group *vg_from,
struct volume_group *vg_to)
{
struct lv_list *lvl1, *lvl2;
struct pv_list *pvl;
const char *name1, *name2;
if (lvs_in_vg_activated(vg_from)) {
log_error("Logical volumes in \"%s\" must be inactive",
vg_from->name);
return 0;
}
/* Check compatibility */
if (vg_to->extent_size != vg_from->extent_size) {
log_error("Extent sizes differ: %d (%s) and %d (%s)",
vg_to->extent_size, vg_to->name,
vg_from->extent_size, vg_from->name);
return 0;
}
if (vg_to->max_pv &&
(vg_to->max_pv < vg_to->pv_count + vg_from->pv_count)) {
log_error("Maximum number of physical volumes (%d) exceeded "
" for \"%s\" and \"%s\"", vg_to->max_pv, vg_to->name,
vg_from->name);
return 0;
}
if (vg_to->max_lv &&
(vg_to->max_lv < vg_visible_lvs(vg_to) + vg_visible_lvs(vg_from))) {
log_error("Maximum number of logical volumes (%d) exceeded "
" for \"%s\" and \"%s\"", vg_to->max_lv, vg_to->name,
vg_from->name);
return 0;
}
/* Metadata types must be the same */
if (vg_to->fid->fmt != vg_from->fid->fmt) {
log_error("Metadata types differ for \"%s\" and \"%s\"",
vg_to->name, vg_from->name);
return 0;
}
/* Check no conflicts with LV names */
dm_list_iterate_items(lvl1, &vg_to->lvs) {
name1 = lvl1->lv->name;
dm_list_iterate_items(lvl2, &vg_from->lvs) {
name2 = lvl2->lv->name;
if (!strcmp(name1, name2)) {
log_error("Duplicate logical volume "
"name \"%s\" "
"in \"%s\" and \"%s\"",
name1, vg_to->name, vg_from->name);
return 0;
}
}
}
/* Check no PVs are constructed from either VG */
dm_list_iterate_items(pvl, &vg_to->pvs) {
if (pv_uses_vg(pvl->pv, vg_from)) {
log_error("Physical volume %s might be constructed "
"from same volume group %s.",
pv_dev_name(pvl->pv), vg_from->name);
return 0;
}
}
dm_list_iterate_items(pvl, &vg_from->pvs) {
if (pv_uses_vg(pvl->pv, vg_to)) {
log_error("Physical volume %s might be constructed "
"from same volume group %s.",
pv_dev_name(pvl->pv), vg_to->name);
return 0;
}
}
return 1;
}
struct _lv_postorder_baton {
int (*fn)(struct logical_volume *lv, void *data);
void *data;
};
static int _lv_postorder_visit(struct logical_volume *lv,
int (*fn)(struct logical_volume *lv, void *data),
void *data);
static int _lv_each_dependency(struct logical_volume *lv,
int (*fn)(struct logical_volume *lv, void *data),
void *data)
{
unsigned i, s;
struct lv_segment *lvseg;
struct dm_list *snh;
struct logical_volume *deps[] = {
lv->snapshot ? lv->snapshot->origin : 0,
lv->snapshot ? lv->snapshot->cow : 0 };
for (i = 0; i < DM_ARRAY_SIZE(deps); ++i) {
if (deps[i] && !fn(deps[i], data))
return_0;
}
dm_list_iterate_items(lvseg, &lv->segments) {
if (lvseg->external_lv && !fn(lvseg->external_lv, data))
return_0;
if (lvseg->log_lv && !fn(lvseg->log_lv, data))
return_0;
if (lvseg->pool_lv && !fn(lvseg->pool_lv, data))
return_0;
if (lvseg->metadata_lv && !fn(lvseg->metadata_lv, data))
return_0;
if (lvseg->writecache && !fn(lvseg->writecache, data))
return_0;
if (lvseg->integrity_meta_dev && !fn(lvseg->integrity_meta_dev, data))
return_0;
for (s = 0; s < lvseg->area_count; ++s) {
if (seg_type(lvseg, s) == AREA_LV && !fn(seg_lv(lvseg,s), data))
return_0;
}
}
if (lv_is_origin(lv))
dm_list_iterate(snh, &lv->snapshot_segs)
if (!fn(dm_list_struct_base(snh, struct lv_segment, origin_list)->cow, data))
return_0;
return 1;
}
static int _lv_postorder_cleanup(struct logical_volume *lv, void *data)
{
if (!(lv->status & POSTORDER_FLAG))
return 1;
lv->status &= ~POSTORDER_FLAG;
if (!_lv_each_dependency(lv, _lv_postorder_cleanup, data))
return_0;
return 1;
}
static int _lv_postorder_level(struct logical_volume *lv, void *data)
{
struct _lv_postorder_baton *baton = data;
return (data) ? _lv_postorder_visit(lv, baton->fn, baton->data) : 0;
}
static int _lv_postorder_visit(struct logical_volume *lv,
int (*fn)(struct logical_volume *lv, void *data),
void *data)
{
struct _lv_postorder_baton baton;
int r;
if (lv->status & POSTORDER_FLAG)
return 1;
if (lv->status & POSTORDER_OPEN_FLAG)
return 1; // a data structure loop has closed...
lv->status |= POSTORDER_OPEN_FLAG;
baton.fn = fn;
baton.data = data;
r = _lv_each_dependency(lv, _lv_postorder_level, &baton);
if (r)
r = fn(lv, data);
lv->status &= ~POSTORDER_OPEN_FLAG;
lv->status |= POSTORDER_FLAG;
return r;
}
/*
* This will walk the LV dependency graph in depth-first order and in the
* postorder, call a callback function "fn". The void *data is passed along all
* the calls. The callback may return zero to indicate an error and terminate
* the depth-first walk. The error is propagated to return value of
* _lv_postorder.
*/
static int _lv_postorder(struct logical_volume *lv,
int (*fn)(struct logical_volume *lv, void *data),
void *data)
{
int r;
int pool_locked = dm_pool_locked(lv->vg->vgmem);
if (pool_locked && !dm_pool_unlock(lv->vg->vgmem, 0))
return_0;
r = _lv_postorder_visit(lv, fn, data);
_lv_postorder_cleanup(lv, 0);
if (pool_locked && !dm_pool_lock(lv->vg->vgmem, 0))
return_0;
return r;
}
/*
* Calls _lv_postorder() on each LV from VG. Avoids duplicate transitivity visits.
* Clears with _lv_postorder_cleanup() when all LVs were visited by postorder.
*/
static int _lv_postorder_vg(struct volume_group *vg,
int (*fn)(struct logical_volume *lv, void *data),
void *data)
{
struct lv_list *lvl;
int r = 1;
int pool_locked = dm_pool_locked(vg->vgmem);
if (pool_locked && !dm_pool_unlock(vg->vgmem, 0))
return_0;
dm_list_iterate_items(lvl, &vg->lvs)
if (!_lv_postorder_visit(lvl->lv, fn, data)) {
stack;
r = 0;
}
dm_list_iterate_items(lvl, &vg->lvs)
_lv_postorder_cleanup(lvl->lv, 0);
if (pool_locked && !dm_pool_lock(vg->vgmem, 0))
return_0;
return r;
}
struct _lv_mark_if_partial_baton {
int partial;
};
static int _lv_mark_if_partial_collect(struct logical_volume *lv, void *data)
{
struct _lv_mark_if_partial_baton *baton = data;
if (baton && lv_is_partial(lv))
baton->partial = 1;
return 1;
}
static int _lv_mark_if_partial_single(struct logical_volume *lv, void *data)
{
unsigned s;
struct _lv_mark_if_partial_baton baton = { .partial = 0 };
struct lv_segment *lvseg;
dm_list_iterate_items(lvseg, &lv->segments) {
for (s = 0; s < lvseg->area_count; ++s) {
if (seg_type(lvseg, s) == AREA_PV) {
if (is_missing_pv(seg_pv(lvseg, s)))
lv->status |= PARTIAL_LV;
}
}
}
if (!_lv_each_dependency(lv, _lv_mark_if_partial_collect, &baton))
return_0;
if (baton.partial)
lv->status |= PARTIAL_LV;
return 1;
}
/*
* Mark LVs with missing PVs using PARTIAL_LV status flag. The flag is
* propagated transitively, so LVs referencing other LVs are marked
* partial as well, if any of their referenced LVs are marked partial.
*/
int vg_mark_partial_lvs(struct volume_group *vg, int clear)
{
struct lv_list *lvl;
if (clear)
dm_list_iterate_items(lvl, &vg->lvs)
lvl->lv->status &= ~PARTIAL_LV;
if (!_lv_postorder_vg(vg, _lv_mark_if_partial_single, NULL))
return_0;
return 1;
}
/*
* Be sure that all PV devices have cached read ahead in dev-cache
* Currently it takes read_ahead from first PV segment only
*/
static int _lv_read_ahead_single(struct logical_volume *lv, void *data)
{
struct lv_segment *seg = first_seg(lv);
uint32_t seg_read_ahead = 0, *read_ahead = data;
if (!read_ahead) {
log_error(INTERNAL_ERROR "Read ahead data missing.");
return 0;
}
if (seg && seg->area_count && seg_type(seg, 0) == AREA_PV)
dev_get_read_ahead(seg_pv(seg, 0)->dev, &seg_read_ahead);
if (seg_read_ahead > *read_ahead)
*read_ahead = seg_read_ahead;
return 1;
}
/*
* Calculate readahead for logical volume from underlying PV devices.
* If read_ahead is NULL, only ensure that readahead of PVs are preloaded
* into PV struct device in dev cache.
*/
void lv_calculate_readahead(const struct logical_volume *lv, uint32_t *read_ahead)
{
uint32_t _read_ahead = 0;
if (lv->read_ahead == DM_READ_AHEAD_AUTO)
_lv_postorder((struct logical_volume *)lv, _lv_read_ahead_single, &_read_ahead);
if (read_ahead) {
log_debug_metadata("Calculated readahead of LV %s is %u", lv->name, _read_ahead);
*read_ahead = _read_ahead;
}
}
struct validate_hash {
struct dm_hash_table *lvname;
struct dm_hash_table *historical_lvname;
struct dm_hash_table *lvid;
struct dm_hash_table *historical_lvid;
struct dm_hash_table *pvid;
struct dm_hash_table *lv_lock_args;
};
/*
* Check that an LV and all its PV references are correctly listed in vg->lvs
* and vg->pvs, respectively. This only looks at a single LV, but *not* at the
* LVs it is using. To do the latter, you should use _lv_postorder with this
* function. C.f. vg_validate.
*/
static int _lv_validate_references_single(struct logical_volume *lv, void *data)
{
struct volume_group *vg = lv->vg;
struct validate_hash *vhash = data;
struct lv_segment *lvseg;
struct physical_volume *pv;
unsigned s;
int r = 1;
if (lv != dm_hash_lookup_binary(vhash->lvid, &lv->lvid.id[1],
sizeof(lv->lvid.id[1]))) {
log_error(INTERNAL_ERROR
"Referenced LV %s not listed in VG %s.",
lv->name, vg->name);
r = 0;
}
dm_list_iterate_items(lvseg, &lv->segments) {
for (s = 0; s < lvseg->area_count; ++s) {
if (seg_type(lvseg, s) != AREA_PV)
continue;
pv = seg_pv(lvseg, s);
/* look up the reference in vg->pvs */
if (pv != dm_hash_lookup_binary(vhash->pvid, &pv->id,
sizeof(pv->id))) {
log_error(INTERNAL_ERROR
"Referenced PV %s not listed in VG %s.",
pv_dev_name(pv), vg->name);
r = 0;
}
}
}
return r;
}
/*
* Format is <version>:<info>
*/
static int _validate_lock_args_chars(const char *lock_args)
{
unsigned i;
char c;
int found_colon = 0;
int r = 1;
for (i = 0; i < strlen(lock_args); i++) {
c = lock_args[i];
if (!isalnum(c) && c != '.' && c != '_' && c != '-' && c != '+' && c != ':') {
log_error(INTERNAL_ERROR "Invalid character at index %u of lock_args \"%s\"",
i, lock_args);
r = 0;
}
if (c == ':' && found_colon) {
log_error(INTERNAL_ERROR "Invalid colon at index %u of lock_args \"%s\"",
i, lock_args);
r = 0;
}
if (c == ':')
found_colon = 1;
}
return r;
}
static int _validate_vg_lock_args(struct volume_group *vg)
{
if (!vg->lock_args || !_validate_lock_args_chars(vg->lock_args)) {
log_error(INTERNAL_ERROR "VG %s has invalid lock_args chars", vg->name);
return 0;
}
return 1;
}
/*
* For lock_type sanlock, LV lock_args are <version>:<info>
* For lock_type dlm, LV lock_args are not used, and lock_args is
* just set to "dlm".
