1
0
mirror of git://sourceware.org/git/lvm2.git synced 2024-12-21 13:34:40 +03:00
lvm2/lib/metadata/vdo_manip.c
Zdenek Kabelac 2451bc568f vdo: fix and enhance vdo constain checking
Enhance checking vdo constains so it also handles changes of active VDO LVs
where only added difference is considered now.

For this also the reported informational message about used memory
was improved to only list consuming RAM blocks.
2023-01-16 12:37:40 +01:00

733 lines
22 KiB
C

/*
* Copyright (C) 2018-2019 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "lib/misc/lib.h"
#include "lib/metadata/metadata.h"
#include "lib/locking/locking.h"
#include "lib/misc/lvm-string.h"
#include "lib/commands/toolcontext.h"
#include "lib/display/display.h"
#include "lib/metadata/segtype.h"
#include "lib/activate/activate.h"
#include "lib/config/defaults.h"
#include "lib/misc/lvm-exec.h"
#include <sys/sysinfo.h> // sysinfo
#include <stdarg.h>
const char *get_vdo_compression_state_name(enum dm_vdo_compression_state state)
{
switch (state) {
case DM_VDO_COMPRESSION_ONLINE:
return "online";
default:
log_debug(INTERNAL_ERROR "Unrecognized compression state: %u.", state);
/* Fall through */
case DM_VDO_COMPRESSION_OFFLINE:
return "offline";
}
}
const char *get_vdo_index_state_name(enum dm_vdo_index_state state)
{
switch (state) {
case DM_VDO_INDEX_ERROR:
return "error";
case DM_VDO_INDEX_CLOSED:
return "closed";
case DM_VDO_INDEX_OPENING:
return "opening";
case DM_VDO_INDEX_CLOSING:
return "closing";
case DM_VDO_INDEX_OFFLINE:
return "offline";
case DM_VDO_INDEX_ONLINE:
return "online";
default:
log_debug(INTERNAL_ERROR "Unrecognized index state: %u.", state);
/* Fall through */
case DM_VDO_INDEX_UNKNOWN:
return "unknown";
}
}
const char *get_vdo_operating_mode_name(enum dm_vdo_operating_mode mode)
{
switch (mode) {
case DM_VDO_MODE_RECOVERING:
return "recovering";
case DM_VDO_MODE_READ_ONLY:
return "read-only";
default:
log_debug(INTERNAL_ERROR "Unrecognized operating mode: %u.", mode);
/* Fall through */
case DM_VDO_MODE_NORMAL:
return "normal";
}
}
const char *get_vdo_write_policy_name(enum dm_vdo_write_policy policy)
{
switch (policy) {
case DM_VDO_WRITE_POLICY_SYNC:
return "sync";
case DM_VDO_WRITE_POLICY_ASYNC:
return "async";
case DM_VDO_WRITE_POLICY_ASYNC_UNSAFE:
return "async-unsafe";
default:
log_debug(INTERNAL_ERROR "Unrecognized VDO write policy: %u.", policy);
/* Fall through */
case DM_VDO_WRITE_POLICY_AUTO:
return "auto";
}
}
/*
* Size of VDO virtual LV is adding header_size in front and back of device
* to avoid colission with blkid checks.
