mirror of
git://sourceware.org/git/lvm2.git
synced 2025-01-04 09:18:36 +03:00
3218 lines
86 KiB
C
3218 lines
86 KiB
C
/*
|
|
* Copyright (C) 2011-2014 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* This file is part of LVM2.
|
|
*
|
|
* This copyrighted material is made available to anyone wishing to use,
|
|
* modify, copy, or redistribute it subject to the terms and conditions
|
|
* of the GNU Lesser General Public License v.2.1.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "lib.h"
|
|
#include "archiver.h"
|
|
#include "metadata.h"
|
|
#include "toolcontext.h"
|
|
#include "segtype.h"
|
|
#include "display.h"
|
|
#include "activate.h"
|
|
#include "lv_alloc.h"
|
|
#include "lvm-string.h"
|
|
|
|
static int _check_restriping(uint32_t new_stripes, struct logical_volume *lv)
|
|
{
|
|
if (new_stripes && new_stripes != first_seg(lv)->area_count) {
|
|
log_error("Cannot restripe LV %s from %" PRIu32 " to %u stripes during conversion.",
|
|
display_lvname(lv), first_seg(lv)->area_count, new_stripes);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _lv_is_raid_with_tracking(const struct logical_volume *lv,
|
|
struct logical_volume **tracking)
|
|
{
|
|
uint32_t s;
|
|
const struct lv_segment *seg = first_seg(lv);
|
|
|
|
*tracking = NULL;
|
|
|
|
if (!(lv->status & RAID))
|
|
return 0;
|
|
|
|
for (s = 0; s < seg->area_count; s++)
|
|
if (lv_is_visible(seg_lv(seg, s)) &&
|
|
!(seg_lv(seg, s)->status & LVM_WRITE))
|
|
*tracking = seg_lv(seg, s);
|
|
|
|
return *tracking ? 1 : 0;
|
|
}
|
|
|
|
int lv_is_raid_with_tracking(const struct logical_volume *lv)
|
|
{
|
|
struct logical_volume *tracking;
|
|
|
|
return _lv_is_raid_with_tracking(lv, &tracking);
|
|
}
|
|
|
|
uint32_t lv_raid_image_count(const struct logical_volume *lv)
|
|
{
|
|
struct lv_segment *seg = first_seg(lv);
|
|
|
|
if (!seg_is_raid(seg))
|
|
return 1;
|
|
|
|
return seg->area_count;
|
|
}
|
|
|
|
static int _activate_sublv_preserving_excl(struct logical_volume *top_lv,
|
|
struct logical_volume *sub_lv)
|
|
{
|
|
struct cmd_context *cmd = top_lv->vg->cmd;
|
|
|
|
/* If top RAID was EX, use EX */
|
|
if (lv_is_active_exclusive_locally(top_lv)) {
|
|
if (!activate_lv_excl_local(cmd, sub_lv))
|
|
return_0;
|
|
} else {
|
|
if (!activate_lv(cmd, sub_lv))
|
|
return_0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* _raid_in_sync
|
|
* @lv
|
|
*
|
|
* _raid_in_sync works for all types of RAID segtypes, as well
|
|
* as 'mirror' segtype. (This is because 'lv_raid_percent' is
|
|
* simply a wrapper around 'lv_mirror_percent'.
|
|
*
|
|
* Returns: 1 if in-sync, 0 otherwise.
|
|
*/
|
|
static int _raid_in_sync(struct logical_volume *lv)
|
|
{
|
|
dm_percent_t sync_percent;
|
|
|
|
if (seg_is_striped(first_seg(lv)))
|
|
return 1;
|
|
|
|
if (!lv_raid_percent(lv, &sync_percent)) {
|
|
log_error("Unable to determine sync status of %s/%s.",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
if (sync_percent == DM_PERCENT_0) {
|
|
/*
|
|
* FIXME We repeat the status read here to workaround an
|
|
* unresolved kernel bug when we see 0 even though the
|
|
* the array is 100% in sync.
|
|
* https://bugzilla.redhat.com/1210637
|
|
*/
|
|
if (!lv_raid_percent(lv, &sync_percent)) {
|
|
log_error("Unable to determine sync status of %s/%s.",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
if (sync_percent == DM_PERCENT_100)
|
|
log_warn("WARNING: Sync status for %s is inconsistent.",
|
|
display_lvname(lv));
|
|
}
|
|
|
|
return (sync_percent == DM_PERCENT_100) ? 1 : 0;
|
|
}
|
|
|
|
/*
|
|
* _raid_remove_top_layer
|
|
* @lv
|
|
* @removal_lvs
|
|
*
|
|
* Remove top layer of RAID LV in order to convert to linear.
|
|
* This function makes no on-disk changes. The residual LVs
|
|
* returned in 'removal_lvs' must be freed by the caller.
|
|
*
|
|
* Returns: 1 on succes, 0 on failure
|
|
*/
|
|
static int _raid_remove_top_layer(struct logical_volume *lv,
|
|
struct dm_list *removal_lvs)
|
|
{
|
|
struct lv_list *lvl_array, *lvl;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
|
|
if (!seg_is_mirrored(seg)) {
|
|
log_error(INTERNAL_ERROR
|
|
"Unable to remove RAID layer from segment type %s",
|
|
lvseg_name(seg));
|
|
return 0;
|
|
}
|
|
|
|
if (seg->area_count != 1) {
|
|
log_error(INTERNAL_ERROR
|
|
"Unable to remove RAID layer when there"
|
|
" is more than one sub-lv");
|
|
return 0;
|
|
}
|
|
|
|
if (!(lvl_array = dm_pool_alloc(lv->vg->vgmem, 2 * sizeof(*lvl))))
|
|
return_0;
|
|
|
|
/* Add last metadata area to removal_lvs */
|
|
lvl_array[0].lv = seg_metalv(seg, 0);
|
|
lv_set_visible(seg_metalv(seg, 0));
|
|
if (!remove_seg_from_segs_using_this_lv(seg_metalv(seg, 0), seg))
|
|
return_0;
|
|
seg_metatype(seg, 0) = AREA_UNASSIGNED;
|
|
dm_list_add(removal_lvs, &(lvl_array[0].list));
|
|
|
|
/* Remove RAID layer and add residual LV to removal_lvs*/
|
|
seg_lv(seg, 0)->status &= ~RAID_IMAGE;
|
|
lv_set_visible(seg_lv(seg, 0));
|
|
lvl_array[1].lv = seg_lv(seg, 0);
|
|
dm_list_add(removal_lvs, &(lvl_array[1].list));
|
|
|
|
if (!remove_layer_from_lv(lv, seg_lv(seg, 0)))
|
|
return_0;
|
|
|
|
lv->status &= ~(MIRRORED | RAID);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* _clear_lv
|
|
* @lv
|
|
*
|
|
* If LV is active:
|
|
* clear first block of device
|
|
* otherwise:
|
|
* activate, clear, deactivate
|
|
*
|
|
* Returns: 1 on success, 0 on failure
|
|
*/
|
|
static int _clear_lv(struct logical_volume *lv)
|
|
{
|
|
int was_active = lv_is_active_locally(lv);
|
|
|
|
if (test_mode())
|
|
return 1;
|
|
|
|
lv->status |= LV_TEMPORARY;
|
|
if (!was_active && !activate_lv_local(lv->vg->cmd, lv)) {
|
|
log_error("Failed to activate localy %s for clearing",
|
|
lv->name);
|
|
return 0;
|
|
}
|
|
lv->status &= ~LV_TEMPORARY;
|
|
|
|
log_verbose("Clearing metadata area of %s/%s",
|
|
lv->vg->name, lv->name);
|
|
/*
|
|
* Rather than wiping lv->size, we can simply
|
|
* wipe the first sector to remove the superblock of any previous
|
|
* RAID devices. It is much quicker.
|
|
*/
|
|
if (!wipe_lv(lv, (struct wipe_params) { .do_zero = 1, .zero_sectors = 1 })) {
|
|
log_error("Failed to zero %s", lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!was_active && !deactivate_lv(lv->vg->cmd, lv)) {
|
|
log_error("Failed to deactivate %s", lv->name);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Makes on-disk metadata changes */
|
|
static int _clear_lvs(struct dm_list *lv_list)
|
|
{
|
|
struct lv_list *lvl;
|
|
struct volume_group *vg = NULL;
|
|
|
|
if (dm_list_empty(lv_list)) {
|
|
log_debug_metadata(INTERNAL_ERROR "Empty list of LVs given for clearing");
|
|
return 1;
|
|
}
|
|
|
|
dm_list_iterate_items(lvl, lv_list) {
|
|
if (!lv_is_visible(lvl->lv)) {
|
|
log_error(INTERNAL_ERROR
|
|
"LVs must be set visible before clearing");
|
|
return 0;
|
|
}
|
|
vg = lvl->lv->vg;
|
|
}
|
|
|
|
/*
|
|
* FIXME: only vg_[write|commit] if LVs are not already written
|
|
* as visible in the LVM metadata (which is never the case yet).