*/
static int _validate_lv_lock_args(struct logical_volume *lv)
{
int r = 1;
if (!strcmp(lv->vg->lock_type, "sanlock")) {
if (!_validate_lock_args_chars(lv->lock_args)) {
log_error(INTERNAL_ERROR "LV %s/%s has invalid lock_args chars",
lv->vg->name, display_lvname(lv));
return 0;
}
} else if (!strcmp(lv->vg->lock_type, "dlm")) {
if (strcmp(lv->lock_args, "dlm")) {
log_error(INTERNAL_ERROR "LV %s/%s has invalid lock_args \"%s\"",
lv->vg->name, display_lvname(lv), lv->lock_args);
r = 0;
}
} else if (!strcmp(lv->vg->lock_type, "idm")) {
if (strcmp(lv->lock_args, "idm")) {
log_error(INTERNAL_ERROR "LV %s/%s has invalid lock_args \"%s\"",
lv->vg->name, display_lvname(lv), lv->lock_args);
r = 0;
}
}
return r;
}
int vg_validate(struct volume_group *vg)
{
struct pv_list *pvl;
struct lv_list *lvl;
struct glv_list *glvl;
struct historical_logical_volume *hlv;
struct lv_segment *seg;
struct dm_str_list *sl;
char uuid[64] __attribute__((aligned(8)));
char uuid2[64] __attribute__((aligned(8)));
int r = 1;
unsigned hidden_lv_count = 0, lv_count = 0, lv_visible_count = 0;
unsigned pv_count = 0;
unsigned num_snapshots = 0;
unsigned spare_count = 0;
size_t vg_name_len = strlen(vg->name);
size_t dev_name_len;
struct validate_hash vhash = { NULL };
if (vg->alloc == ALLOC_CLING_BY_TAGS) {
log_error(INTERNAL_ERROR "VG %s allocation policy set to invalid cling_by_tags.",
vg->name);
r = 0;
}
if (vg->status & LVM_WRITE_LOCKED) {
log_error(INTERNAL_ERROR "VG %s has external flag LVM_WRITE_LOCKED set internally.",
vg->name);
r = 0;
}
/* FIXME Also check there's no data/metadata overlap */
if (!(vhash.pvid = dm_hash_create(vg->pv_count))) {
log_error("Failed to allocate pvid hash.");
return 0;
}
dm_list_iterate_items(sl, &vg->tags)
if (!validate_tag(sl->str)) {
log_error(INTERNAL_ERROR "VG %s tag %s has invalid form.",
vg->name, sl->str);
r = 0;
}
dm_list_iterate_items(pvl, &vg->pvs) {
if (++pv_count > vg->pv_count) {
log_error(INTERNAL_ERROR "PV list corruption detected in VG %s.", vg->name);
/* FIXME Dump list structure? */
r = 0;
}
if (pvl->pv->vg != vg) {
log_error(INTERNAL_ERROR "VG %s PV list entry points "
"to different VG %s.", vg->name,
pvl->pv->vg ? pvl->pv->vg->name : "NULL");
r = 0;
}
if (strcmp(pvl->pv->vg_name, vg->name)) {
log_error(INTERNAL_ERROR "VG name for PV %s is corrupted.",
pv_dev_name(pvl->pv));
r = 0;
}
if (dm_hash_lookup_binary(vhash.pvid, &pvl->pv->id,
sizeof(pvl->pv->id))) {
if (!id_write_format(&pvl->pv->id, uuid,
sizeof(uuid)))
stack;
log_error(INTERNAL_ERROR "Duplicate PV id "
"%s detected for %s in %s.",
uuid, pv_dev_name(pvl->pv),
vg->name);
r = 0;
}
dm_list_iterate_items(sl, &pvl->pv->tags)
if (!validate_tag(sl->str)) {
log_error(INTERNAL_ERROR "PV %s tag %s has invalid form.",
pv_dev_name(pvl->pv), sl->str);
r = 0;
}
if (!dm_hash_insert_binary(vhash.pvid, &pvl->pv->id,
sizeof(pvl->pv->id), pvl->pv)) {
log_error("Failed to hash pvid.");
r = 0;
break;
}
}
if (!check_pv_segments(vg)) {
log_error(INTERNAL_ERROR "PV segments corrupted in %s.",
vg->name);
r = 0;
}
dm_list_iterate_items(lvl, &vg->removed_lvs) {
if (!(lvl->lv->status & LV_REMOVED)) {
log_error(INTERNAL_ERROR "LV %s is not marked as removed while it's part "
"of removed LV list for VG %s", lvl->lv->name, vg->name);
r = 0;
}
}
/*
* Count all non-snapshot invisible LVs
*/
dm_list_iterate_items(lvl, &vg->lvs) {
lv_count++;
if (lvl->lv->status & LV_REMOVED) {
log_error(INTERNAL_ERROR "LV %s is marked as removed while it's "
"still part of the VG %s", lvl->lv->name, vg->name);
r = 0;
}
if (lvl->lv->status & LVM_WRITE_LOCKED) {
log_error(INTERNAL_ERROR "LV %s has external flag LVM_WRITE_LOCKED set internally.",
lvl->lv->name);
r = 0;
}
dev_name_len = strlen(lvl->lv->name) + vg_name_len + 3;
if (dev_name_len >= NAME_LEN) {
log_error(INTERNAL_ERROR "LV name \"%s/%s\" length %"
PRIsize_t " is not supported.",
vg->name, lvl->lv->name, dev_name_len);
r = 0;
}
if (!id_equal(&lvl->lv->lvid.id[0], &lvl->lv->vg->id)) {
if (!id_write_format(&lvl->lv->lvid.id[0], uuid,
sizeof(uuid)))
stack;
if (!id_write_format(&lvl->lv->vg->id, uuid2,
sizeof(uuid2)))
stack;
log_error(INTERNAL_ERROR "LV %s has VG UUID %s but its VG %s has UUID %s",
lvl->lv->name, uuid, lvl->lv->vg->name, uuid2);
r = 0;
}
if (lv_is_pool_metadata_spare(lvl->lv)) {
if (++spare_count > 1) {
log_error(INTERNAL_ERROR "LV %s is extra pool metadata spare volume. %u found but only 1 allowed.",
lvl->lv->name, spare_count);
r = 0;
}
if (vg->pool_metadata_spare_lv != lvl->lv) {
log_error(INTERNAL_ERROR "LV %s is not the VG's pool metadata spare volume.",
lvl->lv->name);
r = 0;
}
}
if (!check_lv_segments(lvl->lv, 0)) {
log_error(INTERNAL_ERROR "LV segments corrupted in %s.",
lvl->lv->name);
r = 0;
}
if (lvl->lv->alloc == ALLOC_CLING_BY_TAGS) {
log_error(INTERNAL_ERROR "LV %s allocation policy set to invalid cling_by_tags.",
lvl->lv->name);
r = 0;
}
if (!validate_name(lvl->lv->name)) {
log_error(INTERNAL_ERROR "LV name %s has invalid form.", lvl->lv->name);
r = 0;
}
dm_list_iterate_items(sl, &lvl->lv->tags)
if (!validate_tag(sl->str)) {
log_error(INTERNAL_ERROR "LV %s tag %s has invalid form.",
lvl->lv->name, sl->str);
r = 0;
}
if (lv_is_visible(lvl->lv))
lv_visible_count++;
else if (lv_is_cow(lvl->lv))
num_snapshots++;
else /* count other non-snapshot invisible volumes */
hidden_lv_count++;
/*
* FIXME: add check for unreferenced invisible LVs
* - snapshot cow & origin
* - mirror log & images
* - mirror conversion volumes (_mimagetmp*)
*/
}
/*
* all volumes = visible LVs + snapshot_cows + invisible LVs
*/
if (lv_count != lv_visible_count + num_snapshots + hidden_lv_count) {
log_error(INTERNAL_ERROR "#LVs (%u) != #visible LVs (%u) "
"+ #snapshots (%u) + #internal LVs (%u) in VG %s",
lv_count, lv_visible_count, num_snapshots,
hidden_lv_count, vg->name);
r = 0;
}
/* Avoid endless loop if lv->segments list is corrupt */
if (!r)
goto out;
if (!(vhash.lvname = dm_hash_create(lv_count))) {
log_error("Failed to allocate lv_name hash");
r = 0;
goto out;
}
if (!(vhash.lvid = dm_hash_create(lv_count))) {
log_error("Failed to allocate uuid hash");
r = 0;
goto out;
}
dm_list_iterate_items(lvl, &vg->lvs) {
if (dm_hash_lookup(vhash.lvname, lvl->lv->name)) {
log_error(INTERNAL_ERROR
"Duplicate LV name %s detected in %s.",
lvl->lv->name, vg->name);
r = 0;
}
if (dm_hash_lookup_binary(vhash.lvid, &lvl->lv->lvid.id[1],
sizeof(lvl->lv->lvid.id[1]))) {
if (!id_write_format(&lvl->lv->lvid.id[1], uuid,
sizeof(uuid)))
stack;
log_error(INTERNAL_ERROR "Duplicate LV id "
"%s detected for %s in %s.",
uuid, lvl->lv->name, vg->name);
r = 0;
}
if (!check_lv_segments(lvl->lv, 1)) {
log_error(INTERNAL_ERROR "LV segments corrupted in %s.",
lvl->lv->name);
r = 0;
}
if (!dm_hash_insert(vhash.lvname, lvl->lv->name, lvl)) {
log_error("Failed to hash lvname.");
r = 0;
break;
}
if (!dm_hash_insert_binary(vhash.lvid, &lvl->lv->lvid.id[1],
sizeof(lvl->lv->lvid.id[1]), lvl->lv)) {
log_error("Failed to hash lvid.");
r = 0;
break;
}
}
if (!_lv_postorder_vg(vg, _lv_validate_references_single, &vhash)) {
stack;
r = 0;
}
dm_list_iterate_items(lvl, &vg->lvs) {
if (!lv_is_pvmove(lvl->lv))
continue;
dm_list_iterate_items(seg, &lvl->lv->segments) {
if (seg_is_mirrored(seg)) {
if (seg->area_count != 2) {
log_error(INTERNAL_ERROR
"Segment in %s is not 2-way.",
lvl->lv->name);
r = 0;
}
} else if (seg->area_count != 1) {
log_error(INTERNAL_ERROR
"Segment in %s has wrong number of areas: %d.",
lvl->lv->name, seg->area_count);
r = 0;
}
}
}
if (!(vg->fid->fmt->features & FMT_UNLIMITED_VOLS) &&
(!vg->max_lv || !vg->max_pv)) {
log_error(INTERNAL_ERROR "Volume group %s has limited PV/LV count"
" but limit is not set.", vg->name);
r = 0;
}
if (vg->pool_metadata_spare_lv &&
!lv_is_pool_metadata_spare(vg->pool_metadata_spare_lv)) {
log_error(INTERNAL_ERROR "VG references non pool metadata spare LV %s.",
vg->pool_metadata_spare_lv->name);
r = 0;
}
if (vg_max_lv_reached(vg))
stack;
if (!(vhash.lv_lock_args = dm_hash_create(lv_count))) {
log_error("Failed to allocate lv_lock_args hash");
r = 0;
goto out;
}
if (vg_is_shared(vg)) {
if (!vg->lock_args) {
log_error(INTERNAL_ERROR "VG %s with lock_type %s without lock_args",
vg->name, vg->lock_type);
r = 0;
}
if (vg_is_clustered(vg)) {
log_error(INTERNAL_ERROR "VG %s with lock_type %s is clustered",
vg->name, vg->lock_type);
r = 0;
}
if (vg->system_id && vg->system_id[0]) {
log_error(INTERNAL_ERROR "VG %s with lock_type %s has system_id %s",
vg->name, vg->lock_type, vg->system_id);
r = 0;
}
if (strcmp(vg->lock_type, "sanlock") && strcmp(vg->lock_type, "dlm") &&
strcmp(vg->lock_type, "idm")) {
log_error(INTERNAL_ERROR "VG %s has unknown lock_type %s",
vg->name, vg->lock_type);
r = 0;
}
if (!_validate_vg_lock_args(vg))
r = 0;
} else {
if (vg->lock_args) {
log_error(INTERNAL_ERROR "VG %s has lock_args %s without lock_type",
vg->name, vg->lock_args);
r = 0;
}
}
dm_list_iterate_items(lvl, &vg->lvs) {
if (vg_is_shared(vg)) {
if (lockd_lv_uses_lock(lvl->lv)) {
if (vg->skip_validate_lock_args)
continue;
/*
* FIXME: make missing lock_args an error.
* There are at least two cases where this
* check doesn't work correctly:
*
* 1. When creating a cow snapshot,
* (lvcreate -s -L1M -n snap1 vg/lv1),
* lockd_lv_uses_lock() uses lv_is_cow()
* which depends on lv->snapshot being
* set, but it's not set at this point,
* so lockd_lv_uses_lock() cannot identify
* the LV as a cow_lv, and thinks it needs
* a lock when it doesn't. To fix this we
* probably need to validate by finding the
* origin LV, then finding all its snapshots
* which will have no lock_args.
*
* 2. When converting an LV to a thin pool
* without using an existing metadata LV,
* (lvconvert --type thin-pool vg/poolX),
* there is an intermediate LV created,
* probably for the metadata LV, and
* validate is called on the VG in this
* intermediate state, which finds the
* newly created LV which is not yet
* identified as a metadata LV, and
* does not have any lock_args. To fix
* this we might be able to find the place
* where the intermediate LV is created,
* and set new variable on it like for vgs,
* lv->skip_validate_lock_args.