*/
static uint64_t _get_virtual_size(uint32_t extents, uint32_t extent_size,
uint32_t header_size)
{
return (uint64_t) extents * extent_size + 2 * header_size;
}
uint64_t get_vdo_pool_virtual_size(const struct lv_segment *vdo_pool_seg)
{
return _get_virtual_size(vdo_pool_seg->vdo_pool_virtual_extents,
vdo_pool_seg->lv->vg->extent_size,
vdo_pool_seg->vdo_pool_header_size);
}
int update_vdo_pool_virtual_size(struct lv_segment *vdo_pool_seg)
{
struct seg_list *sl;
uint32_t extents = 0;
/* FIXME: as long as we have only SINGLE VDO with vdo-pool this works */
/* after adding support for multiple VDO LVs - this needs heavy rework */
dm_list_iterate_items(sl, &vdo_pool_seg->lv->segs_using_this_lv)
extents += sl->seg->len;
/* Only growing virtual/logical VDO size */
if (extents > vdo_pool_seg->vdo_pool_virtual_extents)
vdo_pool_seg->vdo_pool_virtual_extents = extents;
return 1;
}
uint32_t get_vdo_pool_max_extents(const struct dm_vdo_target_params *vtp,
uint32_t extent_size)
{
uint64_t max_extents = (DM_VDO_PHYSICAL_SIZE_MAXIMUM + extent_size - 1) / extent_size;
uint64_t max_slab_extents = ((extent_size - 1 + DM_VDO_SLABS_MAXIMUM *
((uint64_t)vtp->slab_size_mb << (20 - SECTOR_SHIFT))) /
extent_size);
max_extents = (max_slab_extents < max_extents) ? max_slab_extents : max_extents;
return (max_extents > UINT32_MAX) ? UINT32_MAX : (uint32_t)max_extents;
}
static int _sysfs_get_kvdo_value(const char *dm_name, const struct dm_info *dminfo,
const char *vdo_param, uint64_t *value)
{
char path[PATH_MAX];
char temp[64];
int fd, size, r = 0;
if (dm_snprintf(path, sizeof(path), "%sblock/dm-%d/vdo/%s",
dm_sysfs_dir(), dminfo->minor, vdo_param) < 0) {
log_debug("Failed to build kvdo path.");
return 0;
}
if ((fd = open(path, O_RDONLY)) < 0) {
/* try with older location */
if (dm_snprintf(path, sizeof(path), "%skvdo/%s/%s",
dm_sysfs_dir(), dm_name, vdo_param) < 0) {
log_debug("Failed to build kvdo path.");
return 0;
}
if ((fd = open(path, O_RDONLY)) < 0) {
log_sys_debug("open", path);
goto bad;
}
}
if ((size = read(fd, temp, sizeof(temp) - 1)) < 0) {
log_sys_debug("read", path);
goto bad;
}
temp[size] = 0;
errno = 0;
*value = strtoll(temp, NULL, 0);
if (errno) {
log_sys_debug("strtool", path);
goto bad;
}
r = 1;
bad:
if (fd >= 0 && close(fd))
log_sys_debug("close", path);
return r;
}
int parse_vdo_pool_status(struct dm_pool *mem, const struct logical_volume *vdo_pool_lv,
const char *params, const struct dm_info *dminfo,
struct lv_status_vdo *status)
{
struct dm_vdo_status_parse_result result;
char *dm_name;
status->usage = DM_PERCENT_INVALID;
status->saving = DM_PERCENT_INVALID;
status->data_usage = DM_PERCENT_INVALID;
if (!(dm_name = dm_build_dm_name(mem, vdo_pool_lv->vg->name,
vdo_pool_lv->name, lv_layer(vdo_pool_lv)))) {
log_error("Failed to build VDO DM name %s.",
display_lvname(vdo_pool_lv));
return 0;
}
if (!dm_vdo_status_parse(mem, params, &result)) {
log_error("Cannot parse %s VDO pool status %s.",
display_lvname(vdo_pool_lv), result.error);
return 0;
}
status->vdo = result.status;
if ((result.status->operating_mode == DM_VDO_MODE_NORMAL) &&
_sysfs_get_kvdo_value(dm_name, dminfo, "statistics/data_blocks_used",
&status->data_blocks_used) &&
_sysfs_get_kvdo_value(dm_name, dminfo, "statistics/logical_blocks_used",
&status->logical_blocks_used)) {
status->usage = dm_make_percent(result.status->used_blocks,
result.status->total_blocks);
status->saving = dm_make_percent(status->logical_blocks_used - status->data_blocks_used,
status->logical_blocks_used);
status->data_usage = dm_make_percent(status->data_blocks_used * DM_VDO_BLOCK_SIZE,
first_seg(vdo_pool_lv)->vdo_pool_virtual_extents *
(uint64_t) vdo_pool_lv->vg->extent_size);
}
return 1;
}
/*
* Formats data LV for a use as a VDO pool LV.
