1
0
mirror of git://sourceware.org/git/lvm2.git synced 2024-12-21 13:34:40 +03:00
lvm2/lib/device/bcache.c
David Teigland ca66d52032 io: use sync io if aio fails
io_setup() for aio may fail if a system has reached the
aio request limit.  In this case, fall back to using
sync io.  Also, lvm use of aio can be disabled entirely
with config setting global/use_aio=0.

The system limit for aio requests can be seen from
  /proc/sys/fs/aio-max-nr

The current usage of aio requests can be seen from
  /proc/sys/fs/aio-nr

The system limit for aio requests can be increased by
setting fs.aio-max-nr using sysctl.

Also add last-byte limit to the sync io code.
2018-11-20 09:13:20 -06:00

1295 lines
28 KiB
C

/*
* Copyright (C) 2018 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define _GNU_SOURCE
#include "lib/device/bcache.h"
#include "base/data-struct/radix-tree.h"
#include "lib/log/lvm-logging.h"
#include "lib/log/log.h"
#include <errno.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <libaio.h>
#include <unistd.h>
#include <linux/fs.h>
#include <sys/user.h>
#define SECTOR_SHIFT 9L
//----------------------------------------------------------------
static void log_sys_warn(const char *call)
{
log_warn("%s failed: %s", call, strerror(errno));
}
// Assumes the list is not empty.
static inline struct dm_list *_list_pop(struct dm_list *head)
{
struct dm_list *l;
l = head->n;
dm_list_del(l);
return l;
}
//----------------------------------------------------------------
struct control_block {
struct dm_list list;
void *context;
struct iocb cb;
};
struct cb_set {
struct dm_list free;
struct dm_list allocated;
struct control_block *vec;
} control_block_set;
static struct cb_set *_cb_set_create(unsigned nr)
{
int i;
struct cb_set *cbs = malloc(sizeof(*cbs));
if (!cbs)
return NULL;
cbs->vec = malloc(nr * sizeof(*cbs->vec));
if (!cbs->vec) {
free(cbs);
return NULL;
}
dm_list_init(&cbs->free);
dm_list_init(&cbs->allocated);
for (i = 0; i < nr; i++)
dm_list_add(&cbs->free, &cbs->vec[i].list);
return cbs;
}
static void _cb_set_destroy(struct cb_set *cbs)
{
// We know this is always called after a wait_all. So there should
// never be in flight IO.
if (!dm_list_empty(&cbs->allocated)) {
// bail out
log_error("async io still in flight");
return;
}
free(cbs->vec);
free(cbs);
}
static struct control_block *_cb_alloc(struct cb_set *cbs, void *context)
{
struct control_block *cb;
if (dm_list_empty(&cbs->free))
return NULL;
cb = dm_list_item(_list_pop(&cbs->free), struct control_block);
cb->context = context;
dm_list_add(&cbs->allocated, &cb->list);
return cb;
}
static void _cb_free(struct cb_set *cbs, struct control_block *cb)
{
dm_list_del(&cb->list);
dm_list_add_h(&cbs->free, &cb->list);
}
static struct control_block *_iocb_to_cb(struct iocb *icb)
{
return dm_list_struct_base(icb, struct control_block, cb);
}
//----------------------------------------------------------------
struct async_engine {
struct io_engine e;
io_context_t aio_context;
struct cb_set *cbs;
unsigned page_mask;
};
static struct async_engine *_to_async(struct io_engine *e)
{
return container_of(e, struct async_engine, e);
}
static void _async_destroy(struct io_engine *ioe)
{
int r;
struct async_engine *e = _to_async(ioe);
_cb_set_destroy(e->cbs);
// io_destroy is really slow
r = io_destroy(e->aio_context);
if (r)
log_sys_warn("io_destroy");
free(e);
}
static int _last_byte_fd;
static uint64_t _last_byte_offset;
static int _last_byte_sector_size;
static bool _async_issue(struct io_engine *ioe, enum dir d, int fd,
sector_t sb, sector_t se, void *data, void *context)
{
int r;
struct iocb *cb_array[1];
struct control_block *cb;
struct async_engine *e = _to_async(ioe);
sector_t offset;
sector_t nbytes;
sector_t limit_nbytes;
sector_t extra_nbytes = 0;
if (((uintptr_t) data) & e->page_mask) {
log_warn("misaligned data buffer");
return false;
}
offset = sb << SECTOR_SHIFT;
nbytes = (se - sb) << SECTOR_SHIFT;
/*
* If bcache block goes past where lvm wants to write, then clamp it.