*/
if (!lvl->lv->lock_args) {
/*
log_verbose("LV %s/%s missing lock_args",
vg->name, lvl->lv->name);
r = 0;
*/
continue;
}
if (!_validate_lv_lock_args(lvl->lv)) {
r = 0;
continue;
}
if (!strcmp(vg->lock_type, "sanlock")) {
if (dm_hash_lookup(vhash.lv_lock_args, lvl->lv->lock_args)) {
log_error(INTERNAL_ERROR "LV %s has duplicate lock_args %s.",
display_lvname(lvl->lv), lvl->lv->lock_args);
r = 0;
}
if (!dm_hash_insert(vhash.lv_lock_args, lvl->lv->lock_args, lvl)) {
log_error("Failed to hash lvname.");
r = 0;
}
}
} else {
if (lv_is_cache_vol(lvl->lv)) {
log_debug("lock_args will be ignored on cache vol");
} else if (lvl->lv->lock_args) {
log_error(INTERNAL_ERROR "LV %s shouldn't have lock_args %s.",
display_lvname(lvl->lv), lvl->lv->lock_args);
r = 0;
}
}
} else {
if (lvl->lv->lock_args) {
log_error(INTERNAL_ERROR "LV %s with no lock_type has lock_args %s.",
display_lvname(lvl->lv), lvl->lv->lock_args);
r = 0;
}
}
}
if (!(vhash.historical_lvname = dm_hash_create(dm_list_size(&vg->historical_lvs)))) {
r = 0;
goto_out;
}
if (!(vhash.historical_lvid = dm_hash_create(dm_list_size(&vg->historical_lvs)))) {
r = 0;
goto_out;
}
dm_list_iterate_items(glvl, &vg->historical_lvs) {
if (!glvl->glv->is_historical) {
log_error(INTERNAL_ERROR "LV %s/%s appearing in VG's historical list is not a historical LV",
vg->name, glvl->glv->live->name);
r = 0;
continue;
}
hlv = glvl->glv->historical;
if (hlv->vg != vg) {
log_error(INTERNAL_ERROR "Historical LV %s points to different VG %s while it is listed in VG %s",
hlv->name, hlv->vg->name, vg->name);
r = 0;
continue;
}
if (!id_equal(&hlv->lvid.id[0], &hlv->vg->id)) {
if (!id_write_format(&hlv->lvid.id[0], uuid, sizeof(uuid)))
stack;
if (!id_write_format(&hlv->vg->id, uuid2, sizeof(uuid2)))
stack;
log_error(INTERNAL_ERROR "Historical LV %s has VG UUID %s but its VG %s has UUID %s",
hlv->name, uuid, hlv->vg->name, uuid2);
r = 0;
continue;
}
if (dm_hash_lookup_binary(vhash.historical_lvid, &hlv->lvid.id[1], sizeof(hlv->lvid.id[1]))) {
if (!id_write_format(&hlv->lvid.id[1], uuid,sizeof(uuid)))
stack;
log_error(INTERNAL_ERROR "Duplicate historical LV id %s detected for %s in %s",
uuid, hlv->name, vg->name);
r = 0;
}
if (dm_hash_lookup(vhash.historical_lvname, hlv->name)) {
log_error(INTERNAL_ERROR "Duplicate historical LV name %s detected in %s", hlv->name, vg->name);
r = 0;
continue;
}
if (!dm_hash_insert(vhash.historical_lvname, hlv->name, hlv)) {
log_error("Failed to hash historical LV name");
r = 0;
break;
}
if (!dm_hash_insert_binary(vhash.historical_lvid, &hlv->lvid.id[1], sizeof(hlv->lvid.id[1]), hlv)) {
log_error("Failed to hash historical LV id");
r = 0;
break;
}
if (dm_hash_lookup(vhash.lvname, hlv->name)) {
log_error(INTERNAL_ERROR "Name %s appears as live and historical LV at the same time in VG %s",
hlv->name, vg->name);
r = 0;
continue;
}
if (!hlv->indirect_origin && dm_list_empty(&hlv->indirect_glvs)) {
log_error(INTERNAL_ERROR "Historical LV %s is not part of any LV chain in VG %s", hlv->name, vg->name);
r = 0;
continue;
}
}
out:
if (vhash.lvid)
dm_hash_destroy(vhash.lvid);
if (vhash.lvname)
dm_hash_destroy(vhash.lvname);
if (vhash.historical_lvid)
dm_hash_destroy(vhash.historical_lvid);
if (vhash.historical_lvname)
dm_hash_destroy(vhash.historical_lvname);
if (vhash.pvid)
dm_hash_destroy(vhash.pvid);
if (vhash.lv_lock_args)
dm_hash_destroy(vhash.lv_lock_args);
return r;
}
static int _pv_in_pv_list(struct physical_volume *pv, struct dm_list *head)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, head) {
if (pvl->pv == pv)
return 1;
}
return 0;
}
static int _check_historical_lv_is_valid(struct historical_logical_volume *hlv)
{
struct glv_list *glvl;
if (hlv->checked)
return hlv->valid;
/*
* Historical LV is valid if there is
* at least one live LV among ancestors.
*/
hlv->valid = 0;
dm_list_iterate_items(glvl, &hlv->indirect_glvs) {
if (!glvl->glv->is_historical ||
_check_historical_lv_is_valid(glvl->glv->historical)) {
hlv->valid = 1;
break;
}
}
hlv->checked = 1;
return hlv->valid;
}
static int _handle_historical_lvs(struct volume_group *vg)
{
struct glv_list *glvl, *tglvl;
time_t current_timestamp = 0;
struct historical_logical_volume *hlv;
int valid = 1;
dm_list_iterate_items(glvl, &vg->historical_lvs)
glvl->glv->historical->checked = 0;
dm_list_iterate_items(glvl, &vg->historical_lvs) {
hlv = glvl->glv->historical;
valid &= _check_historical_lv_is_valid(hlv);
if (!hlv->timestamp_removed) {
if (!current_timestamp)
current_timestamp = time(NULL);
hlv->timestamp_removed = (uint64_t) current_timestamp;
}
}
if (valid)
return 1;
dm_list_iterate_items_safe(glvl, tglvl, &vg->historical_lvs) {
hlv = glvl->glv->historical;
if (hlv->checked && hlv->valid)
continue;
log_print_unless_silent("Automatically removing historical "
"logical volume %s/%s%s.",
vg->name, HISTORICAL_LV_PREFIX, hlv->name);
if (!historical_glv_remove(glvl->glv))
return_0;
}
return 1;
}
static void _wipe_outdated_pvs(struct cmd_context *cmd, struct volume_group *vg)
{
char vgid[ID_LEN + 1] __attribute__((aligned(8)));
DM_LIST_INIT(devs);
struct dm_list *mdas = NULL;
struct device_list *devl;
struct device *dev;
struct metadata_area *mda;
struct label *label;
struct lvmcache_info *info;
uint32_t ext_flags;
/*
* When vg_read selected a good copy of the metadata, it used it to
* update the lvmcache representation of the VG (lvmcache_update_vg).
* At that point outdated PVs were recognized and moved into the
* vginfo->outdated_infos list. Here we clear the PVs on that list.
*/
vgid[ID_LEN] = 0;
memcpy(vgid, &vg->id.uuid, ID_LEN);
lvmcache_get_outdated_devs(cmd, vg->name, vgid, &devs);
dm_list_iterate_items(devl, &devs) {
dev = devl->dev;
lvmcache_get_outdated_mdas(cmd, vg->name, vgid, dev, &mdas);
if (mdas) {
dm_list_iterate_items(mda, mdas) {
log_warn("WARNING: wiping mda on outdated PV %s", dev_name(dev));
if (!text_wipe_outdated_pv_mda(cmd, dev, mda))
log_warn("WARNING: failed to wipe mda on outdated PV %s", dev_name(dev));
}
}
if (!(label = lvmcache_get_dev_label(dev))) {
log_error("_wipe_outdated_pvs no label for %s", dev_name(dev));
continue;
}
info = label->info;
ext_flags = lvmcache_ext_flags(info);
ext_flags &= ~PV_EXT_USED;
lvmcache_set_ext_version(info, PV_HEADER_EXTENSION_VSN);
lvmcache_set_ext_flags(info, ext_flags);
log_warn("WARNING: wiping header on outdated PV %s", dev_name(dev));
if (!label_write(dev, label))
log_warn("WARNING: failed to wipe header on outdated PV %s", dev_name(dev));
lvmcache_del(info);
}
/*
* A vgremove will involve many vg_write() calls (one for each lv
* removed) but we only need to wipe pvs once, so clear the outdated
* list so it won't be wiped again.
*/
lvmcache_del_outdated_devs(cmd, vg->name, vgid);
}
/*
* After vg_write() returns success,
* caller MUST call either vg_commit() or vg_revert()
*/
int vg_write(struct volume_group *vg)
{
char vgid[ID_LEN + 1] __attribute__((aligned(8)));
struct dm_list *mdah;
struct pv_list *pvl, *pvl_safe, *new_pvl;
struct metadata_area *mda;
struct lv_list *lvl;
struct device *mda_dev;
int revert = 0, wrote = 0;
vgid[ID_LEN] = 0;
memcpy(vgid, &vg->id.uuid, ID_LEN);
log_debug("Writing metadata for VG %s.", vg->name);
if (vg_is_shared(vg)) {
dm_list_iterate_items(lvl, &vg->lvs) {
if (lvl->lv->lock_args && !strcmp(lvl->lv->lock_args, "pending")) {
if (!lockd_init_lv_args(vg->cmd, vg, lvl->lv, vg->lock_type, &lvl->lv->lock_args)) {
log_error("Cannot allocate lock for new LV.");
return 0;
}
lvl->lv->new_lock_args = 1;
}
}
}
if (!_handle_historical_lvs(vg)) {
log_error("Failed to handle historical LVs in VG %s.", vg->name);
return 0;
}
if (!vg_validate(vg))
return_0;
if (vg->status & PARTIAL_VG) {
log_error("Cannot update partial volume group %s.", vg->name);
return 0;
}
if (vg_missing_pv_count(vg) && !vg->cmd->handles_missing_pvs) {
log_error("Cannot update volume group %s while physical "
"volumes are missing.", vg->name);
return 0;
}
if (lvmcache_has_duplicate_devs() && vg_has_duplicate_pvs(vg) &&
!find_config_tree_bool(vg->cmd, devices_allow_changes_with_duplicate_pvs_CFG, NULL)) {
log_error("Cannot update volume group %s with duplicate PV devices.",
vg->name);
return 0;
}
if (vg_has_unknown_segments(vg) && !vg->cmd->handles_unknown_segments) {
log_error("Cannot update volume group %s with unknown segments in it!",
vg->name);
return 0;
}
if (!_vg_adjust_ignored_mdas(vg))
return_0;
if (!vg_mda_used_count(vg)) {
log_error("Aborting vg_write: No metadata areas to write to!");
return 0;
}
if (vg->cmd->wipe_outdated_pvs)
_wipe_outdated_pvs(vg->cmd, vg);
if (!vg_is_archived(vg) && vg->vg_committed && !archive(vg->vg_committed))
return_0;
if (critical_section())
log_error(INTERNAL_ERROR
"Writing metadata in critical section.");
/* Unlock memory if possible */
memlock_unlock(vg->cmd);
vg->seqno++;
dm_list_iterate_items(pvl, &vg->pvs) {
int update_pv_header = 0;
if (_pv_in_pv_list(pvl->pv, &vg->pv_write_list))
continue;
if (!pvl->pv->fmt->ops->pv_needs_rewrite(pvl->pv->fmt, pvl->pv, &update_pv_header))
continue;
if (!update_pv_header)
continue;
if (!(new_pvl = dm_pool_zalloc(vg->vgmem, sizeof(*new_pvl))))
continue;
new_pvl->pv = pvl->pv;
dm_list_add(&vg->pv_write_list, &new_pvl->list);
log_warn("WARNING: updating PV header on %s for VG %s.", pv_dev_name(pvl->pv), vg->name);
}
dm_list_iterate_items_safe(pvl, pvl_safe, &vg->pv_write_list) {
if (!pv_write(vg->cmd, pvl->pv, 1))
return_0;
dm_list_del(&pvl->list);
}
/* Write to each copy of the metadata area */
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) {
mda_dev = mda_get_device(mda);
if (mda->status & MDA_FAILED)
continue;
/*
* When the scan and vg_read find old metadata in an mda, they
* leave the info struct in lvmcache, and leave the mda in
* info->mdas. That means we use the mda here to write new
* metadata into. This means that a command writing a VG will
* automatically update old metadata to the latest.
*
* This can also happen if the metadata was ignored on this
* dev, and then it's later changed to not ignored, and
* we see the old metadata.
*/
if (lvmcache_has_old_metadata(vg->cmd, vg->name, vgid, mda_dev)) {
log_warn("WARNING: updating old metadata to %u on %s for VG %s.",
vg->seqno, dev_name(mda_dev), vg->name);
}
if (!mda->ops->vg_write) {
log_error("Format does not support writing volume group metadata areas.");
revert = 1;
break;
}
if (!mda->ops->vg_write(vg->fid, vg, mda)) {
if (vg->cmd->handles_missing_pvs) {
log_warn("WARNING: Failed to write an MDA of VG %s.", vg->name);
mda->status |= MDA_FAILED;
} else {
stack;
revert = 1;
break;
}
} else
++ wrote;
}
if (revert || !wrote) {
log_error("Failed to write VG %s.", vg->name);
dm_list_uniterate(mdah, &vg->fid->metadata_areas_in_use, &mda->list) {
mda = dm_list_item(mdah, struct metadata_area);
if (mda->status & MDA_FAILED)
continue;
if (mda->ops->vg_revert &&
!mda->ops->vg_revert(vg->fid, vg, mda)) {
stack;
}
}
return 0;
}
/* Now pre-commit each copy of the new metadata */
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) {
if (mda->status & MDA_FAILED)
continue;
if (mda->ops->vg_precommit &&
!mda->ops->vg_precommit(vg->fid, vg, mda)) {
stack;
/* Revert */
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) {
if (mda->status & MDA_FAILED)
continue;
if (mda->ops->vg_revert &&
!mda->ops->vg_revert(vg->fid, vg, mda)) {
stack;
}
}
return 0;
}
}
lockd_vg_update(vg);
return 1;
}
static int _vg_commit_mdas(struct volume_group *vg)
{
struct metadata_area *mda, *tmda;
DM_LIST_INIT(ignored);
int good = 0;
/* Rearrange the metadata_areas_in_use so ignored mdas come first. */
dm_list_iterate_items_safe(mda, tmda, &vg->fid->metadata_areas_in_use)
if (mda_is_ignored(mda))
dm_list_move(&ignored, &mda->list);
dm_list_iterate_items_safe(mda, tmda, &ignored)
dm_list_move(&vg->fid->metadata_areas_in_use, &mda->list);
/* Commit to each copy of the metadata area */
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) {
if (mda->status & MDA_FAILED)
continue;
if (mda->ops->vg_commit &&
!mda->ops->vg_commit(vg->fid, vg, mda)) {
stack;
} else
good++;
}
if (good)
return 1;
return 0;
}
/* Commit pending changes */
int vg_commit(struct volume_group *vg)
{
struct pv_list *pvl;
struct dm_str_list *sl;
int ret;
ret = _vg_commit_mdas(vg);
set_vg_notify(vg->cmd);
if (ret) {
/*
* We need to clear old_name after a successful commit.