*
* Calls tool 'vdoformat' on the already active volume.
*/
static int _format_vdo_pool_data_lv(struct logical_volume *data_lv,
const struct dm_vdo_target_params *vtp,
uint64_t *logical_size)
{
char *dpath, *c;
const struct dm_config_node *cn;
const struct dm_config_value *cv;
struct pipe_data pdata;
uint64_t logical_size_aligned = 1;
FILE *f;
uint64_t lb;
unsigned slabbits;
unsigned reformating = 0;
int args = 1;
char buf_args[5][128];
char buf[256]; /* buffer for short disk header (64B) */
const char *argv[19] = { /* Max supported args */
find_config_tree_str_allow_empty(data_lv->vg->cmd, global_vdo_format_executable_CFG, NULL)
};
if (!(dpath = lv_path_dup(data_lv->vg->cmd->mem, data_lv))) {
log_error("Failed to build device path for VDO formatting of data volume %s.",
display_lvname(data_lv));
return 0;
}
if (*logical_size) {
logical_size_aligned = 0;
if (dm_snprintf(buf_args[args], sizeof(buf_args[0]), "--logical-size=" FMTu64 "K",
(*logical_size / 2)) < 0)
return_0;
argv[args] = buf_args[args];
args++;
}
slabbits = 31 - clz(vtp->slab_size_mb / DM_VDO_BLOCK_SIZE * 2 * 1024); /* to KiB / block_size */
log_debug("Slab size %s converted to %u bits.",
display_size(data_lv->vg->cmd, vtp->slab_size_mb * UINT64_C(2 * 1024)), slabbits);
if (dm_snprintf(buf_args[args], sizeof(buf_args[0]), "--slab-bits=%u", slabbits) < 0)
return_0;
argv[args] = buf_args[args];
args++;
if (vtp->check_point_frequency) {
if (dm_snprintf(buf_args[args], sizeof(buf_args[0]), "--uds-checkpoint-frequency=%u",
vtp->check_point_frequency) < 0)
return_0;
argv[args] = buf_args[args];
args++;
}
/* Convert size to GiB units or one of these strings: 0.25, 0.50, 0.75 */
if (vtp->index_memory_size_mb >= 1024) {
if (dm_snprintf(buf_args[args], sizeof(buf_args[0]), "--uds-memory-size=%u",
vtp->index_memory_size_mb / 1024) < 0)
return_0;
} else if (dm_snprintf(buf_args[args], sizeof(buf_args[0]), "--uds-memory-size=0.%u",
(vtp->index_memory_size_mb < 512) ? 25 :
(vtp->index_memory_size_mb < 768) ? 50 : 75) < 0)
return_0;
argv[args] = buf_args[args];
args++;
if (vtp->use_sparse_index) {
if (dm_snprintf(buf_args[args], sizeof(buf_args[0]), "--uds-sparse") < 0)
return_0;
argv[args] = buf_args[args];
args++;
}
/* Any other user opts add here */
if (!(cn = find_config_tree_array(data_lv->vg->cmd, global_vdo_format_options_CFG, NULL))) {
log_error(INTERNAL_ERROR "Unable to find configuration for vdoformat command options.");
return 0;
}
for (cv = cn->v; cv && args < 16; cv = cv->next) {
if (cv->type != DM_CFG_STRING) {
log_error("Invalid string in config file: "
"global/vdoformat_options.");
return 0;
}
if (cv->v.str[0])
argv[++args] = cv->v.str;
}
/* Only unused VDO data LV could be activated and wiped */
if (!dm_list_empty(&data_lv->segs_using_this_lv)) {
log_error(INTERNAL_ERROR "Failed to wipe logical VDO data for volume %s.",
display_lvname(data_lv));
return 0;
}
argv[args] = dpath;
if (!(f = pipe_open(data_lv->vg->cmd, argv, 0, &pdata))) {