*/
if ((d == DIR_WRITE) && _last_byte_offset && (fd == _last_byte_fd)) {
if (offset > _last_byte_offset) {
log_error("Limit write at %llu len %llu beyond last byte %llu",
(unsigned long long)offset,
(unsigned long long)nbytes,
(unsigned long long)_last_byte_offset);
return false;
}
if (offset + nbytes > _last_byte_offset) {
limit_nbytes = _last_byte_offset - offset;
if (limit_nbytes % _last_byte_sector_size)
extra_nbytes = _last_byte_sector_size - (limit_nbytes % _last_byte_sector_size);
if (extra_nbytes) {
log_debug("Limit write at %llu len %llu to len %llu rounded to %llu",
(unsigned long long)offset,
(unsigned long long)nbytes,
(unsigned long long)limit_nbytes,
(unsigned long long)(limit_nbytes + extra_nbytes));
nbytes = limit_nbytes + extra_nbytes;
} else {
log_debug("Limit write at %llu len %llu to len %llu",
(unsigned long long)offset,
(unsigned long long)nbytes,
(unsigned long long)limit_nbytes);
nbytes = limit_nbytes;
}
}
}
cb = _cb_alloc(e->cbs, context);
if (!cb) {
log_warn("couldn't allocate control block");
return false;
}
memset(&cb->cb, 0, sizeof(cb->cb));
cb->cb.aio_fildes = (int) fd;
cb->cb.u.c.buf = data;
cb->cb.u.c.offset = offset;
cb->cb.u.c.nbytes = nbytes;
cb->cb.aio_lio_opcode = (d == DIR_READ) ? IO_CMD_PREAD : IO_CMD_PWRITE;
#if 0
if (d == DIR_READ) {
log_debug("io R off %llu bytes %llu",
(unsigned long long)cb->cb.u.c.offset,
(unsigned long long)cb->cb.u.c.nbytes);
} else {
log_debug("io W off %llu bytes %llu",
(unsigned long long)cb->cb.u.c.offset,
(unsigned long long)cb->cb.u.c.nbytes);
}
#endif
cb_array[0] = &cb->cb;
do {
r = io_submit(e->aio_context, 1, cb_array);
} while (r == -EAGAIN);
if (r < 0) {
_cb_free(e->cbs, cb);
return false;
}
return true;
}
/*
* MAX_IO is returned to the layer above via bcache_max_prefetches() which
* tells the caller how many devices to submit io for concurrently. There will
* be an open file descriptor for each of these, so keep it low enough to avoid
* reaching the default max open file limit (1024) when there are over 1024
* devices being scanned.
*/
#define MAX_IO 256
#define MAX_EVENT 64
static bool _async_wait(struct io_engine *ioe, io_complete_fn fn)
{
int i, r;
struct io_event event[MAX_EVENT];
struct control_block *cb;
struct async_engine *e = _to_async(ioe);
memset(&event, 0, sizeof(event));
do {
r = io_getevents(e->aio_context, 1, MAX_EVENT, event, NULL);
} while (r == -EINTR);
if (r < 0) {
log_sys_warn("io_getevents");
return false;
}
for (i = 0; i < r; i++) {
struct io_event *ev = event + i;
cb = _iocb_to_cb((struct iocb *) ev->obj);
if (ev->res == cb->cb.u.c.nbytes)
fn((void *) cb->context, 0);
else if ((int) ev->res < 0)
fn(cb->context, (int) ev->res);
// FIXME: dct added this. a short read is ok?!