* The volume_group structure could be reused later.
*/
vg->old_name = NULL;
dm_list_iterate_items(pvl, &vg->pvs)
pvl->pv->status &= ~PV_MOVED_VG;
/* This *is* the original now that it's commited. */
_vg_move_cached_precommitted_to_committed(vg);
if (vg->needs_write_and_commit){
/* Print buffered messages that have been finished with this commit. */
dm_list_iterate_items(sl, &vg->msg_list)
log_print_unless_silent("%s", sl->str);
dm_list_init(&vg->msg_list);
vg->needs_write_and_commit = 0;
}
}
/* If at least one mda commit succeeded, it was committed */
return ret;
}
/* Don't commit any pending changes */
void vg_revert(struct volume_group *vg)
{
struct metadata_area *mda;
struct lv_list *lvl;
dm_list_iterate_items(lvl, &vg->lvs) {
if (lvl->lv->new_lock_args) {
lockd_free_lv(vg->cmd, vg, lvl->lv->name, &lvl->lv->lvid.id[1], lvl->lv->lock_args);
lvl->lv->new_lock_args = 0;
}
}
_vg_wipe_cached_precommitted(vg); /* VG is no longer needed */
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) {
if (mda->ops->vg_revert &&
!mda->ops->vg_revert(vg->fid, vg, mda)) {
stack;
}
}
}
struct _vg_read_orphan_baton {
struct cmd_context *cmd;
struct volume_group *vg;
const struct format_type *fmt;
};
static int _vg_read_orphan_pv(struct lvmcache_info *info, void *baton)
{
struct _vg_read_orphan_baton *b = baton;
struct physical_volume *pv = NULL;
struct pv_list *pvl;
uint32_t ext_version;
uint32_t ext_flags;
if (!(pv = _pv_read(b->cmd, b->fmt, b->vg, info))) {
stack;
return 1;
}
if (!(pvl = dm_pool_zalloc(b->vg->vgmem, sizeof(*pvl)))) {
log_error("pv_list allocation failed");
free_pv_fid(pv);
return 0;
}
pvl->pv = pv;
add_pvl_to_vgs(b->vg, pvl);
/*
* FIXME: this bit of code that does the auto repair is disabled
* until we can distinguish cases where the repair should not
* happen, i.e. the VG metadata could not be read/parsed.
*
* A PV holding VG metadata that lvm can't understand
* (e.g. damaged, checksum error, unrecognized flag)
* will appear as an in-use orphan, and would be cleared
* by this repair code. Disable this repair until the
* code can keep track of these problematic PVs, and
* distinguish them from actual in-use orphans.
*/
/*
if (!_check_or_repair_orphan_pv_ext(pv, info, baton)) {
stack;
return 0;
}
*/
/*
* Nothing to do if PV header extension < 2:
* - version 0 is PV header without any extensions,
* - version 1 has bootloader area support only and
* we're not checking anything for that one here.
*/
ext_version = lvmcache_ext_version(info);
ext_flags = lvmcache_ext_flags(info);
/*
* Warn about a PV that has the in-use flag set, but appears in
* the orphan VG (no VG was found referencing it.)
* There are a number of conditions that could lead to this:
*
* . The PV was created with no mdas and is used in a VG with
* other PVs (with metadata) that have not yet appeared on
* the system. So, no VG metadata is found by lvm which
* references the in-use PV with no mdas.
*
* . vgremove could have failed after clearing mdas but
* before clearing the in-use flag. In this case, the
* in-use flag needs to be manually cleared on the PV.
*
* . The PV may have damanged/unrecognized VG metadata
* that lvm could not read.
*
* . The PV may have no mdas, and the PVs with the metadata
* may have damaged/unrecognized metadata.
*/
if ((ext_version >= 2) && (ext_flags & PV_EXT_USED)) {
log_warn("WARNING: PV %s is marked in use but no VG was found using it.", pv_dev_name(pv));
log_warn("WARNING: PV %s might need repairing.", pv_dev_name(pv));
}
return 1;
}
/* Make orphan PVs look like a VG. */
struct volume_group *vg_read_orphans(struct cmd_context *cmd, const char *orphan_vgname)
{
const struct format_type *fmt = cmd->fmt;
struct lvmcache_vginfo *vginfo;
struct volume_group *vg = NULL;
struct _vg_read_orphan_baton baton;
struct pv_list *pvl, *tpvl;
struct pv_list head;
dm_list_init(&head.list);
if (!(vginfo = lvmcache_vginfo_from_vgname(orphan_vgname, NULL)))
return_NULL;
vg = fmt->orphan_vg;
dm_list_iterate_items_safe(pvl, tpvl, &vg->pvs)
if (pvl->pv->status & UNLABELLED_PV )
dm_list_move(&head.list, &pvl->list);
else
pv_set_fid(pvl->pv, NULL);
dm_list_init(&vg->pvs);
vg->pv_count = 0;
vg->extent_count = 0;
vg->free_count = 0;
baton.cmd = cmd;
baton.fmt = fmt;
baton.vg = vg;
/*
* vg_read for a normal VG will rescan labels for all the devices
* in the VG, in case something changed on disk between the initial
* label scan and acquiring the VG lock. We don't rescan labels
* here because this is only called in two ways:
*
* 1. for reporting, in which case it doesn't matter if something
* changed between the label scan and printing the PVs here
*
* 2. pvcreate_each_device() for pvcreate//vgcreate/vgextend,
* which already does the label rescan after taking the
* orphan lock.
*/
while ((pvl = (struct pv_list *) dm_list_first(&head.list))) {
dm_list_del(&pvl->list);
add_pvl_to_vgs(vg, pvl);
vg->extent_count += pvl->pv->pe_count;
vg->free_count += pvl->pv->pe_count;
}
if (!lvmcache_foreach_pv(vginfo, _vg_read_orphan_pv, &baton))
return_NULL;
return vg;
}
static void _destroy_fid(struct format_instance **fid)
{
if (*fid) {
(*fid)->fmt->ops->destroy_instance(*fid);
*fid = NULL;
}
}
int vg_missing_pv_count(const struct volume_group *vg)
{
int ret = 0;
struct pv_list *pvl;
dm_list_iterate_items(pvl, &vg->pvs) {
if (is_missing_pv(pvl->pv))
++ ret;
}
return ret;
}
#define DEV_LIST_DELIM ", "
static int _check_devs_used_correspond_with_lv(struct dm_pool *mem, struct dm_list *list, struct logical_volume *lv)
{
struct device_list *dl;
int found_inconsistent = 0;
struct device *dev;
struct lv_segment *seg;
uint32_t s;
int warned_about_no_dev = 0;
char *used_devnames = NULL, *assumed_devnames = NULL;
if (!(list = dev_cache_get_dev_list_for_lvid(lv->lvid.s + ID_LEN)))
return 1;
dm_list_iterate_items(dl, list) {
dev = dl->dev;
if (!(dev->flags & DEV_ASSUMED_FOR_LV)) {
if (!found_inconsistent) {
if (!dm_pool_begin_object(mem, 32))
return_0;
found_inconsistent = 1;
} else {
if (!dm_pool_grow_object(mem, DEV_LIST_DELIM, sizeof(DEV_LIST_DELIM) - 1))
return_0;
}
if (!dm_pool_grow_object(mem, dev_name(dev), 0))
return_0;
}
}
if (!found_inconsistent)
return 1;
if (!dm_pool_grow_object(mem, "\0", 1))
return_0;
used_devnames = dm_pool_end_object(mem);
found_inconsistent = 0;
dm_list_iterate_items(seg, &lv->segments) {
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) == AREA_PV) {
if (!(dev = seg_dev(seg, s))) {
if (!warned_about_no_dev) {
log_warn("WARNING: Couldn't find all devices for LV %s "
"while checking used and assumed devices.",
display_lvname(lv));
warned_about_no_dev = 1;
}
continue;
}
if (!(dev->flags & DEV_USED_FOR_LV)) {
if (!found_inconsistent) {
if (!dm_pool_begin_object(mem, 32))
return_0;
found_inconsistent = 1;
} else {
if (!dm_pool_grow_object(mem, DEV_LIST_DELIM, sizeof(DEV_LIST_DELIM) - 1))
return_0;
}
if (!dm_pool_grow_object(mem, dev_name(dev), 0))
return_0;
}
}
}
}
if (found_inconsistent) {
if (!dm_pool_grow_object(mem, "\0", 1))
return_0;
assumed_devnames = dm_pool_end_object(mem);
log_warn("WARNING: Device mismatch detected for %s which is accessing %s instead of %s.",
display_lvname(lv), used_devnames, assumed_devnames);
}
return 1;
}
static int _check_devs_used_correspond_with_vg(struct volume_group *vg)
{
struct dm_pool *mem;
char vgid[ID_LEN + 1] __attribute__((aligned(8)));
struct pv_list *pvl;
struct lv_list *lvl;
struct dm_list *list;
struct device_list *dl;
int found_inconsistent = 0;
vgid[ID_LEN] = 0;
memcpy(vgid, &vg->id.uuid, ID_LEN);
/* Mark all PVs in VG as used. */
dm_list_iterate_items(pvl, &vg->pvs) {
/*
* FIXME: It's not clear if the meaning
* of "missing" should always include the
* !pv->dev case, or if "missing" is the
* more narrow case where VG metadata has
* been written with the MISSING flag.
*/
if (!pvl->pv->dev)
continue;
if (is_missing_pv(pvl->pv))
continue;
pvl->pv->dev->flags |= DEV_ASSUMED_FOR_LV;
}
if (!(list = dev_cache_get_dev_list_for_vgid(vgid)))
return 1;
dm_list_iterate_items(dl, list) {
if (!(dl->dev->flags & DEV_OPEN_FAILURE) &&
!(dl->dev->flags & DEV_ASSUMED_FOR_LV)) {
found_inconsistent = 1;
break;
}
}
if (found_inconsistent) {
if (!(mem = dm_pool_create("vg_devs_check", 1024)))
return_0;
dm_list_iterate_items(lvl, &vg->lvs) {
if (!_check_devs_used_correspond_with_lv(mem, list, lvl->lv)) {
dm_pool_destroy(mem);
return_0;
}
}
dm_pool_destroy(mem);
}
return 1;
}
void free_pv_fid(struct physical_volume *pv)
{
if (!pv)
return;
pv_set_fid(pv, NULL);
}
static struct physical_volume *_pv_read(struct cmd_context *cmd,
const struct format_type *fmt,
struct volume_group *vg,
struct lvmcache_info *info)
{
char pvid[ID_LEN + 1] __attribute__((aligned(8)));
struct physical_volume *pv;
struct device *dev = lvmcache_device(info);
if (!(pv = _alloc_pv(vg->vgmem, NULL))) {
log_error("pv allocation failed");
return NULL;
}
if (fmt->ops->pv_read) {
/* format1 and pool */
if (!(fmt->ops->pv_read(fmt, dev_name(dev), pv, 0))) {
log_error("Failed to read existing physical volume '%s'", dev_name(dev));
goto bad;
}
} else {
/* format text */
if (!lvmcache_populate_pv_fields(info, vg, pv))
goto_bad;
}
if (!alloc_pv_segment_whole_pv(vg->vgmem, pv))
goto_bad;
pvid[ID_LEN] = 0;
memcpy(pvid, &pv->id.uuid, ID_LEN);
lvmcache_fid_add_mdas(info, vg->fid, pvid, ID_LEN);
pv_set_fid(pv, vg->fid);
return pv;
bad:
free_pv_fid(pv);
dm_pool_free(vg->vgmem, pv);
return NULL;
}
/*
* FIXME: we only want to print the warnings when this is called from
* vg_read, not from import_vg_from_metadata, so do the warnings elsewhere
* or avoid calling this from import_vg_from.
*/
static void _set_pv_device(struct format_instance *fid,
struct volume_group *vg,
struct physical_volume *pv)
{
char buffer[64] __attribute__((aligned(8)));
struct cmd_context *cmd = fid->fmt->cmd;
struct device *dev;
uint64_t size;
if (!(dev = lvmcache_device_from_pv_id(cmd, &pv->id, &pv->label_sector))) {
if (!id_write_format(&pv->id, buffer, sizeof(buffer)))
buffer[0] = '\0';
if (cmd && !cmd->expect_missing_vg_device &&
(!vg_is_foreign(vg) && !cmd->include_foreign_vgs))
log_warn("WARNING: Couldn't find device with uuid %s.", buffer);
else
log_debug_metadata("Couldn't find device with uuid %s.", buffer);
}
pv->dev = dev;
/*
* A previous command wrote the VG while this dev was missing, so
* the MISSING flag was included in the PV.