log_error("WARNING: Cannot read output from %s.", argv[0]);
return 0;
}
while (!feof(f) && fgets(buf, sizeof(buf), f)) {
/* TODO: Watch out for locales */
if (!*logical_size)
if (sscanf(buf, "Logical blocks defaulted to " FMTu64 " blocks", &lb) == 1) {
*logical_size = lb * DM_VDO_BLOCK_SIZE;
log_verbose("Available VDO logical blocks " FMTu64 " (%s).",
lb, display_size(data_lv->vg->cmd, *logical_size));
}
if ((c = strchr(buf, '\n')))
*c = 0; /* cut last '\n' away */
if (buf[0]) {
if (reformating)
log_verbose(" %s", buf); /* Print vdo_format messages */
else
log_print_unless_silent(" %s", buf); /* Print vdo_format messages */
}
}
if (!pipe_close(&pdata)) {
log_error("Command %s failed.", argv[0]);
return 0;
}
if (!*logical_size) {
log_error("Number of VDO logical blocks was not provided by vdo_format output.");
return 0;
}
if (logical_size_aligned) {
// align obtained size to extent size
logical_size_aligned = *logical_size / data_lv->vg->extent_size * data_lv->vg->extent_size;
if (*logical_size != logical_size_aligned) {
log_debug("Using bigger VDO virtual size unaligned on extent size by %s.",
display_size(data_lv->vg->cmd, *logical_size - logical_size_aligned));
}
}
return 1;
}
/*
* convert_vdo_pool_lv
* @data_lv
* @vtp
* @virtual_extents
*
* Convert given data LV and its target parameters into a VDO LV with VDO pool.
*
* Returns: old data LV on success (passed data LV becomes VDO LV), NULL on failure
*/
struct logical_volume *convert_vdo_pool_lv(struct logical_volume *data_lv,
const struct dm_vdo_target_params *vtp,
uint32_t *virtual_extents,
int format,
uint64_t vdo_pool_header_size)
{
const uint32_t extent_size = data_lv->vg->extent_size;
struct cmd_context *cmd = data_lv->vg->cmd;
struct logical_volume *vdo_pool_lv = data_lv;
const struct segment_type *vdo_pool_segtype;
struct lv_segment *vdo_pool_seg;
uint64_t vdo_logical_size = 0;
uint64_t adjust;
if (!(vdo_pool_segtype = get_segtype_from_string(cmd, SEG_TYPE_NAME_VDO_POOL)))
return_NULL;
adjust = (*virtual_extents * (uint64_t) extent_size) % DM_VDO_BLOCK_SIZE;
if (adjust) {
*virtual_extents += (DM_VDO_BLOCK_SIZE - adjust) / extent_size;
log_print_unless_silent("Rounding size up to 4,00 KiB VDO logical extent boundary: %s.",
display_size(data_lv->vg->cmd, *virtual_extents * (uint64_t) extent_size));
}
if (*virtual_extents)
vdo_logical_size =
_get_virtual_size(*virtual_extents, extent_size, vdo_pool_header_size);
if (!dm_vdo_validate_target_params(vtp, vdo_logical_size))
return_0;
/* Format data LV as VDO volume */
if (format) {
if (test_mode()) {
log_verbose("Test mode: Skipping formatting of VDO pool volume.");
} else if (!_format_vdo_pool_data_lv(data_lv, vtp, &vdo_logical_size)) {
log_error("Cannot format VDO pool volume %s.", display_lvname(data_lv));
return NULL;
}
} else {
log_verbose("Skiping VDO formatting %s.", display_lvname(data_lv));
/* TODO: parse existing VDO data and retrieve vdo_logical_size */
if (!*virtual_extents)
vdo_logical_size = data_lv->size;
}