else if (ev->res >= (1 << SECTOR_SHIFT)) {
/* minimum acceptable read is 1 sector */
fn((void *) cb->context, 0);
} else {
fn(cb->context, -ENODATA);
}
_cb_free(e->cbs, cb);
}
return true;
}
static unsigned _async_max_io(struct io_engine *e)
{
return MAX_IO;
}
struct io_engine *create_async_io_engine(void)
{
int r;
struct async_engine *e = malloc(sizeof(*e));
if (!e)
return NULL;
e->e.destroy = _async_destroy;
e->e.issue = _async_issue;
e->e.wait = _async_wait;
e->e.max_io = _async_max_io;
e->aio_context = 0;
r = io_setup(MAX_IO, &e->aio_context);
if (r < 0) {
log_warn("io_setup failed");
free(e);
return NULL;
}
e->cbs = _cb_set_create(MAX_IO);
if (!e->cbs) {
log_warn("couldn't create control block set");
free(e);
return NULL;
}
e->page_mask = sysconf(_SC_PAGESIZE) - 1;
return &e->e;
}
//----------------------------------------------------------------
struct sync_io {
struct dm_list list;
void *context;
};
struct sync_engine {
struct io_engine e;
struct dm_list complete;
};
static struct sync_engine *_to_sync(struct io_engine *e)
{
return container_of(e, struct sync_engine, e);
}
static void _sync_destroy(struct io_engine *ioe)
{
struct sync_engine *e = _to_sync(ioe);
free(e);
}
static bool _sync_issue(struct io_engine *ioe, enum dir d, int fd,
sector_t sb, sector_t se, void *data, void *context)
{
int r;
uint64_t len = (se - sb) * 512, where;
struct sync_engine *e = _to_sync(ioe);
struct sync_io *io = malloc(sizeof(*io));
if (!io) {
log_warn("unable to allocate sync_io");
return false;
}
where = sb * 512;
r = lseek(fd, where, SEEK_SET);
if (r < 0) {
log_warn("unable to seek to position %llu", (unsigned long long) where);
free(io);
return false;
}
/*
* If bcache block goes past where lvm wants to write, then clamp it.
*/
if ((d == DIR_WRITE) && _last_byte_offset && (fd == _last_byte_fd)) {
uint64_t offset = where;
uint64_t nbytes = len;
sector_t limit_nbytes = 0;
sector_t extra_nbytes = 0;
if (offset > _last_byte_offset) {
log_error("Limit write at %llu len %llu beyond last byte %llu",
(unsigned long long)offset,
(unsigned long long)nbytes,
(unsigned long long)_last_byte_offset);
return false;
}
if (offset + nbytes > _last_byte_offset) {
limit_nbytes = _last_byte_offset - offset;
if (limit_nbytes % _last_byte_sector_size)
extra_nbytes = _last_byte_sector_size - (limit_nbytes % _last_byte_sector_size);
if (extra_nbytes) {
log_debug("Limit write at %llu len %llu to len %llu rounded to %llu",
(unsigned long long)offset,
(unsigned long long)nbytes,
(unsigned long long)limit_nbytes,
(unsigned long long)(limit_nbytes + extra_nbytes));
nbytes = limit_nbytes + extra_nbytes;
} else {
log_debug("Limit write at %llu len %llu to len %llu",
(unsigned long long)offset,
(unsigned long long)nbytes,
(unsigned long long)limit_nbytes);
nbytes = limit_nbytes;
}
}
where = offset;
len = nbytes;
}
while (len) {
do {
if (d == DIR_READ)
r = read(fd, data, len);
else
r = write(fd, data, len);
} while ((r < 0) && ((r == EINTR) || (r == EAGAIN)));
if (r < 0) {
log_warn("io failed %d", r);
free(io);
return false;
}
len -= r;
}
if (len) {
log_warn("short io %u bytes remaining", (unsigned) len);
free(io);
return false;
}
dm_list_add(&e->complete, &io->list);
io->context = context;
return true;
}
static bool _sync_wait(struct io_engine *ioe, io_complete_fn fn)
{
struct sync_io *io, *tmp;
struct sync_engine *e = _to_sync(ioe);
dm_list_iterate_items_safe(io, tmp, &e->complete) {
fn(io->context, 0);
dm_list_del(&io->list);
free(io);
}
return true;
}
static unsigned _sync_max_io(struct io_engine *e)
{
return 1;
}
struct io_engine *create_sync_io_engine(void)
{
struct sync_engine *e = malloc(sizeof(*e));