*/
if ((pv->status & MISSING_PV) && pv->dev)
log_warn("WARNING: VG %s was previously updated while PV %s was missing.", vg->name, dev_name(pv->dev));
/*
* If this command writes the VG, we want the MISSING flag to be
* written for this PV with no device.
*/
if (!pv->dev)
pv->status |= MISSING_PV;
/* Fix up pv size if missing or impossibly large */
if ((!pv->size || pv->size > (1ULL << 62)) && pv->dev) {
if (!dev_get_size(pv->dev, &pv->size)) {
log_error("%s: Couldn't get size.", pv_dev_name(pv));
return;
}
log_verbose("Fixing up missing size (%s) for PV %s", display_size(fid->fmt->cmd, pv->size),
pv_dev_name(pv));
size = pv->pe_count * (uint64_t) vg->extent_size + pv->pe_start;
if (size > pv->size)
log_warn("WARNING: Physical Volume %s is too large "
"for underlying device", pv_dev_name(pv));
}
}
/*
* Finds the 'struct device' that correponds to each PV in the metadata,
* and may make some adjustments to vg fields based on the dev properties.
*/
void set_pv_devices(struct format_instance *fid, struct volume_group *vg)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, &vg->pvs)
_set_pv_device(fid, vg, pvl->pv);
}
int pv_write(struct cmd_context *cmd,
struct physical_volume *pv, int allow_non_orphan)
{
if (!pv->fmt->ops->pv_write) {
log_error("Format does not support writing physical volumes");
return 0;
}
/*
* FIXME: Try to remove this restriction. This requires checking
* that the PV and the VG are in a consistent state. We need
* to provide some revert mechanism since PV label together
* with VG metadata write is not atomic.
*/
if (!allow_non_orphan &&
(!is_orphan_vg(pv->vg_name) || pv->pe_alloc_count)) {
log_error("Assertion failed: can't _pv_write non-orphan PV "
"(in VG %s)", pv_vg_name(pv));
return 0;
}
if (!pv->fmt->ops->pv_write(cmd, pv->fmt, pv))
return_0;
pv->status &= ~UNLABELLED_PV;
return 1;
}
int pv_write_orphan(struct cmd_context *cmd, struct physical_volume *pv)
{
const char *old_vg_name = pv->vg_name;
pv->vg_name = cmd->fmt->orphan_vg_name;
pv->status = ALLOCATABLE_PV;
pv->pe_alloc_count = 0;
if (!dev_get_size(pv->dev, &pv->size)) {
log_error("%s: Couldn't get size.", pv_dev_name(pv));
return 0;
}
if (!pv_write(cmd, pv, 0)) {
log_error("Failed to clear metadata from physical "
"volume \"%s\" after removal from \"%s\"",
pv_dev_name(pv), old_vg_name);
return 0;
}
return 1;
}
/**
* is_orphan_vg - Determine whether a vg_name is an orphan
* @vg_name: pointer to the vg_name
*/
int is_orphan_vg(const char *vg_name)
{
return (vg_name && !strncmp(vg_name, ORPHAN_PREFIX, sizeof(ORPHAN_PREFIX) - 1)) ? 1 : 0;
}
/*
* Exclude pseudo VG names used for locking.
*/
int is_real_vg(const char *vg_name)
{
return (vg_name && *vg_name != '#');
}
/* FIXME: remove / combine this with locking? */
int vg_check_write_mode(struct volume_group *vg)
{
if (vg->open_mode != 'w') {
log_errno(EPERM, "Attempt to modify a read-only VG");
return 0;
}
return 1;
}
/*
* Return 1 if the VG metadata should be written
* *without* the LVM_WRITE flag in the status line, and
* *with* the LVM_WRITE_LOCKED flag in the flags line.
*
* If this is done for a VG, it forces previous versions
* of lvm (before the LVM_WRITE_LOCKED flag was added), to view
* the VG and its LVs as read-only (because the LVM_WRITE flag
* is missing). Versions of lvm that understand the
* LVM_WRITE_LOCKED flag know to check the other methods of
* access control for the VG, specifically system_id and lock_type.
*
* So, if a VG has a system_id or lock_type, then the
* system_id and lock_type control access to the VG in
* addition to its basic writable status. Because previous
* lvm versions do not know about system_id or lock_type,
* VGs depending on either of these should have LVM_WRITE_LOCKED
* instead of LVM_WRITE to prevent the previous lvm versions from
* assuming they can write the VG and its LVs.
*/
int vg_flag_write_locked(struct volume_group *vg)
{
if (vg->system_id && vg->system_id[0])
return 1;
if (vg->lock_type && vg->lock_type[0] && strcmp(vg->lock_type, "none"))
return 1;
return 0;
}
static int _access_vg_clustered(struct cmd_context *cmd, const struct volume_group *vg)
{
if (vg_is_clustered(vg)) {
/*
* force_access_clustered is only set when forcibly
* converting a clustered vg to lock type none.
*/
if (cmd->force_access_clustered) {
log_debug("Allowing forced access to clustered vg %s", vg->name);
return 1;
}
log_verbose("Skipping clustered VG %s.", vg->name);
return 0;
}
return 1;
}
/*
* Performs a set of checks against a VG according to bits set in status
* and returns FAILED_* bits for those that aren't acceptable.
*
* FIXME Remove the unnecessary duplicate definitions and return bits directly.
*/
uint32_t vg_bad_status_bits(const struct volume_group *vg, uint64_t status)
{
uint32_t failure = 0;
if (!vg) {
log_error(INTERNAL_ERROR "Missing volume group.");
return FAILED_NOTFOUND;
}
if ((status & CLUSTERED) && !_access_vg_clustered(vg->cmd, vg))
/* Return because other flags are considered undefined. */
return FAILED_CLUSTERED;
if ((status & LVM_WRITE) &&
!(vg->status & LVM_WRITE)) {
log_error("Volume group %s is read-only", vg->name);
failure |= FAILED_READ_ONLY;
}
if ((status & RESIZEABLE_VG) &&
!vg_is_resizeable(vg)) {
log_error("Volume group %s is not resizeable.", vg->name);
failure |= FAILED_RESIZEABLE;
}
return failure;
}
/**
* vg_check_status - check volume group status flags and log error
* @vg - volume group to check status flags
* @status - specific status flags to check
*/
int vg_check_status(const struct volume_group *vg, uint64_t status)
{
return !vg_bad_status_bits(vg, status);
}
static int _allow_extra_system_id(struct cmd_context *cmd, const char *system_id)
{
const struct dm_config_node *cn;
const struct dm_config_value *cv;
const char *str;
if (!(cn = find_config_tree_array(cmd, local_extra_system_ids_CFG, NULL)))
return 0;
for (cv = cn->v; cv; cv = cv->next) {
if (cv->type == DM_CFG_EMPTY_ARRAY)
break;
/* Ignore invalid data: Warning message already issued by config.c */
if (cv->type != DM_CFG_STRING)
continue;
str = cv->v.str;
if (!*str)
continue;
if (!strcmp(str, system_id))
return 1;
}
return 0;
}
static int _access_vg_lock_type(struct cmd_context *cmd, struct volume_group *vg,
uint32_t lockd_state, uint32_t *failure)
{
if (cmd->lockd_vg_disable)
return 1;
/*
* Local VG requires no lock from lvmlockd.
*/
if (!vg_is_shared(vg))
return 1;
/*
* When lvmlockd is not used, lockd VGs are ignored by lvm
* and cannot be used, with two exceptions:
*
* . The --shared option allows them to be revealed with
* reporting/display commands.
*
* . If a command asks to operate on one specifically
* by name, then an error is printed.
*/
if (!lvmlockd_use()) {
/*
* Some reporting/display commands have the --shared option
* (like --foreign) to allow them to reveal lockd VGs that
* are otherwise ignored. The --shared option must only be
* permitted in commands that read the VG for report or display,
* not any that write the VG or activate LVs.
*/
if (cmd->include_shared_vgs)
return 1;
/*
* Some commands want the error printed by vg_read, others by ignore_vg.
* Those using ignore_vg may choose to skip the error.
*/
if (cmd->vg_read_print_access_error) {
log_error("Cannot access VG %s with lock type %s that requires lvmlockd.",
vg->name, vg->lock_type);
}
*failure |= FAILED_LOCK_TYPE;
return 0;
}
/*
* The lock request from lvmlockd failed. If the lock was ex,
* we cannot continue. If the lock was sh, we could also fail
* to continue but since the lock was sh, it means the VG is
* only being read, and it doesn't hurt to allow reading with
* no lock.
*/
if (lockd_state & LDST_FAIL) {
if ((lockd_state & LDST_EX) || cmd->lockd_vg_enforce_sh) {
log_error("Cannot access VG %s due to failed lock.", vg->name);
*failure |= FAILED_LOCK_MODE;
return 0;
}
if (lockd_state & (LDST_FAIL_NOLS | LDST_FAIL_STARTING))
vg->lockd_not_started = 1;
log_warn("Reading VG %s without a lock.", vg->name);
return 1;
}
if (test_mode()) {
log_error("Test mode is not yet supported with lock type %s.", vg->lock_type);
*failure |= FAILED_LOCK_TYPE;
return 0;
}
return 1;
}
int is_system_id_allowed(struct cmd_context *cmd, const char *system_id)
{
/*
* A VG without a system_id can be accessed by anyone.
*/
if (!system_id || !system_id[0])
return 1;
/*
* Allowed if the host and VG system_id's match.
*/
if (cmd->system_id && !strcmp(cmd->system_id, system_id))
return 1;
/*
* Allowed if a host's extra system_id matches.
*/
if (cmd->system_id && _allow_extra_system_id(cmd, system_id))
return 1;
/*
* Not allowed if the host does not have a system_id
* and the VG does, or if the host and VG's system_id's
* do not match.
*/
return 0;
}
static int _access_vg_systemid(struct cmd_context *cmd, struct volume_group *vg)
{
/*
* A few commands allow read-only access to foreign VGs.
*/
if (cmd->include_foreign_vgs)
return 1;
if (is_system_id_allowed(cmd, vg->system_id))
return 1;
/*
* Allow VG access if the local host has active LVs in it.
*/
if (lvs_in_vg_activated(vg)) {
log_warn("WARNING: Found LVs active in VG %s with foreign system ID %s. Possible data corruption.",
vg->name, vg->system_id);
if (cmd->include_active_foreign_vgs)
return 1;
return 0;
}
/*
* Print an error when reading a VG that has a system_id
* and the host system_id is unknown.
*/
if (!cmd->system_id || cmd->unknown_system_id) {
log_error("Cannot access VG %s with system ID %s with unknown local system ID.",
vg->name, vg->system_id);
return 0;
}
/*
* Some commands want the error printed by vg_read, others by ignore_vg.
* Those using ignore_vg may choose to skip the error.
*/
if (cmd->vg_read_print_access_error) {
log_error("Cannot access VG %s with system ID %s with local system ID %s.",
vg->name, vg->system_id, cmd->system_id);
return 0;
}
/* Silently ignore foreign vgs. */
return 0;
}
static int _access_vg_exported(struct cmd_context *cmd, struct volume_group *vg)
{
if (!vg_is_exported(vg))
return 1;
if (cmd->include_exported_vgs)
return 1;
/*
* Some commands want the error printed by vg_read, others by ignore_vg.
* Those using ignore_vg may choose to skip the error.
*/
if (cmd->vg_read_print_access_error) {
log_error("Volume group %s is exported", vg->name);
return 0;
}
/* Silently ignore exported vgs. */
return 0;
}
struct format_instance *alloc_fid(const struct format_type *fmt,
const struct format_instance_ctx *fic)
{
struct dm_pool *mem;
struct format_instance *fid;
if (!(mem = dm_pool_create("format_instance", 1024)))
return_NULL;
if (!(fid = dm_pool_zalloc(mem, sizeof(*fid)))) {
log_error("Couldn't allocate format_instance object.");
goto bad;
}
fid->ref_count = 1;
fid->mem = mem;
fid->type = fic->type;
fid->fmt = fmt;
dm_list_init(&fid->metadata_areas_in_use);
dm_list_init(&fid->metadata_areas_ignored);
return fid;
bad:
dm_pool_destroy(mem);
return NULL;
}
void pv_set_fid(struct physical_volume *pv,
struct format_instance *fid)
{
if (fid == pv->fid)
return;
if (fid)
fid->ref_count++;
if (pv->fid)
pv->fid->fmt->ops->destroy_instance(pv->fid);
pv->fid = fid;
}
void vg_set_fid(struct volume_group *vg,
struct format_instance *fid)
{
struct pv_list *pvl;
if (fid == vg->fid)
return;
if (fid)
fid->ref_count++;
dm_list_iterate_items(pvl, &vg->pvs)
pv_set_fid(pvl->pv, fid);
dm_list_iterate_items(pvl, &vg->removed_pvs)
pv_set_fid(pvl->pv, fid);
if (vg->fid)
vg->fid->fmt->ops->destroy_instance(vg->fid);
vg->fid = fid;
}
static int _convert_key_to_string(const char *key, size_t key_len,
unsigned sub_key, char *buf, size_t buf_len)
{
memcpy(buf, key, key_len);
buf += key_len;
buf_len -= key_len;
if ((dm_snprintf(buf, buf_len, "_%u", sub_key) == -1))
return_0;
return 1;
}
int fid_add_mda(struct format_instance *fid, struct metadata_area *mda,
const char *key, size_t key_len, const unsigned sub_key)
{
static char full_key[PATH_MAX];
dm_list_add(mda_is_ignored(mda) ? &fid->metadata_areas_ignored :
&fid->metadata_areas_in_use, &mda->list);
/* Return if the mda is not supposed to be indexed. */
if (!key)
return 1;
if (!fid->metadata_areas_index)
return_0;
/* Add metadata area to index. */
if (!_convert_key_to_string(key, key_len, sub_key,
full_key, sizeof(full_key)))
return_0;
if (!dm_hash_insert(fid->metadata_areas_index,
full_key, mda)) {
log_error("Failed to hash mda.");
return 0;
}
return 1;
}
int fid_add_mdas(struct format_instance *fid, struct dm_list *mdas,
const char *key, size_t key_len)
{
struct metadata_area *mda, *mda_new;
unsigned mda_index = 0;
dm_list_iterate_items(mda, mdas) {
mda_new = mda_copy(fid->mem, mda);
if (!mda_new)
return_0;
fid_remove_mda(fid, NULL, key, key_len, mda_index);
fid_add_mda(fid, mda_new, key, key_len, mda_index);
mda_index++;
}
return 1;
}
struct metadata_area *fid_get_mda_indexed(struct format_instance *fid,
const char *key, size_t key_len,
const unsigned sub_key)
{
static char full_key[PATH_MAX];
struct metadata_area *mda = NULL;
if (!fid->metadata_areas_index)
return_NULL;
if (!_convert_key_to_string(key, key_len, sub_key,
full_key, sizeof(full_key)))
return_NULL;
mda = (struct metadata_area *) dm_hash_lookup(fid->metadata_areas_index,
full_key);
return mda;
}
int fid_remove_mda(struct format_instance *fid, struct metadata_area *mda,
const char *key, size_t key_len, const unsigned sub_key)
{
static char full_key[PATH_MAX];
struct metadata_area *mda_indexed = NULL;
/* At least one of mda or key must be specified. */
if (!mda && !key)
return 1;
if (key) {
/*
* If both mda and key specified, check given mda
* with what we find using the index and return
* immediately if these two do not match.