if (!deactivate_lv(data_lv->vg->cmd, data_lv)) {
log_error("Cannot deactivate formated VDO pool volume %s.",
display_lvname(data_lv));
return NULL;
}
vdo_logical_size -= 2 * vdo_pool_header_size;
if (vdo_logical_size < extent_size) {
if (!*virtual_extents)
/* User has not specified size and at least 1 extent is necessary */
log_error("Cannot create fully fitting VDO volume, "
"--virtualsize has to be specified.");
log_error("Size %s for VDO volume cannot be smaller then extent size %s.",
display_size(data_lv->vg->cmd, vdo_logical_size),
display_size(data_lv->vg->cmd, extent_size));
return NULL;
}
*virtual_extents = vdo_logical_size / extent_size;
/* Move segments from existing data_lv into LV_vdata */
if (!(data_lv = insert_layer_for_lv(cmd, vdo_pool_lv, 0, "_vdata")))
return_NULL;
vdo_pool_seg = first_seg(vdo_pool_lv);
vdo_pool_seg->segtype = vdo_pool_segtype;
vdo_pool_seg->vdo_params = *vtp;
vdo_pool_seg->vdo_pool_header_size = vdo_pool_header_size;
vdo_pool_seg->vdo_pool_virtual_extents = *virtual_extents;
vdo_pool_lv->status |= LV_VDO_POOL;
data_lv->status |= LV_VDO_POOL_DATA;
return data_lv;
}
int set_vdo_write_policy(enum dm_vdo_write_policy *vwp, const char *policy)
{
if (strcasecmp(policy, "sync") == 0)
*vwp = DM_VDO_WRITE_POLICY_SYNC;
else if (strcasecmp(policy, "async") == 0)
*vwp = DM_VDO_WRITE_POLICY_ASYNC;
else if (strcasecmp(policy, "async-unsafe") == 0)
*vwp = DM_VDO_WRITE_POLICY_ASYNC_UNSAFE;
else if (strcasecmp(policy, "auto") == 0)
*vwp = DM_VDO_WRITE_POLICY_AUTO;
else {
log_error("Unknown VDO write policy %s.", policy);
return 0;
}
return 1;
}
int fill_vdo_target_params(struct cmd_context *cmd,
struct dm_vdo_target_params *vtp,
uint64_t *vdo_pool_header_size,
struct profile *profile)
{
const char *policy;
// TODO: Postpone filling data to the moment when VG is known with profile.
// TODO: Maybe add more lvm cmdline switches to set profile settings.
vtp->use_compression =
find_config_tree_int(cmd, allocation_vdo_use_compression_CFG, profile);
vtp->use_deduplication =
find_config_tree_int(cmd, allocation_vdo_use_deduplication_CFG, profile);
vtp->use_metadata_hints =
find_config_tree_int(cmd, allocation_vdo_use_metadata_hints_CFG, profile);
vtp->minimum_io_size =
find_config_tree_int(cmd, allocation_vdo_minimum_io_size_CFG, profile) >> SECTOR_SHIFT;
vtp->block_map_cache_size_mb =
find_config_tree_int64(cmd, allocation_vdo_block_map_cache_size_mb_CFG, profile);
vtp->block_map_era_length =
find_config_tree_int(cmd, allocation_vdo_block_map_era_length_CFG, profile);
vtp->check_point_frequency =
find_config_tree_int(cmd, allocation_vdo_check_point_frequency_CFG, profile);
vtp->use_sparse_index =
find_config_tree_int(cmd, allocation_vdo_use_sparse_index_CFG, profile);
vtp->index_memory_size_mb =
find_config_tree_int64(cmd, allocation_vdo_index_memory_size_mb_CFG, profile);
vtp->slab_size_mb =
find_config_tree_int(cmd, allocation_vdo_slab_size_mb_CFG, profile);
vtp->ack_threads =
find_config_tree_int(cmd, allocation_vdo_ack_threads_CFG, profile);