if (!e)
return NULL;
e->e.destroy = _sync_destroy;
e->e.issue = _sync_issue;
e->e.wait = _sync_wait;
e->e.max_io = _sync_max_io;
dm_list_init(&e->complete);
return &e->e;
}
//----------------------------------------------------------------
#define MIN_BLOCKS 16
#define WRITEBACK_LOW_THRESHOLD_PERCENT 33
#define WRITEBACK_HIGH_THRESHOLD_PERCENT 66
//----------------------------------------------------------------
static void *_alloc_aligned(size_t len, size_t alignment)
{
void *result = NULL;
int r = posix_memalign(&result, alignment, len);
if (r)
return NULL;
return result;
}
//----------------------------------------------------------------
static bool _test_flags(struct block *b, unsigned bits)
{
return (b->flags & bits) != 0;
}
static void _set_flags(struct block *b, unsigned bits)
{
b->flags |= bits;
}
static void _clear_flags(struct block *b, unsigned bits)
{
b->flags &= ~bits;
}
//----------------------------------------------------------------
enum block_flags {
BF_IO_PENDING = (1 << 0),
BF_DIRTY = (1 << 1),
};
struct bcache {
sector_t block_sectors;
uint64_t nr_data_blocks;
uint64_t nr_cache_blocks;
unsigned max_io;
struct io_engine *engine;
void *raw_data;
struct block *raw_blocks;
/*
* Lists that categorise the blocks.
*/
unsigned nr_locked;
unsigned nr_dirty;
unsigned nr_io_pending;
struct dm_list free;
struct dm_list errored;
struct dm_list dirty;
struct dm_list clean;
struct dm_list io_pending;
struct radix_tree *rtree;
/*
* Statistics
*/
unsigned read_hits;
unsigned read_misses;
unsigned write_zeroes;
unsigned write_hits;
unsigned write_misses;
unsigned prefetches;
};
//----------------------------------------------------------------
struct key_parts {
uint32_t fd;
uint64_t b;
} __attribute__ ((packed));
union key {
struct key_parts parts;
uint8_t bytes[12];
};
static struct block *_block_lookup(struct bcache *cache, int fd, uint64_t i)
{
union key k;
union radix_value v;
k.parts.fd = fd;
k.parts.b = i;
if (radix_tree_lookup(cache->rtree, k.bytes, k.bytes + sizeof(k.bytes), &v))
return v.ptr;
return NULL;
}
static bool _block_insert(struct block *b)
{
union key k;
union radix_value v;
k.parts.fd = b->fd;
k.parts.b = b->index;
v.ptr = b;
return radix_tree_insert(b->cache->rtree, k.bytes, k.bytes + sizeof(k.bytes), v);
}
static void _block_remove(struct block *b)
{
union key k;
k.parts.fd = b->fd;
k.parts.b = b->index;
radix_tree_remove(b->cache->rtree, k.bytes, k.bytes + sizeof(k.bytes));
}
//----------------------------------------------------------------
static bool _init_free_list(struct bcache *cache, unsigned count, unsigned pgsize)
{
unsigned i;
size_t block_size = cache->block_sectors << SECTOR_SHIFT;
unsigned char *data =
(unsigned char *) _alloc_aligned(count * block_size, pgsize);
/* Allocate the data for each block. We page align the data. */
if (!data)
return false;
cache->raw_blocks = malloc(count * sizeof(*cache->raw_blocks));
if (!cache->raw_blocks) {
free(data);
return false;
}
cache->raw_data = data;
for (i = 0; i < count; i++) {
struct block *b = cache->raw_blocks + i;
b->cache = cache;
b->data = data + (block_size * i);
dm_list_add(&cache->free, &b->list);
}
return true;
}
static void _exit_free_list(struct bcache *cache)
{
free(cache->raw_data);
free(cache->raw_blocks);
}
static struct block *_alloc_block(struct bcache *cache)
{
if (dm_list_empty(&cache->free))
return NULL;
return dm_list_struct_base(_list_pop(&cache->free), struct block, list);
}
static void _free_block(struct block *b)
{
dm_list_add(&b->cache->free, &b->list);
}
/*----------------------------------------------------------------
* Clean/dirty list management.