|
|
*/
|
|
if (!vg || !vg_write(vg) || !vg_commit(vg))
|
|
return_0;
|
|
|
|
dm_list_iterate_items(lvl, lv_list)
|
|
if (!_clear_lv(lvl->lv))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* _shift_and_rename_image_components
|
|
* @seg: Top-level RAID segment
|
|
*
|
|
* Shift all higher indexed segment areas down to fill in gaps where
|
|
* there are 'AREA_UNASSIGNED' areas and rename data/metadata LVs so
|
|
* that their names match their new index. When finished, set
|
|
* seg->area_count to new reduced total.
|
|
*
|
|
* Returns: 1 on success, 0 on failure
|
|
*/
|
|
static int _shift_and_rename_image_components(struct lv_segment *seg)
|
|
{
|
|
int len;
|
|
char *shift_name;
|
|
uint32_t s, missing;
|
|
struct cmd_context *cmd = seg->lv->vg->cmd;
|
|
|
|
/*
|
|
* All LVs must be properly named for their index before
|
|
* shifting begins. (e.g. Index '0' must contain *_rimage_0 and
|
|
* *_rmeta_0. Index 'n' must contain *_rimage_n and *_rmeta_n.)
|
|
*/
|
|
|
|
if (!seg_is_raid(seg))
|
|
return_0;
|
|
|
|
if (seg->area_count > 10) {
|
|
/*
|
|
* FIXME: Handling more would mean I'd have
|
|
* to handle double digits
|
|
*/
|
|
log_error("Unable handle arrays with more than 10 devices");
|
|
return 0;
|
|
}
|
|
|
|
log_very_verbose("Shifting images in %s", seg->lv->name);
|
|
|
|
for (s = 0, missing = 0; s < seg->area_count; s++) {
|
|
if (seg_type(seg, s) == AREA_UNASSIGNED) {
|
|
if (seg_metatype(seg, s) != AREA_UNASSIGNED) {
|
|
log_error(INTERNAL_ERROR "Metadata segment area"
|
|
" #%d should be AREA_UNASSIGNED", s);
|
|
return 0;
|
|
}
|
|
missing++;
|
|
continue;
|
|
}
|
|
if (!missing)
|
|
continue;
|
|
|
|
log_very_verbose("Shifting %s and %s by %u",
|
|
seg_metalv(seg, s)->name,
|
|
seg_lv(seg, s)->name, missing);
|
|
|
|
/* Alter rmeta name */
|
|
shift_name = dm_pool_strdup(cmd->mem, seg_metalv(seg, s)->name);
|
|
if (!shift_name) {
|
|
log_error("Memory allocation failed.");
|
|
return 0;
|
|
}
|
|
len = strlen(shift_name) - 1;
|
|
shift_name[len] -= missing;
|
|
seg_metalv(seg, s)->name = shift_name;
|
|
|
|
/* Alter rimage name */
|
|
shift_name = dm_pool_strdup(cmd->mem, seg_lv(seg, s)->name);
|
|
if (!shift_name) {
|
|
log_error("Memory allocation failed.");
|
|
return 0;
|
|
}
|
|
len = strlen(shift_name) - 1;
|
|
shift_name[len] -= missing;
|
|
seg_lv(seg, s)->name = shift_name;
|
|
|
|
seg->areas[s - missing] = seg->areas[s];
|
|
seg->meta_areas[s - missing] = seg->meta_areas[s];
|
|
}
|
|
|
|
seg->area_count -= missing;
|
|
return 1;
|
|
}
|
|
|
|
/* Generate raid subvolume name and validate it */
|
|
static char *_generate_raid_name(struct logical_volume *lv,
|
|
const char *suffix, int count)
|
|
{
|
|
const char *format = (count >= 0) ? "%s_%s_%u" : "%s_%s";
|
|
size_t len = strlen(lv->name) + strlen(suffix) + ((count >= 0) ? 5 : 2);
|
|
char *name;
|
|
int historical;
|
|
|
|
if (!(name = dm_pool_alloc(lv->vg->vgmem, len))) {
|
|
log_error("Failed to allocate new name.");
|
|
return NULL;
|
|
}
|
|
|
|
if (dm_snprintf(name, len, format, lv->name, suffix, count) < 0)
|
|
return_NULL;
|
|
|
|
if (!validate_name(name)) {
|
|
log_error("New logical volume name \"%s\" is not valid.", name);
|
|
return NULL;
|
|
}
|
|
|
|
if (lv_name_is_used_in_vg(lv->vg, name, &historical)) {
|
|
log_error("%sLogical Volume %s already exists in volume group %s.",
|
|
historical ? "historical " : "", name, lv->vg->name);
|
|
return NULL;
|
|
}
|
|
|
|
return name;
|
|
}
|
|
/*
|
|
* Create an LV of specified type. Set visible after creation.
|
|
* This function does not make metadata changes.
|
|
*/
|
|
static struct logical_volume *_alloc_image_component(struct logical_volume *lv,
|
|
const char *alt_base_name,
|
|
struct alloc_handle *ah, uint32_t first_area,
|
|
uint64_t type)
|
|
{
|
|
uint64_t status;
|
|
char img_name[NAME_LEN];
|
|
const char *type_suffix;
|
|
struct logical_volume *tmp_lv;
|
|
const struct segment_type *segtype;
|
|
|
|
switch (type) {
|
|
case RAID_META:
|
|
type_suffix = "rmeta";
|
|
break;
|
|
case RAID_IMAGE:
|
|
type_suffix = "rimage";
|
|
break;
|
|
default:
|
|
log_error(INTERNAL_ERROR
|
|
"Bad type provided to _alloc_raid_component.");
|
|
return 0;
|
|
}
|
|
|
|
if (dm_snprintf(img_name, sizeof(img_name), "%s_%s_%%d",
|
|
(alt_base_name) ? : lv->name, type_suffix) < 0) {
|
|
log_error("Component name for raid %s is too long.", lv->name);
|
|
return 0;
|
|
}
|
|
|
|
status = LVM_READ | LVM_WRITE | LV_REBUILD | type;
|
|
if (!(tmp_lv = lv_create_empty(img_name, NULL, status, ALLOC_INHERIT, lv->vg))) {
|
|
log_error("Failed to allocate new raid component, %s.", img_name);
|
|
return 0;
|
|
}
|
|
|
|
if (ah) {
|
|
if (!(segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_STRIPED)))
|
|
return_0;
|
|
|
|
if (!lv_add_segment(ah, first_area, 1, tmp_lv, segtype, 0, status, 0)) {
|
|
log_error("Failed to add segment to LV, %s", img_name);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
lv_set_visible(tmp_lv);
|
|
|
|
return tmp_lv;
|
|
}
|
|
|
|
static int _alloc_image_components(struct logical_volume *lv,
|
|
struct dm_list *pvs, uint32_t count,
|
|
struct dm_list *new_meta_lvs,
|
|
struct dm_list *new_data_lvs)
|
|
{
|
|
uint32_t s;
|
|
uint32_t region_size;
|
|
uint32_t extents;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
const struct segment_type *segtype;
|
|
struct alloc_handle *ah = NULL;
|
|
struct dm_list *parallel_areas;
|
|
struct lv_list *lvl_array;
|
|
|
|
if (!(lvl_array = dm_pool_alloc(lv->vg->vgmem,
|
|
sizeof(*lvl_array) * count * 2)))
|
|
return_0;
|
|
|
|
if (!(parallel_areas = build_parallel_areas_from_lv(lv, 0, 1)))
|
|
return_0;
|
|
|
|
if (seg_is_linear(seg))
|
|
region_size = get_default_region_size(lv->vg->cmd);
|
|
else
|
|
region_size = seg->region_size;
|
|
|
|
if (seg_is_raid(seg))
|
|
segtype = seg->segtype;
|
|
else if (!(segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_RAID1)))
|
|
return_0;
|
|
|
|
/*
|
|
* The number of extents is based on the RAID type. For RAID1,
|
|
* each of the rimages is the same size - 'le_count'. However
|
|
* for RAID 4/5/6, the stripes add together (NOT including the parity
|
|
* devices) to equal 'le_count'. Thus, when we are allocating
|
|
* individual devies, we must specify how large the individual device
|
|
* is along with the number we want ('count').
|
|
*/
|
|
if (segtype_is_raid10(segtype)) {
|
|
if (seg->area_count < 2) {
|
|
log_error(INTERNAL_ERROR "LV %s needs at least 2 areas.",
|
|
display_lvname(lv));
|
|
return 0;
|
|
}
|
|
extents = lv->le_count / (seg->area_count / 2); /* we enforce 2 mirrors right now */
|
|
} else
|
|
extents = (segtype->parity_devs) ?