vtp->bio_threads =
find_config_tree_int(cmd, allocation_vdo_bio_threads_CFG, profile);
vtp->bio_rotation =
find_config_tree_int(cmd, allocation_vdo_bio_rotation_CFG, profile);
vtp->cpu_threads =
find_config_tree_int(cmd, allocation_vdo_cpu_threads_CFG, profile);
vtp->hash_zone_threads =
find_config_tree_int(cmd, allocation_vdo_hash_zone_threads_CFG, profile);
vtp->logical_threads =
find_config_tree_int(cmd, allocation_vdo_logical_threads_CFG, profile);
vtp->physical_threads =
find_config_tree_int(cmd, allocation_vdo_physical_threads_CFG, profile);
vtp->max_discard =
find_config_tree_int(cmd, allocation_vdo_max_discard_CFG, profile);
policy = find_config_tree_str(cmd, allocation_vdo_write_policy_CFG, profile);
if (!set_vdo_write_policy(&vtp->write_policy, policy))
return_0;
*vdo_pool_header_size = 2 * find_config_tree_int64(cmd, allocation_vdo_pool_header_size_CFG, profile);
return 1;
}
static int _get_sysinfo_memory(uint64_t *total_mb, uint64_t *available_mb)
{
struct sysinfo si = { 0 };
*total_mb = *available_mb = UINT64_MAX;
if (sysinfo(&si) != 0)
return 0;
log_debug("Sysinfo free:%lu bufferram:%lu sharedram:%lu freehigh:%lu unit:%u.",
si.freeram >> 20, si.bufferram >> 20, si.sharedram >> 20,
si.freehigh >> 20, si.mem_unit);
*available_mb = ((uint64_t)(si.freeram + si.bufferram) * si.mem_unit) >> 30;
*total_mb = si.totalram >> 30;
return 1;
}
typedef struct mem_table_s {
const char *name;
uint64_t *value;
} mem_table_t;
static int _compare_mem_table_s(const void *a, const void *b){
return strcmp(((const mem_table_t*)a)->name, ((const mem_table_t*)b)->name);
}
static int _get_memory_info(uint64_t *total_mb, uint64_t *available_mb)
{
uint64_t anon_pages, mem_available, mem_free, mem_total, shmem, swap_free;
uint64_t can_swap;
mem_table_t mt[] = {
{ "AnonPages", &anon_pages },
{ "MemAvailable", &mem_available },
{ "MemFree", &mem_free },
{ "MemTotal", &mem_total },
{ "Shmem", &shmem },
{ "SwapFree", &swap_free },
};
char line[128], namebuf[32], *e, *tail;
FILE *fp;
mem_table_t findme = { namebuf, NULL };
mem_table_t *found;
if (!(fp = fopen("/proc/meminfo", "r")))
return _get_sysinfo_memory(total_mb, available_mb);
while (fgets(line, sizeof(line), fp)) {
if (!(e = strchr(line, ':')))
break;
if ((++e - line) > sizeof(namebuf))
continue; // something too long
(void)dm_strncpy((char*)findme.name, line, e - line);
found = bsearch(&findme, mt, DM_ARRAY_SIZE(mt), sizeof(mem_table_t),
_compare_mem_table_s);
if (!found)
continue; // not interesting
errno = 0;
*(found->value) = (uint64_t) strtoull(e, &tail, 10);
if ((e == tail) || errno)
log_debug("Failing to parse value from %s.", line);
else
log_debug("Parsed %s = " FMTu64 " KiB.", found->name, *(found->value));
}
(void)fclose(fp);
// use at most 2/3 of swap space to keep machine usable
can_swap = (anon_pages + shmem) * 2 / 3;
swap_free = swap_free * 2 / 3;
if (can_swap > swap_free)
can_swap = swap_free;
// TODO: add more constrains, i.e. 3/4 of physical RAM...