* Always use these methods to ensure nr_dirty_ is correct.
*--------------------------------------------------------------*/
static void _unlink_block(struct block *b)
{
if (_test_flags(b, BF_DIRTY))
b->cache->nr_dirty--;
dm_list_del(&b->list);
}
static void _link_block(struct block *b)
{
struct bcache *cache = b->cache;
if (_test_flags(b, BF_DIRTY)) {
dm_list_add(&cache->dirty, &b->list);
cache->nr_dirty++;
} else
dm_list_add(&cache->clean, &b->list);
}
static void _relink(struct block *b)
{
_unlink_block(b);
_link_block(b);
}
/*----------------------------------------------------------------
* Low level IO handling
*
* We cannot have two concurrent writes on the same block.
* eg, background writeback, put with dirty, flush?
*
* To avoid this we introduce some restrictions:
*
* i) A held block can never be written back.
* ii) You cannot get a block until writeback has completed.
*
*--------------------------------------------------------------*/
static void _complete_io(void *context, int err)
{
struct block *b = context;
struct bcache *cache = b->cache;
b->error = err;
_clear_flags(b, BF_IO_PENDING);
cache->nr_io_pending--;
/*
* b is on the io_pending list, so we don't want to use unlink_block.
* Which would incorrectly adjust nr_dirty.
*/
dm_list_del(&b->list);
if (b->error) {
dm_list_add(&cache->errored, &b->list);
} else {
_clear_flags(b, BF_DIRTY);
_link_block(b);
}
}
/*
* |b->list| should be valid (either pointing to itself, on one of the other
* lists.
*/
static void _issue_low_level(struct block *b, enum dir d)
{
struct bcache *cache = b->cache;
sector_t sb = b->index * cache->block_sectors;
sector_t se = sb + cache->block_sectors;
if (_test_flags(b, BF_IO_PENDING))
return;
b->io_dir = d;
_set_flags(b, BF_IO_PENDING);
cache->nr_io_pending++;
dm_list_move(&cache->io_pending, &b->list);
if (!cache->engine->issue(cache->engine, d, b->fd, sb, se, b->data, b)) {
/* FIXME: if io_submit() set an errno, return that instead of EIO? */
_complete_io(b, -EIO);
return;
}
}
static inline void _issue_read(struct block *b)
{
_issue_low_level(b, DIR_READ);
}
static inline void _issue_write(struct block *b)
{
_issue_low_level(b, DIR_WRITE);
}
static bool _wait_io(struct bcache *cache)
{
return cache->engine->wait(cache->engine, _complete_io);
}
/*----------------------------------------------------------------
* High level IO handling
*--------------------------------------------------------------*/
static void _wait_all(struct bcache *cache)
{
while (!dm_list_empty(&cache->io_pending))
_wait_io(cache);
}
static void _wait_specific(struct block *b)
{
while (_test_flags(b, BF_IO_PENDING))
_wait_io(b->cache);
}
static unsigned _writeback(struct bcache *cache, unsigned count)
{
unsigned actual = 0;
struct block *b, *tmp;
dm_list_iterate_items_gen_safe (b, tmp, &cache->dirty, list) {
if (actual == count)
break;
// We can't writeback anything that's still in use.