|
|
(lv->le_count / (seg->area_count - segtype->parity_devs)) :
|
|
lv->le_count;
|
|
|
|
/* Do we need to allocate any extents? */
|
|
if (pvs && !dm_list_empty(pvs) &&
|
|
!(ah = allocate_extents(lv->vg, NULL, segtype, 0, count, count,
|
|
region_size, extents, pvs,
|
|
lv->alloc, 0, parallel_areas)))
|
|
return_0;
|
|
|
|
for (s = 0; s < count; ++s) {
|
|
/*
|
|
* The allocation areas are grouped together. First
|
|
* come the rimage allocated areas, then come the metadata
|
|
* allocated areas. Thus, the metadata areas are pulled
|
|
* from 's + count'.
|
|
*/
|
|
|
|
/* new_meta_lvs are optional for raid0 */
|
|
if (new_meta_lvs) {
|
|
if (!(lvl_array[s + count].lv =
|
|
_alloc_image_component(lv, NULL, ah, s + count, RAID_META))) {
|
|
alloc_destroy(ah);
|
|
return_0;
|
|
}
|
|
dm_list_add(new_meta_lvs, &(lvl_array[s + count].list));
|
|
}
|
|
|
|
if (new_data_lvs) {
|
|
if (!(lvl_array[s].lv =
|
|
_alloc_image_component(lv, NULL, ah, s, RAID_IMAGE))) {
|
|
alloc_destroy(ah);
|
|
return_0;
|
|
}
|
|
dm_list_add(new_data_lvs, &(lvl_array[s].list));
|
|
}
|
|
}
|
|
|
|
alloc_destroy(ah);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* _alloc_rmeta_for_lv
|
|
* @lv
|
|
*
|
|
* Allocate a RAID metadata device for the given LV (which is or will
|
|
* be the associated RAID data device). The new metadata device must
|
|
* be allocated from the same PV(s) as the data device.
|
|
*/
|
|
static int _alloc_rmeta_for_lv(struct logical_volume *data_lv,
|
|
struct logical_volume **meta_lv,
|
|
struct dm_list *allocate_pvs)
|
|
{
|
|
struct dm_list allocatable_pvs;
|
|
struct alloc_handle *ah;
|
|
struct lv_segment *seg = first_seg(data_lv);
|
|
char *p, base_name[NAME_LEN];
|
|
|
|
dm_list_init(&allocatable_pvs);
|
|
|
|
if (!allocate_pvs)
|
|
allocate_pvs = &allocatable_pvs;
|
|
|
|
if (!seg_is_linear(seg)) {
|
|
log_error(INTERNAL_ERROR "Unable to allocate RAID metadata "
|
|
"area for non-linear LV, %s", data_lv->name);
|
|
return 0;
|
|
}
|
|
|
|
(void) dm_strncpy(base_name, data_lv->name, sizeof(base_name));
|
|
if ((p = strstr(base_name, "_mimage_")))
|
|
*p = '\0';
|
|
|
|
if (!get_pv_list_for_lv(data_lv->vg->cmd->mem,
|
|
data_lv, &allocatable_pvs)) {
|
|
log_error("Failed to build list of PVs for %s/%s",
|
|
data_lv->vg->name, data_lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!(ah = allocate_extents(data_lv->vg, NULL, seg->segtype, 0, 1, 0,
|
|
seg->region_size,
|
|
1 /*RAID_METADATA_AREA_LEN*/,
|
|
&allocatable_pvs, data_lv->alloc, 0, NULL)))
|
|
return_0;
|
|
|
|
if (!(*meta_lv = _alloc_image_component(data_lv, base_name, ah, 0, RAID_META))) {
|
|
alloc_destroy(ah);
|
|
return_0;
|
|
}
|
|
|
|
alloc_destroy(ah);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _raid_add_images(struct logical_volume *lv,
|
|
uint32_t new_count, struct dm_list *pvs)
|
|
{
|
|
int rebuild_flag_cleared = 0;
|
|
uint32_t s;
|
|
uint32_t old_count = lv_raid_image_count(lv);
|
|
uint32_t count = new_count - old_count;
|
|
uint64_t status_mask = -1;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
struct dm_list meta_lvs, data_lvs;
|
|
struct lv_list *lvl;
|
|
struct lv_segment_area *new_areas;
|
|
|
|
if (lv->status & LV_NOTSYNCED) {
|
|
log_error("Can't add image to out-of-sync RAID LV:"
|
|
" use 'lvchange --resync' first.");
|
|
return 0;
|
|
}
|
|
|
|
if (!_raid_in_sync(lv)) {
|
|
log_error("Can't add image to RAID LV that"
|
|
" is still initializing.");
|
|
return 0;
|
|
}
|
|
|
|
if (!archive(lv->vg))
|
|
return_0;
|
|
|
|
dm_list_init(&meta_lvs); /* For image addition */
|
|
dm_list_init(&data_lvs); /* For image addition */
|
|
|
|
/*
|
|
* If the segtype is linear, then we must allocate a metadata
|
|
* LV to accompany it.
|
|
*/
|
|
if (seg_is_linear(seg)) {
|
|
/* A complete resync will be done, no need to mark each sub-lv */
|
|
status_mask = ~(LV_REBUILD);
|
|
|
|
if (!(lvl = dm_pool_alloc(lv->vg->vgmem, sizeof(*lvl)))) {
|
|
log_error("Memory allocation failed");
|
|
return 0;
|
|
}
|
|
|
|
if (!_alloc_rmeta_for_lv(lv, &lvl->lv, NULL))
|
|
return_0;
|
|
|
|
dm_list_add(&meta_lvs, &lvl->list);
|
|
} else if (!seg_is_raid(seg)) {
|
|
log_error("Unable to add RAID images to %s of segment type %s",
|
|
lv->name, lvseg_name(seg));
|
|
return 0;
|
|
}
|
|
|
|
if (!_alloc_image_components(lv, pvs, count, &meta_lvs, &data_lvs))
|
|
return_0;
|
|
|
|
/*
|
|
* If linear, we must correct data LV names. They are off-by-one
|
|
* because the linear volume hasn't taken its proper name of "_rimage_0"
|
|
* yet. This action must be done before '_clear_lvs' because it
|
|
* commits the LVM metadata before clearing the LVs.
|
|
*/
|
|
if (seg_is_linear(seg)) {
|
|
struct dm_list *l;
|
|
struct lv_list *lvl_tmp;
|
|
|
|
dm_list_iterate(l, &data_lvs) {
|
|
if (l == dm_list_last(&data_lvs)) {
|
|
lvl = dm_list_item(l, struct lv_list);
|
|
if (!(lvl->lv->name = _generate_raid_name(lv, "rimage", count)))
|
|
return_0;
|
|
continue;
|
|
}
|
|
lvl = dm_list_item(l, struct lv_list);
|
|
lvl_tmp = dm_list_item(l->n, struct lv_list);
|
|
lvl->lv->name = lvl_tmp->lv->name;
|
|
}
|
|
}
|
|
|
|
/* Metadata LVs must be cleared before being added to the array */
|
|
if (!_clear_lvs(&meta_lvs))
|
|
goto fail;
|
|
|
|
if (seg_is_linear(seg)) {
|
|
first_seg(lv)->status |= RAID_IMAGE;
|
|
if (!insert_layer_for_lv(lv->vg->cmd, lv,
|
|
RAID | LVM_READ | LVM_WRITE,
|
|
"_rimage_0"))
|
|
return_0;
|
|
|
|
lv->status |= RAID;
|
|
seg = first_seg(lv);
|
|
seg_lv(seg, 0)->status |= RAID_IMAGE | LVM_READ | LVM_WRITE;
|
|
seg->region_size = get_default_region_size(lv->vg->cmd);
|
|
|
|
/* MD's bitmap is limited to tracking 2^21 regions */
|
|
while (seg->region_size < (lv->size / (1 << 21))) {
|
|
seg->region_size *= 2;
|
|
log_very_verbose("Setting RAID1 region_size to %uS",
|
|
seg->region_size);
|
|
}
|
|
if (!(seg->segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_RAID1)))
|
|
return_0;
|
|
}
|
|
/*
|
|
FIXME: It would be proper to activate the new LVs here, instead of having
|
|
them activated by the suspend. However, this causes residual device nodes
|
|
to be left for these sub-lvs.