*total_mb = mem_total >> 10;
*available_mb = (mem_available + can_swap) >> 10;
return 1;
}
static uint64_t _round_1024(uint64_t s)
{
return (s + ((1 << 10) - 1)) >> 10;
}
static uint64_t _round_sectors_to_tib(uint64_t s)
{
return (s + ((UINT64_C(1) << (40 - SECTOR_SHIFT)) - 1)) >> (40 - SECTOR_SHIFT);
}
__attribute__ ((format(printf, 3, 4)))
static int _vdo_snprintf(char **buf, size_t *bufsize, const char *format, ...)
{
int n;
va_list ap;
va_start(ap, format);
n = vsnprintf(*buf, *bufsize, format, ap);
va_end(ap);
if (n < 0 || ((unsigned) n >= *bufsize))
return -1;
*buf += n;
*bufsize -= n;
return n;
}
int check_vdo_constrains(struct cmd_context *cmd, const struct vdo_pool_size_config *cfg)
{
static const char *_split[] = { "", " and", ",", "," };
uint64_t req_mb, total_mb, available_mb;
uint64_t phy_mb = _round_sectors_to_tib(UINT64_C(268) * cfg->physical_size); // 268 MiB per 1 TiB of physical size
uint64_t virt_mb = _round_1024(UINT64_C(1638) * _round_sectors_to_tib(cfg->virtual_size)); // 1.6 MiB per 1 TiB
uint64_t cache_mb = _round_1024(UINT64_C(1177) * cfg->block_map_cache_size_mb); // 1.15 MiB per 1 MiB cache size
char msg[512];
size_t mlen = sizeof(msg);
char *pmsg = msg;
int cnt, has_cnt;
if (cfg->block_map_cache_size_mb && (cache_mb < 150))
cache_mb = 150; // always at least 150 MiB for block map
// total required memory for VDO target
req_mb = 38 + cfg->index_memory_size_mb + virt_mb + phy_mb + cache_mb;
_get_memory_info(&total_mb, &available_mb);
has_cnt = cnt = (phy_mb ? 1 : 0) +
(virt_mb ? 1 : 0) +
(cfg->block_map_cache_size_mb ? 1 : 0) +
(cfg->index_memory_size_mb ? 1 : 0);
if (phy_mb)
(void)_vdo_snprintf(&pmsg, &mlen, " %s RAM for physical volume size %s%s",
display_size(cmd, phy_mb << (20 - SECTOR_SHIFT)),
display_size(cmd, cfg->physical_size), _split[--cnt]);
if (virt_mb)
(void)_vdo_snprintf(&pmsg, &mlen, " %s RAM for virtual volume size %s%s",
display_size(cmd, virt_mb << (20 - SECTOR_SHIFT)),
display_size(cmd, cfg->virtual_size), _split[--cnt]);
if (cfg->block_map_cache_size_mb)
(void)_vdo_snprintf(&pmsg, &mlen, " %s RAM for block map cache size %s%s",
display_size(cmd, cache_mb << (20 - SECTOR_SHIFT)),
display_size(cmd, ((uint64_t)cfg->block_map_cache_size_mb) << (20 - SECTOR_SHIFT)),
_split[--cnt]);
if (cfg->index_memory_size_mb)
(void)_vdo_snprintf(&pmsg, &mlen, " %s RAM for index memory",
display_size(cmd, ((uint64_t)cfg->index_memory_size_mb) << (20 - SECTOR_SHIFT)));
if (req_mb > available_mb) {
log_error("Not enough free memory for VDO target. %s RAM is required, but only %s RAM is available.",
display_size(cmd, req_mb << (20 - SECTOR_SHIFT)),
display_size(cmd, available_mb << (20 - SECTOR_SHIFT)));
if (has_cnt)
log_print_unless_silent("VDO configuration needs%s.", msg);
return 0;
}
log_debug("VDO requires %s RAM, currently available %s RAM.",
display_size(cmd, req_mb << (20 - SECTOR_SHIFT)),
display_size(cmd, available_mb << (20 - SECTOR_SHIFT)));
if (has_cnt)
log_verbose("VDO configuration needs%s.", msg);
return 1;
}