if (!b->ref_count) {
_issue_write(b);
actual++;
}
}
return actual;
}
/*----------------------------------------------------------------
* High level allocation
*--------------------------------------------------------------*/
static struct block *_find_unused_clean_block(struct bcache *cache)
{
struct block *b;
dm_list_iterate_items (b, &cache->clean) {
if (!b->ref_count) {
_unlink_block(b);
_block_remove(b);
return b;
}
}
return NULL;
}
static struct block *_new_block(struct bcache *cache, int fd, block_address i, bool can_wait)
{
struct block *b;
b = _alloc_block(cache);
while (!b && !dm_list_empty(&cache->clean)) {
b = _find_unused_clean_block(cache);
if (!b) {
if (can_wait) {
if (dm_list_empty(&cache->io_pending))
_writeback(cache, 16); // FIXME: magic number
_wait_io(cache);
} else {
log_error("bcache no new blocks for fd %d index %u",
fd, (uint32_t) i);
return NULL;
}
}
}
if (b) {
dm_list_init(&b->list);
b->flags = 0;
b->fd = fd;
b->index = i;
b->ref_count = 0;
b->error = 0;
if (!_block_insert(b)) {
log_error("bcache unable to insert block in radix tree (OOM?)");
_free_block(b);
return NULL;
}
}
return b;
}
/*----------------------------------------------------------------
* Block reference counting
*--------------------------------------------------------------*/
static void _zero_block(struct block *b)
{
b->cache->write_zeroes++;
memset(b->data, 0, b->cache->block_sectors << SECTOR_SHIFT);
_set_flags(b, BF_DIRTY);
}
static void _hit(struct block *b, unsigned flags)
{
struct bcache *cache = b->cache;
if (flags & (GF_ZERO | GF_DIRTY))
cache->write_hits++;
else
cache->read_hits++;
_relink(b);
}
static void _miss(struct bcache *cache, unsigned flags)
{
if (flags & (GF_ZERO | GF_DIRTY))
cache->write_misses++;
else
cache->read_misses++;
}
static struct block *_lookup_or_read_block(struct bcache *cache,
int fd, block_address i,
unsigned flags)
{
struct block *b = _block_lookup(cache, fd, i);
if (b) {
// FIXME: this is insufficient. We need to also catch a read
// lock of a write locked block. Ref count needs to distinguish.
if (b->ref_count && (flags & (GF_DIRTY | GF_ZERO))) {
log_warn("concurrent write lock attempted");
return NULL;
}
if (_test_flags(b, BF_IO_PENDING)) {
_miss(cache, flags);
_wait_specific(b);
} else
_hit(b, flags);
_unlink_block(b);
if (flags & GF_ZERO)
_zero_block(b);
} else {
_miss(cache, flags);
b = _new_block(cache, fd, i, true);
if (b) {
if (flags & GF_ZERO)
_zero_block(b);
else {
_issue_read(b);
_wait_specific(b);
// we know the block is clean and unerrored.
_unlink_block(b);
}
}
}
if (b) {
if (flags & (GF_DIRTY | GF_ZERO))
_set_flags(b, BF_DIRTY);
_link_block(b);
return b;
}
return NULL;
}
static void _preemptive_writeback(struct bcache *cache)
{
// FIXME: this ignores those blocks that are in the error state. Track
// nr_clean instead?