|
|
dm_list_iterate_items(lvl, &meta_lvs)
|
|
if (!do_correct_activate(lv, lvl->lv))
|
|
return_0;
|
|
dm_list_iterate_items(lvl, &data_lvs)
|
|
if (!do_correct_activate(lv, lvl->lv))
|
|
return_0;
|
|
*/
|
|
/* Expand areas array */
|
|
if (!(new_areas = dm_pool_zalloc(lv->vg->cmd->mem,
|
|
new_count * sizeof(*new_areas)))) {
|
|
log_error("Allocation of new areas failed.");
|
|
goto fail;
|
|
}
|
|
memcpy(new_areas, seg->areas, seg->area_count * sizeof(*seg->areas));
|
|
seg->areas = new_areas;
|
|
|
|
/* Expand meta_areas array */
|
|
if (!(new_areas = dm_pool_zalloc(lv->vg->cmd->mem,
|
|
new_count * sizeof(*new_areas)))) {
|
|
log_error("Allocation of new meta areas failed.");
|
|
goto fail;
|
|
}
|
|
if (seg->meta_areas)
|
|
memcpy(new_areas, seg->meta_areas,
|
|
seg->area_count * sizeof(*seg->meta_areas));
|
|
seg->meta_areas = new_areas;
|
|
seg->area_count = new_count;
|
|
|
|
/* Add extra meta area when converting from linear */
|
|
s = (old_count == 1) ? 0 : old_count;
|
|
|
|
/* Set segment areas for metadata sub_lvs */
|
|
dm_list_iterate_items(lvl, &meta_lvs) {
|
|
log_debug_metadata("Adding %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
lvl->lv->status &= status_mask;
|
|
first_seg(lvl->lv)->status &= status_mask;
|
|
if (!set_lv_segment_area_lv(seg, s, lvl->lv, 0,
|
|
lvl->lv->status)) {
|
|
log_error("Failed to add %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
goto fail;
|
|
}
|
|
s++;
|
|
}
|
|
|
|
s = old_count;
|
|
|
|
/* Set segment areas for data sub_lvs */
|
|
dm_list_iterate_items(lvl, &data_lvs) {
|
|
log_debug_metadata("Adding %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
lvl->lv->status &= status_mask;
|
|
first_seg(lvl->lv)->status &= status_mask;
|
|
if (!set_lv_segment_area_lv(seg, s, lvl->lv, 0,
|
|
lvl->lv->status)) {
|
|
log_error("Failed to add %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
goto fail;
|
|
}
|
|
s++;
|
|
}
|
|
|
|
/*
|
|
* FIXME: Failure handling during these points is harder.
|
|
*/
|
|
dm_list_iterate_items(lvl, &meta_lvs)
|
|
lv_set_hidden(lvl->lv);
|
|
dm_list_iterate_items(lvl, &data_lvs)
|
|
lv_set_hidden(lvl->lv);
|
|
|
|
if (!lv_update_and_reload_origin(lv))
|
|
return_0;
|
|
|
|
/*
|
|
* Now that the 'REBUILD' has made its way to the kernel, we must
|
|
* remove the flag so that the individual devices are not rebuilt
|
|
* upon every activation.
|
|
*/
|
|
seg = first_seg(lv);
|
|
for (s = 0; s < seg->area_count; s++) {
|
|
if ((seg_lv(seg, s)->status & LV_REBUILD) ||
|
|
(seg_metalv(seg, s)->status & LV_REBUILD)) {
|
|
seg_metalv(seg, s)->status &= ~LV_REBUILD;
|
|
seg_lv(seg, s)->status &= ~LV_REBUILD;
|
|
rebuild_flag_cleared = 1;
|
|
}
|
|
}
|
|
if (rebuild_flag_cleared) {
|
|
if (!vg_write(lv->vg) || !vg_commit(lv->vg)) {
|
|
log_error("Failed to clear REBUILD flag for %s/%s components",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
backup(lv->vg);
|
|
}
|
|
|
|
return 1;
|
|
|
|
fail:
|
|
/* Cleanly remove newly-allocated LVs that failed insertion attempt */
|
|
dm_list_iterate_items(lvl, &meta_lvs)
|
|
if (!lv_remove(lvl->lv))
|
|
return_0;
|
|
|
|
dm_list_iterate_items(lvl, &data_lvs)
|
|
if (!lv_remove(lvl->lv))
|
|
return_0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* _extract_image_components
|
|
* @seg
|
|
* @idx: The index in the areas array to remove
|
|
* @extracted_rmeta: The displaced metadata LV
|
|
* @extracted_rimage: The displaced data LV
|
|
*
|
|
* This function extracts the image components - setting the respective
|
|
* 'extracted' pointers. It appends '_extracted' to the LVs' names, so that
|
|
* there are not future conflicts. It does /not/ commit the results.
|
|
* (IOW, erroring-out requires no unwinding of operations.)
|
|
*
|
|
* This function does /not/ attempt to:
|
|
* 1) shift the 'areas' or 'meta_areas' arrays.
|
|
* The '[meta_]areas' are left as AREA_UNASSIGNED.
|
|
* 2) Adjust the seg->area_count
|
|
* 3) Name the extracted LVs appropriately (appends '_extracted' to names)
|
|
* These actions must be performed by the caller.
|
|
*
|
|
* Returns: 1 on success, 0 on failure
|
|
*/
|
|
static int _extract_image_components(struct lv_segment *seg, uint32_t idx,
|
|
struct logical_volume **extracted_rmeta,
|
|
struct logical_volume **extracted_rimage)
|
|
{
|
|
struct logical_volume *data_lv = seg_lv(seg, idx);
|
|
struct logical_volume *meta_lv = seg_metalv(seg, idx);
|
|
|
|
log_very_verbose("Extracting image components %s and %s from %s",
|
|
data_lv->name, meta_lv->name, seg->lv->name);
|
|
|
|
data_lv->status &= ~RAID_IMAGE;
|
|
meta_lv->status &= ~RAID_META;
|
|
lv_set_visible(data_lv);
|
|
lv_set_visible(meta_lv);
|
|
|
|
/* release removes data and meta areas */
|
|
if (!remove_seg_from_segs_using_this_lv(data_lv, seg) ||
|
|
!remove_seg_from_segs_using_this_lv(meta_lv, seg))
|
|
return_0;
|
|
|
|
seg_type(seg, idx) = AREA_UNASSIGNED;
|
|
seg_metatype(seg, idx) = AREA_UNASSIGNED;
|
|
|
|
if (!(data_lv->name = _generate_raid_name(data_lv, "_extracted", -1)))
|
|
return_0;
|
|
|
|
if (!(meta_lv->name = _generate_raid_name(meta_lv, "_extracted", -1)))
|
|
return_0;
|
|
|
|
*extracted_rmeta = meta_lv;
|
|
*extracted_rimage = data_lv;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* _raid_extract_images
|
|
* @lv
|
|
* @new_count: The absolute count of images (e.g. '2' for a 2-way mirror)
|
|
* @target_pvs: The list of PVs that are candidates for removal
|
|
* @shift: If set, use _shift_and_rename_image_components().
|
|
* Otherwise, leave the [meta_]areas as AREA_UNASSIGNED and
|
|
* seg->area_count unchanged.
|
|
* @extracted_[meta|data]_lvs: The LVs removed from the array. If 'shift'
|
|
* is set, then there will likely be name conflicts.
|
|
*
|
|
* This function extracts _both_ portions of the indexed image. It
|
|
* does /not/ commit the results. (IOW, erroring-out requires no unwinding
|
|
* of operations.)
|
|
*
|
|
* Returns: 1 on success, 0 on failure
|
|
*/
|
|
static int _raid_extract_images(struct logical_volume *lv, uint32_t new_count,
|
|
struct dm_list *target_pvs, int shift,
|
|
struct dm_list *extracted_meta_lvs,
|
|
struct dm_list *extracted_data_lvs)
|
|
{
|
|
int ss, s, extract, lvl_idx = 0;
|
|
struct lv_list *lvl_array;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
struct logical_volume *rmeta_lv, *rimage_lv;
|
|
struct segment_type *error_segtype;
|
|
|
|
extract = seg->area_count - new_count;
|
|
log_verbose("Extracting %u %s from %s/%s", extract,
|
|
(extract > 1) ? "images" : "image",
|
|
lv->vg->name, lv->name);
|
|
if ((int) dm_list_size(target_pvs) < extract) {
|
|
log_error("Unable to remove %d images: Only %d device%s given.",
|
|
extract, dm_list_size(target_pvs),
|
|
(dm_list_size(target_pvs) == 1) ? "" : "s");
|
|
return 0;
|
|
}
|
|
|
|
if (!(lvl_array = dm_pool_alloc(lv->vg->vgmem,
|
|
sizeof(*lvl_array) * extract * 2)))
|
|
return_0;
|
|
|
|
if (!(error_segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_ERROR)))
|
|
return_0;
|
|
|
|
/*
|
|
* We make two passes over the devices.
|
|
* - The first pass we look for error LVs
|
|
* - The second pass we look for PVs that match target_pvs
|
|
*/
|
|
for (ss = (seg->area_count * 2) - 1; (ss >= 0) && extract; ss--) {
|
|
s = ss % seg->area_count;
|
|
|
|
if (ss / seg->area_count) {
|
|
/* Conditions for first pass */
|
|
if ((first_seg(seg_lv(seg, s))->segtype != error_segtype) &&
|
|
(first_seg(seg_metalv(seg, s))->segtype != error_segtype))
|
|
continue;
|
|
|
|
if (!dm_list_empty(target_pvs) &&
|
|
(target_pvs != &lv->vg->pvs)) {
|
|
/*
|
|
* User has supplied a list of PVs, but we
|
|
* cannot honor that list because error LVs
|
|
* must come first.