*/
if (!(mda_indexed = fid_get_mda_indexed(fid, key, key_len, sub_key)) ||
(mda && mda != mda_indexed))
return 1;
mda = mda_indexed;
if (!_convert_key_to_string(key, key_len, sub_key,
full_key, sizeof(full_key)))
return_0;
dm_hash_remove(fid->metadata_areas_index, full_key);
}
dm_list_del(&mda->list);
return 1;
}
/*
* Copy constructor for a metadata_area.
*/
struct metadata_area *mda_copy(struct dm_pool *mem,
struct metadata_area *mda)
{
struct metadata_area *mda_new;
if (!(mda_new = dm_pool_alloc(mem, sizeof(*mda_new)))) {
log_error("metadata_area allocation failed");
return NULL;
}
memcpy(mda_new, mda, sizeof(*mda));
if (mda->ops->mda_metadata_locn_copy && mda->metadata_locn) {
mda_new->metadata_locn =
mda->ops->mda_metadata_locn_copy(mem, mda->metadata_locn);
if (!mda_new->metadata_locn) {
dm_pool_free(mem, mda_new);
return NULL;
}
}
dm_list_init(&mda_new->list);
return mda_new;
}
/*
* This function provides a way to answer the question on a format specific
* basis - does the format specfic context of these two metadata areas
* match?
*
* A metatdata_area is defined to be independent of the underlying context.
* This has the benefit that we can use the same abstraction to read disks
* (see _metadata_text_raw_ops) or files (see _metadata_text_file_ops).
* However, one downside is there is no format-independent way to determine
* whether a given metadata_area is attached to a specific device - in fact,
* it may not be attached to a device at all.
*
* Thus, LVM is structured such that an mda is not a member of struct
* physical_volume. The location of the mda depends on whether
* the PV is in a volume group. A PV not in a VG has an mda on the
* 'info->mda' list in lvmcache, while a PV in a VG has an mda on
* the vg->fid->metadata_areas_in_use list. For further details, see _vg_read(),
* and the sequence of creating the format_instance with fid->metadata_areas_in_use
* list, as well as the construction of the VG, with list of PVs (comes
* after the construction of the fid and list of mdas).
*/
unsigned mda_locns_match(struct metadata_area *mda1, struct metadata_area *mda2)
{
if (!mda1->ops->mda_locns_match || !mda2->ops->mda_locns_match ||
mda1->ops->mda_locns_match != mda2->ops->mda_locns_match)
return 0;
return mda1->ops->mda_locns_match(mda1, mda2);
}
struct device *mda_get_device(struct metadata_area *mda)
{
if (!mda->ops->mda_get_device)
return NULL;
return mda->ops->mda_get_device(mda);
}
unsigned mda_is_ignored(struct metadata_area *mda)
{
return (mda->status & MDA_IGNORED);
}
void mda_set_ignored(struct metadata_area *mda, unsigned mda_ignored)
{
void *locn = mda->metadata_locn;
unsigned old_mda_ignored = mda_is_ignored(mda);
if (mda_ignored && !old_mda_ignored)
mda->status |= MDA_IGNORED;
else if (!mda_ignored && old_mda_ignored)
mda->status &= ~MDA_IGNORED;
else
return; /* No change */
log_debug_metadata("%s ignored flag for mda %s at offset %" PRIu64 ".",
mda_ignored ? "Setting" : "Clearing",
mda->ops->mda_metadata_locn_name ? mda->ops->mda_metadata_locn_name(locn) : "",
mda->ops->mda_metadata_locn_offset ? mda->ops->mda_metadata_locn_offset(locn) : UINT64_C(0));
}
int mdas_empty_or_ignored(struct dm_list *mdas)
{
struct metadata_area *mda;
if (dm_list_empty(mdas))
return 1;
dm_list_iterate_items(mda, mdas) {
if (mda_is_ignored(mda))
return 1;
}
return 0;
}
int pv_change_metadataignore(struct physical_volume *pv, uint32_t mda_ignored)
{
const char *pv_name = pv_dev_name(pv);
if (mda_ignored && !pv_mda_used_count(pv)) {
log_error("Metadata areas on physical volume \"%s\" already "
"ignored.", pv_name);
return 0;
}
if (!mda_ignored && (pv_mda_used_count(pv) == pv_mda_count(pv))) {
log_error("Metadata areas on physical volume \"%s\" already "
"marked as in-use.", pv_name);
return 0;
}
if (!pv_mda_count(pv)) {
log_error("Physical volume \"%s\" has no metadata "
"areas.", pv_name);
return 0;
}
log_verbose("Marking metadata areas on physical volume \"%s\" "
"as %s.", pv_name, mda_ignored ? "ignored" : "in-use");
if (!pv_mda_set_ignored(pv, mda_ignored))
return_0;
/*
* Update vg_mda_copies based on the mdas in this PV.
* This is most likely what the user would expect - if they
* specify a specific PV to be ignored/un-ignored, they will
* most likely not want LVM to turn around and change the
* ignore / un-ignore value when it writes the VG to disk.
* This does not guarantee this PV's ignore bits will be
* preserved in future operations.
*/
if (!is_orphan(pv) &&
vg_mda_copies(pv->vg) != VGMETADATACOPIES_UNMANAGED) {
log_warn("WARNING: Changing preferred number of copies of VG %s "
"metadata from %"PRIu32" to %"PRIu32, pv_vg_name(pv),
vg_mda_copies(pv->vg), vg_mda_used_count(pv->vg));
vg_set_mda_copies(pv->vg, vg_mda_used_count(pv->vg));
}
return 1;
}
char *tags_format_and_copy(struct dm_pool *mem, const struct dm_list *tagsl)
{
struct dm_str_list *sl;
if (!dm_pool_begin_object(mem, 256)) {
log_error("dm_pool_begin_object failed");
return NULL;
}
dm_list_iterate_items(sl, tagsl) {
if (!dm_pool_grow_object(mem, sl->str, strlen(sl->str)) ||
(sl->list.n != tagsl && !dm_pool_grow_object(mem, ",", 1))) {
log_error("dm_pool_grow_object failed");
return NULL;
}
}
if (!dm_pool_grow_object(mem, "\0", 1)) {
log_error("dm_pool_grow_object failed");
return NULL;
}
return dm_pool_end_object(mem);
}
const struct logical_volume *lv_committed(const struct logical_volume *lv)
{
struct volume_group *vg;
const struct logical_volume *found_lv;
if (!lv)
return NULL;
if (!lv->vg->vg_committed)
return lv;
vg = lv->vg->vg_committed;
if (!(found_lv = find_lv_in_vg_by_lvid(vg, &lv->lvid))) {
log_error(INTERNAL_ERROR "LV %s (UUID %s) not found in committed metadata.",
display_lvname(lv), lv->lvid.s);
found_lv = lv; /* Use uncommitted LV as best effort */
}
return found_lv;
}
/*
* Check if a lock_type uses lvmlockd.
* If not (none, clvm), return 0.
* If so (dlm, sanlock), return 1.
*/
int is_lockd_type(const char *lock_type)
{
if (!lock_type)
return 0;
if (!strcmp(lock_type, "dlm"))
return 1;
if (!strcmp(lock_type, "sanlock"))
return 1;
if (!strcmp(lock_type, "idm"))
return 1;
return 0;
}
int vg_is_shared(const struct volume_group *vg)
{
return (vg->lock_type && is_lockd_type(vg->lock_type));
}
int vg_strip_outdated_historical_lvs(struct volume_group *vg) {
struct glv_list *glvl, *tglvl;
time_t current_time = time(NULL);
uint64_t threshold = find_config_tree_int(vg->cmd, metadata_lvs_history_retention_time_CFG, NULL);
if (!threshold)
return 1;
dm_list_iterate_items_safe(glvl, tglvl, &vg->historical_lvs) {
/*
* Removal time in the future? Not likely,
* but skip this item in any case.
*/
if (current_time < (time_t) glvl->glv->historical->timestamp_removed)
continue;
if ((current_time - glvl->glv->historical->timestamp_removed) > threshold) {
if (!historical_glv_remove(glvl->glv)) {
log_error("Failed to destroy record about historical LV %s/%s.",
vg->name, glvl->glv->historical->name);
return 0;
}
log_verbose("Outdated record for historical logical volume \"%s\" "
"automatically destroyed.", glvl->glv->historical->name);
}
}
return 1;
}
int lv_on_pmem(struct logical_volume *lv)
{
struct lv_segment *seg;
struct physical_volume *pv;
uint32_t s;
int pmem_devs = 0, other_devs = 0;
dm_list_iterate_items(seg, &lv->segments) {
for (s = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) != AREA_PV)
continue;
pv = seg_pv(seg, s);
if (dev_is_pmem(lv->vg->cmd->dev_types, pv->dev)) {
log_debug("LV %s dev %s is pmem.", display_lvname(lv), dev_name(pv->dev));
pmem_devs++;
} else {
log_debug("LV %s dev %s not pmem.", display_lvname(lv), dev_name(pv->dev));
other_devs++;
}
}
}
if (pmem_devs && other_devs) {
log_error("Invalid mix of cache device types in %s.", display_lvname(lv));
return -1;
}
if (pmem_devs) {
log_debug("LV %s on pmem", display_lvname(lv));
return 1;
}
return 0;
}
int vg_is_foreign(struct volume_group *vg)
{
return vg->cmd->system_id && strcmp(vg->system_id, vg->cmd->system_id);
}
void vg_write_commit_bad_mdas(struct cmd_context *cmd, struct volume_group *vg)
{
char vgid[ID_LEN + 1] __attribute__((aligned(8)));
DM_LIST_INIT(bad_mda_list);
struct mda_list *mdal;
struct metadata_area *mda;
struct device *dev;
vgid[ID_LEN] = 0;
memcpy(vgid, &vg->id.uuid, ID_LEN);
lvmcache_get_bad_mdas(cmd, vg->name, vgid, &bad_mda_list);
dm_list_iterate_items(mdal, &bad_mda_list) {
mda = mdal->mda;
dev = mda_get_device(mda);
/*
* bad_fields:
*
* 0: shouldn't happen
*
* READ|INTERNAL: there's probably nothing wrong on disk
*
* MAGIC|START: there's a good chance that we were
* reading the mda_header from the wrong location; maybe
* the pv_header location was wrong. We don't want to
* write new metadata to the wrong location. To handle
* this we would want to do some further verification that
* we have the mda location correct.
*
* VERSION|CHECKSUM: when the others are correct these
* look safe to repair.
*
* HEADER: general error related to header, covered by fields
* above.
*
* TEXT: general error related to text metadata, we can repair.
*
* MISMATCH: different values between instances of metadata,
* can repair.
*/
if (!mda->bad_fields ||
(mda->bad_fields & BAD_MDA_READ) ||
(mda->bad_fields & BAD_MDA_INTERNAL) ||
(mda->bad_fields & BAD_MDA_MAGIC) ||
(mda->bad_fields & BAD_MDA_START)) {
log_warn("WARNING: not repairing bad metadata (0x%x) for mda%d on %s",
mda->bad_fields, mda->mda_num, dev_name(dev));
continue;
}
/*
* vg_write/vg_commit reread the mda_header which checks the
* mda header fields and fails if any are bad, which stops
* vg_write/vg_commit from continuing. Suppress these header
* field checks when we know the field is bad and we are going
* to replace it. FIXME: do vg_write/vg_commit really need to
* reread and recheck the mda_header again (probably not)?