unsigned nr_available = cache->nr_cache_blocks - (cache->nr_dirty - cache->nr_io_pending);
if (nr_available < (WRITEBACK_LOW_THRESHOLD_PERCENT * cache->nr_cache_blocks / 100))
_writeback(cache, (WRITEBACK_HIGH_THRESHOLD_PERCENT * cache->nr_cache_blocks / 100) - nr_available);
}
/*----------------------------------------------------------------
* Public interface
*--------------------------------------------------------------*/
struct bcache *bcache_create(sector_t block_sectors, unsigned nr_cache_blocks,
struct io_engine *engine)
{
struct bcache *cache;
unsigned max_io = engine->max_io(engine);
long pgsize = sysconf(_SC_PAGESIZE);
if (pgsize < 0) {
log_warn("WARNING: _SC_PAGESIZE returns negative value.");
return NULL;
}
if (!nr_cache_blocks) {
log_warn("bcache must have at least one cache block");
return NULL;
}
if (!block_sectors) {
log_warn("bcache must have a non zero block size");
return NULL;
}
if (block_sectors & ((pgsize >> SECTOR_SHIFT) - 1)) {
log_warn("bcache block size must be a multiple of page size");
return NULL;
}
cache = malloc(sizeof(*cache));
if (!cache)
return NULL;
cache->block_sectors = block_sectors;
cache->nr_cache_blocks = nr_cache_blocks;
cache->max_io = nr_cache_blocks < max_io ? nr_cache_blocks : max_io;
cache->engine = engine;
cache->nr_locked = 0;
cache->nr_dirty = 0;
cache->nr_io_pending = 0;
dm_list_init(&cache->free);
dm_list_init(&cache->errored);
dm_list_init(&cache->dirty);
dm_list_init(&cache->clean);
dm_list_init(&cache->io_pending);
cache->rtree = radix_tree_create(NULL, NULL);
if (!cache->rtree) {
cache->engine->destroy(cache->engine);
free(cache);
return NULL;
}
cache->read_hits = 0;
cache->read_misses = 0;
cache->write_zeroes = 0;
cache->write_hits = 0;
cache->write_misses = 0;
cache->prefetches = 0;
if (!_init_free_list(cache, nr_cache_blocks, pgsize)) {
cache->engine->destroy(cache->engine);
radix_tree_destroy(cache->rtree);
free(cache);
return NULL;
}
return cache;
}
void bcache_destroy(struct bcache *cache)
{
if (cache->nr_locked)
log_warn("some blocks are still locked");
if (!bcache_flush(cache))
stack;
_wait_all(cache);
_exit_free_list(cache);
radix_tree_destroy(cache->rtree);
cache->engine->destroy(cache->engine);
free(cache);
}
sector_t bcache_block_sectors(struct bcache *cache)
{
return cache->block_sectors;
}
unsigned bcache_nr_cache_blocks(struct bcache *cache)
{
return cache->nr_cache_blocks;
}
unsigned bcache_max_prefetches(struct bcache *cache)
{
return cache->max_io;
}
void bcache_prefetch(struct bcache *cache, int fd, block_address i)
{
struct block *b = _block_lookup(cache, fd, i);
if (!b) {
if (cache->nr_io_pending < cache->max_io) {
b = _new_block(cache, fd, i, false);
if (b) {
cache->prefetches++;
_issue_read(b);
}
}
}
}
//----------------------------------------------------------------
static void _recycle_block(struct bcache *cache, struct block *b)
{
_unlink_block(b);
_block_remove(b);
_free_block(b);
}
bool bcache_get(struct bcache *cache, int fd, block_address i,
unsigned flags, struct block **result)
{
struct block *b;
b = _lookup_or_read_block(cache, fd, i, flags);
if (b) {
if (b->error) {
if (b->io_dir == DIR_READ) {
// Now we know the read failed we can just forget
// about this block, since there's no dirty data to
// be written back.