|
|
*/
|
|
log_error("%s has components with error targets"
|
|
" that must be removed first: %s.",
|
|
display_lvname(lv),
|
|
display_lvname(seg_lv(seg, s)));
|
|
|
|
log_error("Try removing the PV list and rerun"
|
|
" the command.");
|
|
return 0;
|
|
}
|
|
log_debug("LVs with error segments to be removed: %s %s",
|
|
display_lvname(seg_metalv(seg, s)),
|
|
display_lvname(seg_lv(seg, s)));
|
|
} else {
|
|
/* Conditions for second pass */
|
|
if (!lv_is_on_pvs(seg_lv(seg, s), target_pvs) &&
|
|
!lv_is_on_pvs(seg_metalv(seg, s), target_pvs))
|
|
continue;
|
|
|
|
if (!_raid_in_sync(lv) &&
|
|
(!seg_is_mirrored(seg) || (s == 0))) {
|
|
log_error("Unable to extract %sRAID image"
|
|
" while RAID array is not in-sync",
|
|
seg_is_mirrored(seg) ? "primary " : "");
|
|
return 0;
|
|
}
|
|
}
|
|
if (!_extract_image_components(seg, s, &rmeta_lv, &rimage_lv)) {
|
|
log_error("Failed to extract %s from %s",
|
|
seg_lv(seg, s)->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (shift && !_shift_and_rename_image_components(seg)) {
|
|
log_error("Failed to shift and rename image components");
|
|
return 0;
|
|
}
|
|
|
|
lvl_array[lvl_idx].lv = rmeta_lv;
|
|
lvl_array[lvl_idx + 1].lv = rimage_lv;
|
|
dm_list_add(extracted_meta_lvs, &(lvl_array[lvl_idx++].list));
|
|
dm_list_add(extracted_data_lvs, &(lvl_array[lvl_idx++].list));
|
|
|
|
extract--;
|
|
}
|
|
if (extract) {
|
|
log_error("Unable to extract enough images to satisfy request");
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _raid_remove_images(struct logical_volume *lv,
|
|
uint32_t new_count, struct dm_list *pvs)
|
|
{
|
|
struct dm_list removal_lvs;
|
|
struct lv_list *lvl;
|
|
|
|
if (!archive(lv->vg))
|
|
return_0;
|
|
|
|
dm_list_init(&removal_lvs);
|
|
|
|
if (!_raid_extract_images(lv, new_count, pvs, 1,
|
|
&removal_lvs, &removal_lvs)) {
|
|
log_error("Failed to extract images from %s/%s",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/* Convert to linear? */
|
|
if (new_count == 1) {
|
|
if (!_raid_remove_top_layer(lv, &removal_lvs)) {
|
|
log_error("Failed to remove RAID layer"
|
|
" after linear conversion");
|
|
return 0;
|
|
}
|
|
lv->status &= ~(LV_NOTSYNCED | LV_WRITEMOSTLY);
|
|
first_seg(lv)->writebehind = 0;
|
|
}
|
|
|
|
if (!vg_write(lv->vg)) {
|
|
log_error("Failed to write changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!suspend_lv(lv->vg->cmd, lv)) {
|
|
log_error("Failed to suspend %s/%s before committing changes",
|
|
lv->vg->name, lv->name);
|
|
vg_revert(lv->vg);
|
|
return 0;
|
|
}
|
|
|
|
if (!vg_commit(lv->vg)) {
|
|
log_error("Failed to commit changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We activate the extracted sub-LVs first so they are renamed
|
|
* and won't conflict with the remaining (possibly shifted)
|
|
* sub-LVs.
|
|
*/
|
|
dm_list_iterate_items(lvl, &removal_lvs) {
|
|
if (!activate_lv_excl_local(lv->vg->cmd, lvl->lv)) {
|
|
log_error("Failed to resume extracted LVs");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (!resume_lv(lv->vg->cmd, lv)) {
|
|
log_error("Failed to resume %s/%s after committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!sync_local_dev_names(lv->vg->cmd)) {
|
|
log_error("Failed to sync local devices after committing changes for %s.",
|
|
display_lvname(lv));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Eliminate the extracted LVs
|
|
*/
|
|
if (!dm_list_empty(&removal_lvs)) {
|
|
dm_list_iterate_items(lvl, &removal_lvs) {
|
|
if (!deactivate_lv(lv->vg->cmd, lvl->lv))
|
|
return_0;
|
|
if (!lv_remove(lvl->lv))
|
|
return_0;
|
|
}
|
|
|
|
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
|
|
return_0;
|
|
}
|
|
|
|
backup(lv->vg);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* lv_raid_change_image_count
|
|
* @lv
|
|
* @new_count: The absolute count of images (e.g. '2' for a 2-way mirror)
|
|
* @pvs: The list of PVs that are candidates for removal (or empty list)
|
|
*
|
|
* RAID arrays have 'images' which are composed of two parts, they are:
|
|
* - 'rimage': The data/parity holding portion
|
|
* - 'rmeta' : The metadata holding portion (i.e. superblock/bitmap area)
|
|
* This function adds or removes _both_ portions of the image and commits
|
|
* the results.
|
|
*
|
|
* Returns: 1 on success, 0 on failure
|
|
*/
|
|
int lv_raid_change_image_count(struct logical_volume *lv,
|
|
uint32_t new_count, struct dm_list *pvs)
|
|
{
|
|
uint32_t old_count = lv_raid_image_count(lv);
|
|
|
|
if (old_count == new_count) {
|
|
log_warn("%s/%s already has image count of %d.",
|
|
lv->vg->name, lv->name, new_count);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* LV must be either in-active or exclusively active
|
|
*/
|
|
if (lv_is_active(lv_lock_holder(lv)) && vg_is_clustered(lv->vg) &&
|
|
!lv_is_active_exclusive_locally(lv_lock_holder(lv))) {
|
|
log_error("%s/%s must be active exclusive locally to"
|
|
" perform this operation.", lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (old_count > new_count)
|
|
return _raid_remove_images(lv, new_count, pvs);
|
|
|
|
return _raid_add_images(lv, new_count, pvs);
|
|
}
|
|
|
|
int lv_raid_split(struct logical_volume *lv, const char *split_name,
|
|
uint32_t new_count, struct dm_list *splittable_pvs)
|
|
{
|
|
struct lv_list *lvl;
|
|
struct dm_list removal_lvs, data_list;
|
|
struct cmd_context *cmd = lv->vg->cmd;
|
|
uint32_t old_count = lv_raid_image_count(lv);
|
|
struct logical_volume *tracking;
|
|
struct dm_list tracking_pvs;
|
|
int historical;
|
|
|
|
dm_list_init(&removal_lvs);
|
|
dm_list_init(&data_list);
|
|
|
|
if (is_lockd_type(lv->vg->lock_type)) {
|
|
log_error("Splitting raid image is not allowed with lock_type %s",
|
|
lv->vg->lock_type);
|
|
return 0;
|
|
}
|
|
|
|
if ((old_count - new_count) != 1) {
|
|
log_error("Unable to split more than one image from %s/%s",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!seg_is_mirrored(first_seg(lv)) ||
|
|
seg_is_raid10(first_seg(lv))) {
|
|
log_error("Unable to split logical volume of segment type, %s",
|
|
lvseg_name(first_seg(lv)));
|
|
return 0;
|
|
}
|
|
|
|
if (lv_name_is_used_in_vg(lv->vg, split_name, &historical)) {
|
|
log_error("%sLogical Volume \"%s\" already exists in %s",
|
|
historical ? "historical " : "", split_name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!_raid_in_sync(lv)) {
|
|
log_error("Unable to split %s/%s while it is not in-sync.",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We only allow a split while there is tracking if it is to
|
|
* complete the split of the tracking sub-LV
|
|
*/
|
|
if (_lv_is_raid_with_tracking(lv, &tracking)) {
|
|
if (!lv_is_on_pvs(tracking, splittable_pvs)) {
|
|
log_error("Unable to split additional image from %s "
|
|
"while tracking changes for %s",
|
|
lv->name, tracking->name);
|
|
return 0;
|
|
}
|
|
|
|
/* Ensure we only split the tracking image */
|
|
dm_list_init(&tracking_pvs);
|
|
splittable_pvs = &tracking_pvs;
|
|
if (!get_pv_list_for_lv(tracking->vg->cmd->mem,
|
|
tracking, splittable_pvs))
|
|
return_0;
|
|
}
|
|
|
|
if (!_raid_extract_images(lv, new_count, splittable_pvs, 1,
|
|
&removal_lvs, &data_list)) {
|
|
log_error("Failed to extract images from %s/%s",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/* Convert to linear? */
|
|
if ((new_count == 1) && !_raid_remove_top_layer(lv, &removal_lvs)) {
|
|
log_error("Failed to remove RAID layer after linear conversion");
|
|
return 0;
|
|
}
|
|
|
|
/* Get first item */
|
|
dm_list_iterate_items(lvl, &data_list)
|
|
break;
|
|
|
|
lvl->lv->name = split_name;
|
|
|
|
if (!vg_write(lv->vg)) {
|
|
log_error("Failed to write changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!suspend_lv(cmd, lv_lock_holder(lv))) {
|
|
log_error("Failed to suspend %s/%s before committing changes",
|
|
lv->vg->name, lv->name);
|
|
vg_revert(lv->vg);
|
|
return 0;
|
|
}
|
|
|
|
if (!vg_commit(lv->vg)) {
|
|
log_error("Failed to commit changes to %s in %s",
|
|
lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* First activate the newly split LV and LVs on the removal list.