*/
if (mda->bad_fields & BAD_MDA_CHECKSUM)
mda->ignore_bad_fields |= BAD_MDA_CHECKSUM;
if (mda->bad_fields & BAD_MDA_VERSION)
mda->ignore_bad_fields |= BAD_MDA_VERSION;
log_warn("WARNING: repairing bad metadata (0x%x) in mda%d at %llu on %s.",
mda->bad_fields, mda->mda_num, (unsigned long long)mda->header_start, dev_name(dev));
if (!mda->ops->vg_write(vg->fid, vg, mda)) {
log_warn("WARNING: failed to write VG %s metadata to bad mda%d at %llu on %s.",
vg->name, mda->mda_num, (unsigned long long)mda->header_start, dev_name(dev));
continue;
}
if (!mda->ops->vg_precommit(vg->fid, vg, mda)) {
log_warn("WARNING: failed to precommit VG %s metadata to bad mda%d at %llu on %s.",
vg->name, mda->mda_num, (unsigned long long)mda->header_start, dev_name(dev));
continue;
}
if (!mda->ops->vg_commit(vg->fid, vg, mda)) {
log_warn("WARNING: failed to commit VG %s metadata to bad mda%d at %llu on %s.",
vg->name, mda->mda_num, (unsigned long long)mda->header_start, dev_name(dev));
continue;
}
}
}
/*
* Reread an mda_header. If the text offset is the same as was seen and saved
* by label scan, it means the metadata is unchanged and we do not need to
* reread metadata.
*/
bool scan_text_mismatch(struct cmd_context *cmd, const char *vgname, const char *vgid)
{
DM_LIST_INIT(mda_list);
struct mda_list *mdal, *safe;
struct metadata_area *mda;
struct mda_context *mdac;
struct device_area *area;
struct mda_header *mdah;
struct raw_locn *rlocn;
struct device *dev;
uint32_t bad_fields;
bool ret = true;
/*
* if cmd->can_use_one_scan, check one mda_header is unchanged,
* else check that all mda_headers are unchanged.
*/
lvmcache_get_mdas(cmd, vgname, vgid, &mda_list);
dm_list_iterate_items(mdal, &mda_list) {
mda = mdal->mda;
if (!mda->scan_text_offset)
continue;
if (mda->mda_num != 1)
continue;
if (!(dev = mda_get_device(mda))) {
log_debug("Rescan for text mismatch - no mda dev.");
goto out;
}
bad_fields = 0;
mdac = mda->metadata_locn;
area = &mdac->area;
/*
* Invalidate mda_header in bcache so it will be reread from disk.
*/
if (!dev_invalidate_bytes(dev, 4096, 512)) {
log_debug("Rescan for text mismatch - cannot invalidate.");
goto out;
}
if (!(mdah = raw_read_mda_header(cmd->fmt, area, 1, 0, &bad_fields))) {
log_debug("Rescan for text mismatch - no mda header.");
goto out;
}
rlocn = mdah->raw_locns;
if (bad_fields) {
log_debug("Rescan for text mismatch - bad_fields.");
} else if (rlocn->checksum != mda->scan_text_checksum) {
log_debug("Rescan for text checksum mismatch - now %x prev %x.",
rlocn->checksum, mda->scan_text_checksum);
} else if (rlocn->offset != mda->scan_text_offset) {
log_debug("Rescan for text offset mismatch - now %llu prev %llu.",
(unsigned long long)rlocn->offset,
(unsigned long long)mda->scan_text_offset);
} else {
/* the common case where fields match and no rescan needed */
ret = false;
}
dm_pool_free(cmd->mem, mdah);
/* For can_use_one_scan commands, return result from checking one mda. */
if (cmd->can_use_one_scan)
goto out;
/* For other commands, return mismatch immediately. */
if (ret)
goto out;
}
if (ret) {
/* shouldn't happen */
log_debug("Rescan for text mismatch - no mdas.");
goto out;
}
out:
if (!ret)
log_debug("Rescan skipped - unchanged offset %llu checksum %x.",
(unsigned long long)mda->scan_text_offset,
mda->scan_text_checksum);
dm_list_iterate_items_safe(mdal, safe, &mda_list) {
dm_list_del(&mdal->list);
free(mdal);
}
return ret;
}
static struct volume_group *_vg_read(struct cmd_context *cmd,
const char *vgname,
const char *vgid,
unsigned precommitted,
int writing)
{
const struct format_type *fmt = cmd->fmt;
struct format_instance *fid = NULL;
struct format_instance_ctx fic;
struct volume_group *vg, *vg_ret = NULL;
struct metadata_area *mda, *mda2;
unsigned use_precommitted = precommitted;
struct device *mda_dev, *dev_ret = NULL;
struct cached_vg_fmtdata *vg_fmtdata = NULL; /* Additional format-specific data about the vg */
int found_old_metadata = 0;
unsigned use_previous_vg;
log_debug_metadata("Reading VG %s %s", vgname ?: "<no name>", vgid ?: "<no vgid>");
/*
* Devices are generally open readonly from scanning, and we need to
* reopen them rw to update metadata. We want to reopen them rw before
* before rescanning and/or writing. Reopening rw preserves the existing
* bcache blocks for the devs.
*/
if (writing)
lvmcache_label_reopen_vg_rw(cmd, vgname, vgid);
/*
* Rescan the devices that are associated with this vg in lvmcache.
* This repeats what was done by the command's initial label scan,
* but only the devices associated with this VG.
*
* The lvmcache info about these devs is from the initial label scan
* performed by the command before the vg lock was held. Now the VG
* lock is held, so we rescan all the info from the devs in case
* something changed between the initial scan and now that the lock
* is held.
*
* Some commands (e.g. reporting) are fine reporting data read by
* the label scan. It doesn't matter if the devs changed between
* the label scan and here, we can report what was seen in the
* scan, even though it is the old state, since we will not be
* making any modifications. If the VG was being modified during
* the scan, and caused us to see inconsistent metadata on the
* different PVs in the VG, then we do want to rescan the devs
* here to get a consistent view of the VG. Note that we don't
* know if the scan found all the PVs in the VG at this point.
* We don't know that until vg_read looks at the list of PVs in
* the metadata and compares that to the devices found by the scan.
*
* It's possible that a change made to the VG during scan was
* adding or removing a PV from the VG. In this case, the list
* of devices associated with the VG in lvmcache would change
* due to the rescan.
*
* The devs in the VG may be persistently inconsistent due to some
* previous problem. In this case, rescanning the labels here will
* find the same inconsistency. The VG repair (mistakenly done by
* vg_read below) is supposed to fix that.
*
* If the VG was not modified between the time we scanned the PVs
* and now, when we hold the lock, then we don't need to rescan.
* We can read the mda_header, and look at the text offset/checksum,
* and if the current text offset/checksum matches what was seen during
* label scan, we know that metadata is unchanged and doesn't need
* to be rescanned. For reporting/display commands (CAN_USE_ONE_SCAN/
* can_use_one_scan), we check that the text offset/checksum are unchanged
* in just one mda before deciding to skip rescanning. For other commands,
* we check that they are unchanged in all mdas. This added checking is
* probably unnecessary; all commands could likely just check a single mda.
*/
if (lvmcache_scan_mismatch(cmd, vgname, vgid) || scan_text_mismatch(cmd, vgname, vgid)) {
log_debug_metadata("Rescanning devices for %s %s", vgname, writing ? "rw" : "");
if (writing)
lvmcache_label_rescan_vg_rw(cmd, vgname, vgid);
else
lvmcache_label_rescan_vg(cmd, vgname, vgid);
}
/*
* A "format instance" is an abstraction for a VG location,
* i.e. where a VG's metadata exists on disk.
*
* An fic (format_instance_ctx) is a temporary struct used
* to create an fid (format_instance). The fid hangs around
* and is used to create a 'vg' to which it connected (vg->fid).
*
* The 'fic' describes a VG in terms of fmt/name/id.
*
* The 'fid' describes a VG in more detail than the fic,
* holding information about where to find the VG metadata.
*
* The 'vg' describes the VG in the most detail representing
* all the VG metadata.
*
* The fic and fid are set up by create_instance() to describe
* the VG location. This happens before the VG metadata is
* assembled into the more familiar struct volume_group "vg".
*
* The fid has one main purpose: to keep track of the metadata
* locations for a given VG. It does this by putting 'mda'
* structs on fid->metadata_areas_in_use, which specify where
* metadata is located on disk. It gets this information
* (metadata locations for a specific VG) from the command's
* initial label scan. The info is passed indirectly via
* lvmcache info/vginfo structs, which are created by the
* label scan and then copied into fid by create_instance().
*
* FIXME: just use the vginfo/info->mdas lists directly instead
* of copying them into the fid list.
*/
fic.type = FMT_INSTANCE_MDAS | FMT_INSTANCE_AUX_MDAS;
fic.context.vg_ref.vg_name = vgname;
fic.context.vg_ref.vg_id = vgid;
/*
* Sets up the metadata areas that we need to read below.
* For each info in vginfo->infos, for each mda in info->mdas,
* (found during label_scan), copy the mda to fid->metadata_areas_in_use
*/
if (!(fid = fmt->ops->create_instance(fmt, &fic))) {
log_error("Failed to create format instance");
return NULL;
}
/*
* We use the fid globally here so prevent the release_vg
* call to destroy the fid - we may want to reuse it!
*/
fid->ref_count++;
/*
* label_scan found PVs for this VG and set up lvmcache to describe the
* VG/PVs that we use here to read the VG. It created 'vginfo' for the
* VG, and created an 'info' attached to vginfo for each PV. It also
* added a metadata_area struct to info->mdas for each metadata area it
* found on the PV. The info->mdas structs are copied to
* fid->metadata_areas_in_use by create_instance above, and here we
* read VG metadata from each of those mdas.
*/
dm_list_iterate_items_safe(mda, mda2, &fid->metadata_areas_in_use) {
mda_dev = mda_get_device(mda);
/* I don't think this can happen */
if (!mda_dev) {
log_warn("Ignoring metadata for VG %s from missing dev.", vgname);
continue;
}
use_previous_vg = 0;
if (use_precommitted) {
log_debug_metadata("Reading VG %s precommit metadata from %s %llu",
vgname, dev_name(mda_dev), (unsigned long long)mda->header_start);
vg = mda->ops->vg_read_precommit(cmd, fid, vgname, mda, &vg_fmtdata, &use_previous_vg);
if (!vg && !use_previous_vg) {
log_warn("WARNING: Reading VG %s precommit on %s failed.", vgname, dev_name(mda_dev));
vg_fmtdata = NULL;
continue;
}
} else {
log_debug_metadata("Reading VG %s metadata from %s %llu",
vgname, dev_name(mda_dev), (unsigned long long)mda->header_start);
vg = mda->ops->vg_read(cmd, fid, vgname, mda, &vg_fmtdata, &use_previous_vg);
if (!vg && !use_previous_vg) {
log_warn("WARNING: Reading VG %s on %s failed.", vgname, dev_name(mda_dev));
vg_fmtdata = NULL;
continue;
}
}
if (!vg)
continue;
if (!vg_ret) {
vg_ret = vg;
dev_ret = mda_dev;
continue;
}
/*
* Use the newest copy of the metadata found on any mdas.
* Above, We could check if the scan found an old metadata
* seqno in this mda and just skip reading it again; then these
* seqno checks would just be sanity checks.
*/
if (vg->seqno == vg_ret->seqno) {
release_vg(vg);
} else if (vg->seqno > vg_ret->seqno) {
log_warn("WARNING: ignoring metadata seqno %u on %s for seqno %u on %s for VG %s.",
vg_ret->seqno, dev_name(dev_ret),
vg->seqno, dev_name(mda_dev), vg->name);
found_old_metadata = 1;
release_vg(vg_ret);
vg_ret = vg;
dev_ret = mda_dev;
vg_fmtdata = NULL;
} else { /* vg->seqno < vg_ret->seqno */
log_warn("WARNING: ignoring metadata seqno %u on %s for seqno %u on %s for VG %s.",
vg->seqno, dev_name(mda_dev),
vg_ret->seqno, dev_name(dev_ret), vg->name);
found_old_metadata = 1;
release_vg(vg);
vg_fmtdata = NULL;
}
}
if (found_old_metadata) {
log_warn("WARNING: Inconsistent metadata found for VG %s.", vgname);
log_warn("See vgck --updatemetadata to correct inconsistency.");
}
vg = NULL;
if (vg_ret)
set_pv_devices(fid, vg_ret);
fid->ref_count--;
if (!vg_ret) {
_destroy_fid(&fid);
goto_out;
}
/*
* Correct the lvmcache representation of the VG using the metadata
* that we have chosen above (vg_ret).
*
* The vginfo/info representation created by label_scan was not
* entirely correct since it did not use the full or final metadata.
*
* In lvmcache, PVs with no mdas were not attached to the vginfo during
* label_scan because label_scan didn't know where they should go. Now
* that we have the VG metadata we can tell, so use that to attach those
* info's to the vginfo.
*
* Also, outdated PVs that have been removed from the VG were incorrectly
* attached to the vginfo during label_scan, and now need to be detached.
*/
lvmcache_update_vg_from_read(vg_ret, vg_ret->status & PRECOMMITTED);
/*
* lvmcache_update_vg identified outdated mdas that we read above that
* are not actually part of the VG. Remove those outdated mdas from
* the fid's list of mdas.