_recycle_block(cache, b);
}
return false;
}
if (!b->ref_count)
cache->nr_locked++;
b->ref_count++;
*result = b;
return true;
}
*result = NULL;
log_error("bcache failed to get block %u fd %d", (uint32_t) i, fd);
return false;
}
//----------------------------------------------------------------
static void _put_ref(struct block *b)
{
if (!b->ref_count) {
log_warn("ref count on bcache block already zero");
return;
}
b->ref_count--;
if (!b->ref_count)
b->cache->nr_locked--;
}
void bcache_put(struct block *b)
{
_put_ref(b);
if (_test_flags(b, BF_DIRTY))
_preemptive_writeback(b->cache);
}
//----------------------------------------------------------------
bool bcache_flush(struct bcache *cache)
{
// Only dirty data is on the errored list, since bad read blocks get
// recycled straight away. So we put these back on the dirty list, and
// try and rewrite everything.
dm_list_splice(&cache->dirty, &cache->errored);
while (!dm_list_empty(&cache->dirty)) {
struct block *b = dm_list_item(_list_pop(&cache->dirty), struct block);
if (b->ref_count || _test_flags(b, BF_IO_PENDING)) {
// The superblock may well be still locked.
continue;
}
_issue_write(b);
}
_wait_all(cache);
return dm_list_empty(&cache->errored);
}
//----------------------------------------------------------------
/*
* You can safely call this with a NULL block.
*/
static bool _invalidate_block(struct bcache *cache, struct block *b)
{
if (!b)
return true;
if (_test_flags(b, BF_IO_PENDING))
_wait_specific(b);
if (b->ref_count) {
log_warn("bcache_invalidate: block (%d, %llu) still held",
b->fd, (unsigned long long) b->index);
return false;
}
if (_test_flags(b, BF_DIRTY)) {
_issue_write(b);
_wait_specific(b);
if (b->error)
return false;
}
_recycle_block(cache, b);
return true;
}
bool bcache_invalidate(struct bcache *cache, int fd, block_address i)
{
return _invalidate_block(cache, _block_lookup(cache, fd, i));
}
//----------------------------------------------------------------
struct invalidate_iterator {
bool success;
struct radix_tree_iterator it;
};
static bool _writeback_v(struct radix_tree_iterator *it,
uint8_t *kb, uint8_t *ke, union radix_value v)
{
struct block *b = v.ptr;
if (_test_flags(b, BF_DIRTY))
_issue_write(b);
return true;
}
static bool _invalidate_v(struct radix_tree_iterator *it,
uint8_t *kb, uint8_t *ke, union radix_value v)
{
struct block *b = v.ptr;
struct invalidate_iterator *iit = container_of(it, struct invalidate_iterator, it);
if (b->error || _test_flags(b, BF_DIRTY)) {
log_warn("bcache_invalidate: block (%d, %llu) still dirty",
b->fd, (unsigned long long) b->index);
iit->success = false;
return true;
}
if (b->ref_count) {
log_warn("bcache_invalidate: block (%d, %llu) still held",
b->fd, (unsigned long long) b->index);
iit->success = false;
return true;
}
_unlink_block(b);
_free_block(b);
// We can't remove the block from the radix tree yet because
// we're in the middle of an iteration.
return true;
}
bool bcache_invalidate_fd(struct bcache *cache, int fd)
{
union key k;
struct invalidate_iterator it;
k.parts.fd = fd;
it.it.visit = _writeback_v;
radix_tree_iterate(cache->rtree, k.bytes, k.bytes + sizeof(k.parts.fd), &it.it);
_wait_all(cache);
it.success = true;
it.it.visit = _invalidate_v;
radix_tree_iterate(cache->rtree, k.bytes, k.bytes + sizeof(k.parts.fd), &it.it);
radix_tree_remove_prefix(cache->rtree, k.bytes, k.bytes + sizeof(k.parts.fd));
return it.success;
}
//----------------------------------------------------------------
void bcache_set_last_byte(struct bcache *cache, int fd, uint64_t offset, int sector_size)
{
_last_byte_fd = fd;
_last_byte_offset = offset;
_last_byte_sector_size = sector_size;
if (!sector_size)
_last_byte_sector_size = 512;
}
void bcache_unset_last_byte(struct bcache *cache, int fd)
{
if (_last_byte_fd == fd) {
_last_byte_fd = 0;
_last_byte_offset = 0;
_last_byte_sector_size = 0;
}
}