|
|
* This is necessary so that there are no name collisions due to
|
|
* the original RAID LV having possibly had sub-LVs that have been
|
|
* shifted and renamed.
|
|
*/
|
|
if (!activate_lv_excl_local(cmd, lvl->lv))
|
|
return_0;
|
|
|
|
dm_list_iterate_items(lvl, &removal_lvs)
|
|
if (!activate_lv_excl_local(cmd, lvl->lv))
|
|
return_0;
|
|
|
|
if (!resume_lv(cmd, lv_lock_holder(lv))) {
|
|
log_error("Failed to resume %s/%s after committing changes",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Since newly split LV is typically already active - we need to call
|
|
* suspend() and resume() to also rename it.
|
|
*
|
|
* TODO: activate should recognize it and avoid these 2 calls
|
|
*/
|
|
|
|
/*
|
|
* Eliminate the residual LVs
|
|
*/
|
|
dm_list_iterate_items(lvl, &removal_lvs) {
|
|
if (!deactivate_lv(cmd, lvl->lv))
|
|
return_0;
|
|
|
|
if (!lv_remove(lvl->lv))
|
|
return_0;
|
|
}
|
|
|
|
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
|
|
return_0;
|
|
|
|
backup(lv->vg);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* lv_raid_split_and_track
|
|
* @lv
|
|
* @splittable_pvs
|
|
*
|
|
* Only allows a single image to be split while tracking. The image
|
|
* never actually leaves the mirror. It is simply made visible. This
|
|
* action triggers two things: 1) users are able to access the (data) image
|
|
* and 2) lower layers replace images marked with a visible flag with
|
|
* error targets.
|
|
*
|
|
* Returns: 1 on success, 0 on error
|
|
*/
|
|
int lv_raid_split_and_track(struct logical_volume *lv,
|
|
struct dm_list *splittable_pvs)
|
|
{
|
|
int s;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
|
|
if (!seg_is_mirrored(seg)) {
|
|
log_error("Unable to split images from non-mirrored RAID");
|
|
return 0;
|
|
}
|
|
|
|
if (!_raid_in_sync(lv)) {
|
|
log_error("Unable to split image from %s/%s while not in-sync",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/* Cannot track two split images at once */
|
|
if (lv_is_raid_with_tracking(lv)) {
|
|
log_error("Cannot track more than one split image at a time");
|
|
return 0;
|
|
}
|
|
|
|
for (s = seg->area_count - 1; s >= 0; --s) {
|
|
if (!lv_is_on_pvs(seg_lv(seg, s), splittable_pvs))
|
|
continue;
|
|
lv_set_visible(seg_lv(seg, s));
|
|
seg_lv(seg, s)->status &= ~LVM_WRITE;
|
|
break;
|
|
}
|
|
|
|
if (s >= (int) seg->area_count) {
|
|
log_error("Unable to find image to satisfy request");
|
|
return 0;
|
|
}
|
|
|
|
if (!lv_update_and_reload(lv))
|
|
return_0;
|
|
|
|
log_print_unless_silent("%s split from %s for read-only purposes.",
|
|
seg_lv(seg, s)->name, lv->name);
|
|
|
|
/* Activate the split (and tracking) LV */
|
|
if (!_activate_sublv_preserving_excl(lv, seg_lv(seg, s)))
|
|
return_0;
|
|
|
|
log_print_unless_silent("Use 'lvconvert --merge %s/%s' to merge back into %s",
|
|
lv->vg->name, seg_lv(seg, s)->name, lv->name);
|
|
return 1;
|
|
}
|
|
|
|
int lv_raid_merge(struct logical_volume *image_lv)
|
|
{
|
|
uint32_t s;
|
|
char *p, *lv_name;
|
|
struct lv_list *lvl;
|
|
struct logical_volume *lv;
|
|
struct logical_volume *meta_lv = NULL;
|
|
struct lv_segment *seg;
|
|
struct volume_group *vg = image_lv->vg;
|
|
|
|
if (image_lv->status & LVM_WRITE) {
|
|
log_error("%s is not read-only - refusing to merge.",
|
|
display_lvname(image_lv));
|
|
return 0;
|
|
}
|
|
|
|
if (!(lv_name = dm_pool_strdup(vg->vgmem, image_lv->name)))
|
|
return_0;
|
|
|
|
if (!(p = strstr(lv_name, "_rimage_"))) {
|
|
log_error("Unable to merge non-mirror image %s.",
|
|
display_lvname(image_lv));
|
|
return 0;
|
|
}
|
|
*p = '\0'; /* lv_name is now that of top-level RAID */
|
|
|
|
if (!(lvl = find_lv_in_vg(vg, lv_name))) {
|
|
log_error("Unable to find containing RAID array for %s.",
|
|
display_lvname(image_lv));
|
|
return 0;
|
|
}
|
|
|
|
lv = lvl->lv;
|
|
seg = first_seg(lv);
|
|
for (s = 0; s < seg->area_count; ++s)
|
|
if (seg_lv(seg, s) == image_lv)
|
|
meta_lv = seg_metalv(seg, s);
|
|
|
|
if (!meta_lv) {
|
|
log_error("Failed to find meta for %s in RAID array %s.",
|
|
display_lvname(image_lv),
|
|
display_lvname(lv));
|
|
return 0;
|
|
}
|
|
|
|
if (!deactivate_lv(vg->cmd, meta_lv)) {
|
|
log_error("Failed to deactivate %s before merging.",
|
|
display_lvname(meta_lv));
|
|
return 0;
|
|
}
|
|
|
|
if (!deactivate_lv(vg->cmd, image_lv)) {
|
|
log_error("Failed to deactivate %s before merging.",
|
|
display_lvname(image_lv));
|
|
return 0;
|
|
}
|
|
lv_set_hidden(image_lv);
|
|
image_lv->status |= (lv->status & LVM_WRITE);
|
|
image_lv->status |= RAID_IMAGE;
|
|
|
|
if (!lv_update_and_reload(lv))
|
|
return_0;
|
|
|
|
log_print_unless_silent("%s/%s successfully merged back into %s/%s",
|
|
vg->name, image_lv->name, vg->name, lv->name);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* General conversion functions
|
|
*/
|
|
static int _convert_mirror_to_raid1(struct logical_volume *lv,
|
|
const struct segment_type *new_segtype)
|
|
{
|
|
uint32_t s;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
struct lv_list lvl_array[seg->area_count], *lvl;
|
|
struct dm_list meta_lvs;
|
|
struct lv_segment_area *meta_areas;
|
|
char *new_name;
|
|
|
|
dm_list_init(&meta_lvs);
|
|
|
|
if (!_raid_in_sync(lv)) {
|
|
log_error("Unable to convert %s/%s while it is not in-sync",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!(meta_areas = dm_pool_zalloc(lv->vg->vgmem,
|
|
lv_mirror_count(lv) * sizeof(*meta_areas)))) {
|
|
log_error("Failed to allocate meta areas memory.");
|
|
return 0;
|
|
}
|
|
|
|
if (!archive(lv->vg))
|
|
return_0;
|
|
|
|
for (s = 0; s < seg->area_count; s++) {
|
|
log_debug_metadata("Allocating new metadata LV for %s",
|
|
seg_lv(seg, s)->name);
|
|
if (!_alloc_rmeta_for_lv(seg_lv(seg, s), &(lvl_array[s].lv), NULL)) {
|
|
log_error("Failed to allocate metadata LV for %s in %s",
|
|
seg_lv(seg, s)->name, lv->name);
|
|
return 0;
|
|
}
|
|
dm_list_add(&meta_lvs, &(lvl_array[s].list));
|
|
}
|
|
|
|
log_debug_metadata("Clearing newly allocated metadata LVs");
|
|
if (!_clear_lvs(&meta_lvs)) {
|
|
log_error("Failed to initialize metadata LVs");
|
|
return 0;
|
|
}
|
|
|
|
if (seg->log_lv) {
|
|
log_debug_metadata("Removing mirror log, %s", seg->log_lv->name);
|
|
if (!remove_mirror_log(lv->vg->cmd, lv, NULL, 0)) {
|
|
log_error("Failed to remove mirror log");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
seg->meta_areas = meta_areas;
|
|
s = 0;
|
|
|
|
dm_list_iterate_items(lvl, &meta_lvs) {
|
|
log_debug_metadata("Adding %s to %s", lvl->lv->name, lv->name);
|
|
|
|
/* Images are known to be in-sync */
|
|
lvl->lv->status &= ~LV_REBUILD;
|
|
first_seg(lvl->lv)->status &= ~LV_REBUILD;
|
|
lv_set_hidden(lvl->lv);
|
|
|
|
if (!set_lv_segment_area_lv(seg, s, lvl->lv, 0,
|
|
lvl->lv->status)) {
|
|
log_error("Failed to add %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
return 0;
|
|
}
|
|
s++;
|
|
}
|
|
|
|
for (s = 0; s < seg->area_count; ++s) {
|
|
if (!(new_name = _generate_raid_name(lv, "rimage", s)))
|
|
return_0;
|
|
log_debug_metadata("Renaming %s to %s", seg_lv(seg, s)->name, new_name);
|
|
seg_lv(seg, s)->name = new_name;
|
|
seg_lv(seg, s)->status &= ~MIRROR_IMAGE;
|
|
seg_lv(seg, s)->status |= RAID_IMAGE;
|
|
}
|
|
init_mirror_in_sync(1);
|
|
|
|
log_debug_metadata("Setting new segtype for %s", lv->name);
|
|
seg->segtype = new_segtype;
|
|
lv->status &= ~MIRROR;
|
|
lv->status &= ~MIRRORED;
|
|
lv->status |= RAID;
|
|
seg->status |= RAID;
|
|
|
|
if (!lv_update_and_reload(lv))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Add new @lvs to @lv at @area_offset */
|
|
static int _add_image_component_list(struct lv_segment *seg, int delete_from_list,
|
|
uint64_t lv_flags, struct dm_list *lvs, uint32_t area_offset)
|
|
{
|
|
uint32_t s = area_offset;
|
|
struct lv_list *lvl, *tmp;
|
|
|
|
dm_list_iterate_items_safe(lvl, tmp, lvs) {
|
|
if (delete_from_list)
|
|
dm_list_del(&lvl->list);
|
|
|
|
if (lv_flags & VISIBLE_LV)
|
|
lv_set_visible(lvl->lv);
|
|
else
|
|
lv_set_hidden(lvl->lv);
|
|
|
|
if (lv_flags & LV_REBUILD)
|
|
lvl->lv->status |= LV_REBUILD;
|
|
else
|
|
lvl->lv->status &= ~LV_REBUILD;
|
|
|
|
if (!set_lv_segment_area_lv(seg, s++, lvl->lv, 0 /* le */, lvl->lv->status)) {
|
|
log_error("Failed to add sublv %s", lvl->lv->name);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* All areas from LV segments are moved to new
|
|
* segments allocated with area_count=1 for data_lvs.