*/
dm_list_iterate_items_safe(mda, mda2, &fid->metadata_areas_in_use) {
mda_dev = mda_get_device(mda);
if (lvmcache_is_outdated_dev(cmd, vg_ret->name, (const char *)&vg_ret->id, mda_dev)) {
log_debug_metadata("vg_read %s ignore mda for outdated dev %s",
vg_ret->name, dev_name(mda_dev));
dm_list_del(&mda->list);
}
}
out:
return vg_ret;
}
struct volume_group *vg_read(struct cmd_context *cmd, const char *vg_name, const char *vgid,
uint32_t vg_read_flags, uint32_t lockd_state,
uint32_t *error_flags, struct volume_group **error_vg)
{
char uuidstr[64] __attribute__((aligned(8)));
struct volume_group *vg = NULL;
struct lv_list *lvl;
struct pv_list *pvl;
int missing_pv_dev = 0;
int missing_pv_flag = 0;
uint32_t failure = 0;
int original_vgid_set = vgid ? 1 : 0;
int writing = (vg_read_flags & READ_FOR_UPDATE);
int activating = (vg_read_flags & READ_FOR_ACTIVATE);
*error_flags = SUCCESS;
if (error_vg)
*error_vg = NULL;
if (is_orphan_vg(vg_name)) {
log_very_verbose("Reading orphan VG %s.", vg_name);
vg = vg_read_orphans(cmd, vg_name);
return vg;
}
if (!validate_name(vg_name)) {
log_error("Volume group name \"%s\" has invalid characters.", vg_name);
failure |= FAILED_NOTFOUND;
goto bad;
}
/*
* When a command is reading the VG with the intention of eventually
* writing it, it passes the READ_FOR_UPDATE flag. This causes vg_read
* to acquire an exclusive VG lock, and causes vg_read to do some more
* checks, e.g. that the VG is writable and not exported. It also
* means that when the label scan is repeated on the VG's devices, the
* VG's PVs can be reopened read-write when rescanning in anticipation
* of needing to write to them.
*/
if (!(vg_read_flags & READ_WITHOUT_LOCK) &&
!lock_vol(cmd, vg_name, (writing || activating) ? LCK_VG_WRITE : LCK_VG_READ, NULL)) {
log_error("Can't get lock for %s.", vg_name);
failure |= FAILED_LOCKING;
goto bad;
}
/* I belive this is unused, the name is always set. */
if (!vg_name && !(vg_name = lvmcache_vgname_from_vgid(cmd->mem, vgid))) {
unlock_vg(cmd, NULL, vg_name);
log_error("VG name not found for vgid %s", vgid);
failure |= FAILED_NOTFOUND;
goto bad;
}
/*
* If the command is process all vgs, process_each will get a list of vgname+vgid
* pairs, and then call vg_read() for each vgname+vigd. In this case we know
* which VG to read even if there are duplicate names, and we don't fail.
*
* If the user has requested one VG by name, process_each passes only the vgname
* to vg_read(), and we look up the vgid from lvmcache. lvmcache finds duplicate
* vgnames, doesn't know which is intended, returns a NULL vgid, and we fail.
*/
if (!vgid)
vgid = lvmcache_vgid_from_vgname(cmd, vg_name);
if (!vgid) {
unlock_vg(cmd, NULL, vg_name);
/* Some callers don't care if the VG doesn't exist and don't want an error message. */
if (!(vg_read_flags & READ_OK_NOTFOUND))
log_error("Volume group \"%s\" not found", vg_name);
failure |= FAILED_NOTFOUND;
goto bad;
}
/*
* vgchange -ay (no vgname arg) will activate multiple local VGs with the same
* name, but if the vgs have the same lv name, activating those lvs will fail.
*/
if (activating && original_vgid_set && lvmcache_has_duplicate_local_vgname(vgid, vg_name))
log_warn("WARNING: activating multiple VGs with the same name is dangerous and may fail.");
if (!(vg = _vg_read(cmd, vg_name, vgid, 0, writing))) {
unlock_vg(cmd, NULL, vg_name);
/* Some callers don't care if the VG doesn't exist and don't want an error message. */
if (!(vg_read_flags & READ_OK_NOTFOUND))
log_error("Volume group \"%s\" not found.", vg_name);
failure |= FAILED_NOTFOUND;
goto bad;
}
/*
* Check and warn if PV ext info is not in sync with VG metadata
* (vg_write fixes.)
*/
_check_pv_ext(cmd, vg);
if (!vg_strip_outdated_historical_lvs(vg))
log_warn("WARNING: failed to strip outdated historical lvs.");
/*
* Check for missing devices in the VG. In most cases a VG cannot be
* changed while it's missing devices. This restriction is implemented
* here in vg_read. Below we return an error from vg_read if the
* vg_read flag indicates that the command is going to modify the VG.
* (We should probably implement this restriction elsewhere instead of
* returning an error from vg_read.)
*
* The PV's device may be present while the PV for the device has the
* MISSING_PV flag set in the metadata. This happened because the VG
* was written while this dev was missing, so the MISSING flag was
* written in the metadata for PV. Now the device has reappeared.
* However, the VG has changed since the device was last present, and
* if the device has outdated data it may not be safe to just start
* using it again.
*
* If there were no PE's used on the PV, we can just clear the MISSING
* flag, but if there were PE's used we need to continue to treat the
* PV as if the device is missing, limiting operations like the VG has
* a missing device, and requiring the user to remove the reappeared
* device from the VG, like a missing device, with vgreduce
* --removemissing.
*/
dm_list_iterate_items(pvl, &vg->pvs) {
if (!id_write_format(&pvl->pv->id, uuidstr, sizeof(uuidstr)))
uuidstr[0] = '\0';
if (!pvl->pv->dev) {
/* The obvious and common case of a missing device. */
if ((vg_is_foreign(vg) && !cmd->include_foreign_vgs) || cmd->expect_missing_vg_device)
log_debug("VG %s is missing PV %s (last written to %s)", vg_name, uuidstr, pvl->pv->device_hint ?: "na");
else if (pvl->pv->device_hint)
log_warn("WARNING: VG %s is missing PV %s (last written to %s).", vg_name, uuidstr, pvl->pv->device_hint);
else
log_warn("WARNING: VG %s is missing PV %s.", vg_name, uuidstr);
missing_pv_dev++;
} else if (pvl->pv->status & MISSING_PV) {
/* A device that was missing but has reappeared. */
if (pvl->pv->pe_alloc_count == 0) {
log_warn("WARNING: VG %s has unused reappeared PV %s %s.", vg_name, dev_name(pvl->pv->dev), uuidstr);
pvl->pv->status &= ~MISSING_PV;
/* tell vgextend restoremissing that MISSING flag was cleared here */
pvl->pv->unused_missing_cleared = 1;
} else {
log_warn("WARNING: VG %s was missing PV %s %s.", vg_name, dev_name(pvl->pv->dev), uuidstr);
missing_pv_flag++;
}
}
}
if (missing_pv_dev || missing_pv_flag)
vg_mark_partial_lvs(vg, 1);
if (!check_pv_segments(vg)) {
log_error(INTERNAL_ERROR "PV segments corrupted in %s.", vg->name);
failure |= FAILED_INTERNAL_ERROR;
goto bad;
}
dm_list_iterate_items(lvl, &vg->lvs) {
if (!check_lv_segments(lvl->lv, 0)) {
log_error(INTERNAL_ERROR "LV segments corrupted in %s.", lvl->lv->name);
failure |= FAILED_INTERNAL_ERROR;
goto bad;
}
}
dm_list_iterate_items(lvl, &vg->lvs) {
/* Checks that cross-reference other LVs. */
if (!check_lv_segments(lvl->lv, 1)) {
log_error(INTERNAL_ERROR "LV segments corrupted in %s.", lvl->lv->name);
failure |= FAILED_INTERNAL_ERROR;
goto bad;
}
}
if (!check_pv_dev_sizes(vg))
log_warn("WARNING: One or more devices used as PVs in VG %s have changed sizes.", vg->name);
if (cmd->check_devs_used)
_check_devs_used_correspond_with_vg(vg);
if (!_access_vg_lock_type(cmd, vg, lockd_state, &failure)) {
/* Either FAILED_LOCK_TYPE or FAILED_LOCK_MODE were set. */
goto_bad;
}
if (!_access_vg_systemid(cmd, vg)) {
failure |= FAILED_SYSTEMID;
goto_bad;
}
if (!_access_vg_clustered(cmd, vg)) {
failure |= FAILED_CLUSTERED;
goto_bad;
}
if (!_access_vg_exported(cmd, vg)) {
failure |= FAILED_EXPORTED;
goto_bad;
}
/*
* If the command intends to write or activate the VG, there are
* additional restrictions. FIXME: These restrictions should
* probably be checked/applied after vg_read returns.
*/
if (writing || activating) {
if (!(vg->status & LVM_WRITE)) {
log_error("Volume group %s is read-only.", vg->name);
failure |= FAILED_READ_ONLY;
goto bad;
}
if (!cmd->handles_missing_pvs && (missing_pv_dev || missing_pv_flag)) {
log_error("Cannot change VG %s while PVs are missing.", vg->name);
log_error("See vgreduce --removemissing and vgextend --restoremissing.");
failure |= FAILED_NOT_ENABLED;
goto bad;
}
}
if (writing && !cmd->handles_unknown_segments && vg_has_unknown_segments(vg)) {
log_error("Cannot change VG %s with unknown segments in it!", vg->name);
failure |= FAILED_NOT_ENABLED; /* FIXME new failure code here? */
goto bad;
}
/*
* When we are reading the VG with the intention of writing it,
* we save a second copy of the VG in vg->vg_committed. This
* copy remains unmodified by the command operation, and is used
* later if there is an error and we want to reactivate LVs.
* FIXME: be specific about exactly when this works correctly.
*/
if (writing) {
if (dm_pool_locked(vg->vgmem)) {
/* FIXME: can this happen? */
log_warn("WARNING: vg_read no vg copy: pool locked.");
goto out;
}
if (vg->vg_committed) {
/* FIXME: can this happen? */
log_warn("WARNING: vg_read no vg copy: copy exists.");
release_vg(vg->vg_committed);
vg->vg_committed = NULL;
}
if (vg->vg_precommitted) {
/* FIXME: can this happen? */
log_warn("WARNING: vg_read no vg copy: pre copy exists.");
release_vg(vg->vg_precommitted);
vg->vg_precommitted = NULL;
}
if (!vg->committed_cft) {
log_error(INTERNAL_ERROR "Missing committed config tree.");
goto out;
}
if (!(vg->vg_committed = import_vg_from_config_tree(cmd, vg->fid, vg->committed_cft))) {
log_error("Failed to import written VG.");
goto out;
}
} else {
if (vg->vg_precommitted)
log_error(INTERNAL_ERROR "vg_read vg %p vg_precommitted %p", (void *)vg, (void *)vg->vg_precommitted);
if (vg->vg_committed)
log_error(INTERNAL_ERROR "vg_read vg %p vg_committed %p", (void *)vg, (void *)vg->vg_committed);
}
out:
/* We return with the VG lock held when read is successful. */
return vg;
bad:
*error_flags = failure;
/*
* FIXME: get rid of this case so we don't have to return the vg when
* there's an error. It is here for process_each_pv() which wants to
* eliminate the VG's devs from the list of devs it is processing, even
* when it can't access the VG because of wrong system id or similar.
* This could be done by looking at lvmcache info structs intead of 'vg'.
* It's also used by process_each_vg/process_each_lv which want to
* include error_vg values (like system_id) in error messages.
* These values could also be found from lvmcache vginfo.
*/
if (error_vg && vg) {
if (vg->vg_precommitted)
log_error(INTERNAL_ERROR "vg_read vg %p vg_precommitted %p", (void *)vg, (void *)vg->vg_precommitted);
if (vg->vg_committed)
log_error(INTERNAL_ERROR "vg_read vg %p vg_committed %p", (void *)vg, (void *)vg->vg_committed);
/* caller must unlock_vg and release_vg */
*error_vg = vg;
return NULL;
}
if (vg) {
unlock_vg(cmd, vg, vg_name);
release_vg(vg);
}
return NULL;
}
/*
* Simply a version of vg_read() that automatically sets the READ_FOR_UPDATE
* flag, which means the caller intends to write the VG after reading it,
* so vg_read should acquire an exclusive file lock on the vg.
*/
struct volume_group *vg_read_for_update(struct cmd_context *cmd, const char *vg_name,
const char *vgid, uint32_t vg_read_flags, uint32_t lockd_state)
{
struct volume_group *vg;
uint32_t error_flags = 0;
vg = vg_read(cmd, vg_name, vgid, vg_read_flags | READ_FOR_UPDATE, lockd_state, &error_flags, NULL);
return vg;
}
int get_visible_lvs_using_pv(struct cmd_context *cmd, struct volume_group *vg, struct device *dev,
struct dm_list *lvs_list)
{
struct pv_list *pvl;
struct lv_list *lvl, *lvl2;
struct physical_volume *pv = NULL;
dm_list_iterate_items(pvl, &vg->pvs) {
if (pvl->pv->dev == dev) {
pv = pvl->pv;
break;
}
}
if (!pv)
return_0;
dm_list_iterate_items(lvl, &vg->lvs) {
if (!lv_is_visible(lvl->lv))
continue;
if (!lv_is_on_pv(lvl->lv, pv))
continue;
if (!(lvl2 = dm_pool_zalloc(cmd->mem, sizeof(*lvl2))))
return_0;
lvl2->lv = lvl->lv;
dm_list_add(lvs_list, &lvl2->list);
}
return 1;
}
int lv_is_linear(struct logical_volume *lv)
{
struct lv_segment *seg = first_seg(lv);
return segtype_is_linear(seg->segtype);
}
int lv_is_striped(struct logical_volume *lv)
{
struct lv_segment *seg = first_seg(lv);
return segtype_is_striped(seg->segtype);
}