|
|
*/
|
|
static int _striped_to_raid0_move_segs_to_raid0_lvs(struct logical_volume *lv,
|
|
struct dm_list *data_lvs)
|
|
{
|
|
uint32_t s = 0, le;
|
|
struct logical_volume *dlv;
|
|
struct lv_segment *seg_from, *seg_new;
|
|
struct lv_list *lvl;
|
|
struct segment_type *segtype;
|
|
uint64_t status;
|
|
|
|
if (!(segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_STRIPED)))
|
|
return_0;
|
|
|
|
/* Move segment areas across to the N data LVs of the new raid0 LV */
|
|
dm_list_iterate_items(lvl, data_lvs) {
|
|
dlv = lvl->lv;
|
|
le = 0;
|
|
dm_list_iterate_items(seg_from, &lv->segments) {
|
|
status = RAID | SEG_RAID | (seg_from->status & (LVM_READ | LVM_WRITE));
|
|
|
|
/* Allocate a data LV segment with one area for each segment in the striped LV */
|
|
if (!(seg_new = alloc_lv_segment(segtype, dlv,
|
|
le, seg_from->area_len,
|
|
status,
|
|
0 /* stripe_size */, NULL, 1 /* area_count */,
|
|
seg_from->area_len,
|
|
0 /* chunk_size */, 0 /* region_size */, 0, NULL)))
|
|
return_0;
|
|
|
|
seg_type(seg_new, 0) = AREA_UNASSIGNED;
|
|
dm_list_add(&dlv->segments, &seg_new->list);
|
|
le += seg_from->area_len;
|
|
|
|
/* Move the respective area across to our new segment */
|
|
if (!move_lv_segment_area(seg_new, 0, seg_from, s))
|
|
return_0;
|
|
}
|
|
|
|
/* Adjust le count and LV size */
|
|
dlv->le_count = le;
|
|
dlv->size = (uint64_t) le * lv->vg->extent_size;
|
|
s++;
|
|
}
|
|
|
|
/* Remove the empty segments from the striped LV */
|
|
dm_list_init(&lv->segments);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Find the smallest area across all the subLV segments at area_le.
|
|
*/
|
|
static uint32_t _min_sublv_area_at_le(struct lv_segment *seg, uint32_t area_le)
|
|
{
|
|
uint32_t s, area_len = ~0U;
|
|
struct lv_segment *seg1;
|
|
|
|
/* Find smallest segment of each of the data image LVs at offset area_le */
|
|
for (s = 0; s < seg->area_count; s++) {
|
|
if (!(seg1 = find_seg_by_le(seg_lv(seg, s), area_le))) {
|
|
log_error("Failed to find segment for %s extent %" PRIu32,
|
|
seg_lv(seg, s)->name, area_le);
|
|
return 0;
|
|
}
|
|
|
|
area_len = min(area_len, seg1->len);
|
|
}
|
|
|
|
return area_len;
|
|
}
|
|
|
|
/*
|
|
* Split segments in segment LVs in all areas of seg at offset area_le
|
|
*/
|
|
static int _split_area_lvs_segments(struct lv_segment *seg, uint32_t area_le)
|
|
{
|
|
uint32_t s;
|
|
|
|
/* Make sure that there's a segment starting at area_le in all data LVs */
|
|
for (s = 0; s < seg->area_count; s++)
|
|
if (area_le < seg_lv(seg, s)->le_count &&
|
|
!lv_split_segment(seg_lv(seg, s), area_le))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _alloc_and_add_new_striped_segment(struct logical_volume *lv,
|
|
uint32_t le, uint32_t area_len,
|
|
struct dm_list *new_segments)
|
|
{
|
|
struct lv_segment *seg, *new_seg;
|
|
struct segment_type *striped_segtype;
|
|
|
|
seg = first_seg(lv);
|
|
|
|
if (!(striped_segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_STRIPED)))
|
|
return_0;
|
|
|
|
/* Allocate a segment with seg->area_count areas */
|
|
if (!(new_seg = alloc_lv_segment(striped_segtype, lv, le, area_len * seg->area_count,
|
|
seg->status & ~RAID,
|
|
seg->stripe_size, NULL, seg->area_count,
|
|
area_len, seg->chunk_size, 0, 0, NULL)))
|
|
return_0;
|
|
|
|
dm_list_add(new_segments, &new_seg->list);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _extract_image_component_error_seg(struct lv_segment *seg,
|
|
uint64_t type, uint32_t idx,
|
|
struct logical_volume **extracted_lv,
|
|
int set_error_seg)
|
|
{
|
|
struct logical_volume *lv;
|
|
|
|
switch (type) {
|
|
case RAID_META:
|
|
lv = seg_metalv(seg, idx);
|
|
seg_metalv(seg, idx) = NULL;
|
|
seg_metatype(seg, idx) = AREA_UNASSIGNED;
|
|
break;
|
|
case RAID_IMAGE:
|
|
lv = seg_lv(seg, idx);
|
|
seg_lv(seg, idx) = NULL;
|
|
seg_type(seg, idx) = AREA_UNASSIGNED;
|
|
break;
|
|
default:
|
|
log_error(INTERNAL_ERROR "Bad type provided to %s.", __func__);
|
|
return 0;
|
|
}
|
|
|
|
log_very_verbose("Extracting image component %s from %s", lv->name, lvseg_name(seg));
|
|
lv->status &= ~(type | RAID);
|
|
lv_set_visible(lv);
|
|
|
|
/* remove reference from seg to lv */
|
|
if (!remove_seg_from_segs_using_this_lv(lv, seg))
|
|
return_0;
|
|
|
|
if (!(lv->name = _generate_raid_name(lv, "extracted_", -1)))
|
|
return_0;
|
|
|
|
if (set_error_seg && !replace_lv_with_error_segment(lv))
|
|
return_0;
|
|
|
|
*extracted_lv = lv;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Extract all sub LVs of type from seg starting at idx excluding end and
|
|
* put them on removal_lvs setting mappings to "error" if error_seg.
|
|
*/
|
|
static int _extract_image_component_sublist(struct lv_segment *seg,
|
|
uint64_t type, uint32_t idx, uint32_t end,
|
|
struct dm_list *removal_lvs,
|
|
int error_seg)
|
|
{
|
|
uint32_t s;
|
|
struct lv_list *lvl;
|
|
|
|
if (!(lvl = dm_pool_alloc(seg_lv(seg, idx)->vg->vgmem, sizeof(*lvl) * (end - idx))))
|
|
return_0;
|
|
|
|
for (s = idx; s < end; s++) {
|
|
if (!_extract_image_component_error_seg(seg, type, s, &lvl->lv, error_seg))
|
|
return 0;
|
|
|
|
dm_list_add(removal_lvs, &lvl->list);
|
|
lvl++;
|
|
}
|
|
|
|
if (!idx && end == seg->area_count) {
|
|
if (type == RAID_IMAGE)
|
|
seg->areas = NULL;
|
|
else
|
|
seg->meta_areas = NULL;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Extract all sub LVs of type from seg starting with idx and put them on removal_Lvs */
|
|
static int _extract_image_component_list(struct lv_segment *seg,
|
|
uint64_t type, uint32_t idx,
|
|
struct dm_list *removal_lvs)
|
|
{
|
|
return _extract_image_component_sublist(seg, type, idx, seg->area_count, removal_lvs, 1);
|
|
}
|
|
|
|
/*
|
|
* All areas from lv image component LV's segments are
|
|
* being split at "striped" compatible boundaries and
|
|
* moved to allocated new_segments.
|
|
*
|
|
* The data component LVs are mapped to an
|
|
* error target and linked to removal_lvs for disposal
|
|
* by the caller.
|
|
*/
|
|
static int _raid0_to_striped_retrieve_segments_and_lvs(struct logical_volume *lv,
|
|
struct dm_list *removal_lvs)
|
|
{
|
|
uint32_t s, area_le, area_len, le;
|
|
struct lv_segment *data_seg, *seg, *seg_to;
|
|
struct dm_list new_segments;
|
|
|
|
seg = first_seg(lv);
|
|
|
|
dm_list_init(&new_segments);
|
|
|
|
/*
|
|
* Walk all segments of all data LVs splitting them up at proper boundaries
|
|
* and create the number of new striped segments we need to move them across
|
|
*/
|
|
area_le = le = 0;
|
|
while (le < lv->le_count) {
|
|
if (!(area_len = _min_sublv_area_at_le(seg, area_le)))
|
|
return_0;
|
|
area_le += area_len;
|
|
|
|
if (!_split_area_lvs_segments(seg, area_le) ||
|
|
!_alloc_and_add_new_striped_segment(lv, le, area_len, &new_segments))
|
|
return_0;
|
|
|
|
le = area_le * seg->area_count;
|
|
}
|
|
|
|
/* Now move the prepared split areas across to the new segments */
|
|
area_le = 0;
|
|
dm_list_iterate_items(seg_to, &new_segments) {
|
|
for (s = 0; s < seg->area_count; s++) {
|
|
if (!(data_seg = find_seg_by_le(seg_lv(seg, s), area_le))) {
|
|
log_error("Failed to find segment for %s extent %" PRIu32,
|
|
seg_lv(seg, s)->name, area_le);
|
|
return 0;
|
|
}
|
|
|
|
/* Move the respective area across to our new segments area */
|
|
if (!move_lv_segment_area(seg_to, s, data_seg, 0))
|
|
return_0;
|
|
}
|
|
|
|
/* Presumes all data LVs have equal size */
|
|
area_le += data_seg->len;
|
|
}
|
|
|
|
/* Extract any metadata LVs and the empty data LVs for disposal by the caller */
|
|
if (!_extract_image_component_list(seg, RAID_IMAGE, 0, removal_lvs))
|
|
return_0;
|
|
|
|
/*
|
|
* Remove the one segment holding the image component areas
|
|
* from the top-level LV, then add the new segments to it
|
|
*/
|
|
dm_list_del(&seg->list);
|
|
dm_list_splice(&lv->segments, &new_segments);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Deactivate and remove the LVs on removal_lvs list from vg.
|
|
*/
|
|
static int _deactivate_and_remove_lvs(struct volume_group *vg, struct dm_list *removal_lvs)
|
|
{
|
|
struct lv_list *lvl;
|
|
|
|
dm_list_iterate_items(lvl, removal_lvs)
|
|
if (!deactivate_lv(vg->cmd, lvl->lv) ||
|
|
!lv_remove(lvl->lv))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* FIXME Move this out */
|
|
/* Write, commit and optionally backup metadata of vg */
|
|
static int _vg_write_commit_backup(struct volume_group *vg)
|
|
{
|
|
if (!vg_write(vg) || !vg_commit(vg)) {
|
|
log_error("Failed to commit VG %s metadata.", vg->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!backup(vg))
|
|
log_warn("WARNING: Backup of VG %s metadata failed. Continuing.", vg->name);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Eliminate the extracted LVs on @removal_lvs from @vg incl. vg write, commit and backup
|
|
*/
|
|
static int _eliminate_extracted_lvs_optional_write_vg(struct volume_group *vg,
|
|
struct dm_list *removal_lvs,
|
|
int vg_write_requested)
|
|
{
|
|
if (!removal_lvs || dm_list_empty(removal_lvs))
|
|
return 1;
|
|
|
|
if (!_deactivate_and_remove_lvs(vg, removal_lvs))
|
|
return_0;
|
|
|
|
/* Wait for events following any deactivation. */
|
|
if (!sync_local_dev_names(vg->cmd)) {
|
|
log_error("Failed to sync local devices after removing %u LVs in VG %s.",
|
|
dm_list_size(removal_lvs), vg->name);
|
|
return 0;
|
|
}
|
|
|
|
dm_list_init(removal_lvs);
|
|
|
|
if (vg_write_requested && !_vg_write_commit_backup(vg))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _eliminate_extracted_lvs(struct volume_group *vg, struct dm_list *removal_lvs)
|
|
{
|
|
return _eliminate_extracted_lvs_optional_write_vg(vg, removal_lvs, 1);
|
|
}
|
|
|
|
static int _avoid_pvs_of_lv(struct logical_volume *lv, void *data)
|
|
{
|
|
struct dm_list *allocate_pvs = (struct dm_list *) data;
|
|
struct pv_list *pvl;
|
|
|
|
dm_list_iterate_items(pvl, allocate_pvs)
|
|
if (!lv_is_partial(lv) && lv_is_on_pv(lv, pvl->pv))
|
|
pvl->pv->status |= PV_ALLOCATION_PROHIBITED;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Prevent any PVs holding other image components of @lv from being used for allocation
|
|
* by setting the internal PV_ALLOCATION_PROHIBITED flag to use it to avoid generating
|
|
* pv maps for those PVs.
|
|
*/
|
|
static int _avoid_pvs_with_other_images_of_lv(struct logical_volume *lv, struct dm_list *allocate_pvs)
|
|
{
|
|
return for_each_sub_lv(lv, _avoid_pvs_of_lv, allocate_pvs);
|
|
}
|
|
|
|
static void _clear_allocation_prohibited(struct dm_list *pvs)
|
|
{
|
|
struct pv_list *pvl;
|
|
|
|
if (pvs)
|
|
dm_list_iterate_items(pvl, pvs)
|
|
pvl->pv->status &= ~PV_ALLOCATION_PROHIBITED;
|
|
}
|
|
|
|
/*
|
|
* Allocate metadata devs for all @new_data_devs and link them to list @new_meta_lvs
|
|
*/
|
|
static int _alloc_rmeta_devs_for_rimage_devs(struct logical_volume *lv,
|
|
struct dm_list *new_data_lvs,
|
|
struct dm_list *new_meta_lvs,
|
|
struct dm_list *allocate_pvs)
|
|
{
|
|
uint32_t a = 0, raid_devs = dm_list_size(new_data_lvs);
|
|
struct lv_list *lvl, *lvl1, *lvl_array;
|
|
|
|
if (!raid_devs)
|
|
return_0;
|
|
|
|
if (!(lvl_array = dm_pool_zalloc(lv->vg->vgmem, raid_devs * sizeof(*lvl_array))))
|
|
return_0;
|
|
|
|
dm_list_iterate_items(lvl, new_data_lvs) {
|
|
log_debug_metadata("Allocating new metadata LV for %s", lvl->lv->name);
|
|
|
|
if (!_alloc_rmeta_for_lv(lvl->lv, &lvl_array[a].lv, allocate_pvs)) {
|
|
log_error("Failed to allocate metadata LV for %s in %s",
|
|
lvl->lv->name, lv->vg->name);
|
|
return 0;
|
|
}
|
|
|
|
dm_list_add(new_meta_lvs, &lvl_array[a++].list);
|
|
|
|
dm_list_iterate_items(lvl1, new_meta_lvs)
|
|
if (!_avoid_pvs_with_other_images_of_lv(lvl1->lv, allocate_pvs))
|
|
return_0;
|
|
}
|
|
|
|
_clear_allocation_prohibited(allocate_pvs);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Allocate metadata devs for all data devs of an LV
|
|
*/
|
|
static int _alloc_rmeta_devs_for_lv(struct logical_volume *lv,
|
|
struct dm_list *meta_lvs,
|
|
struct dm_list *allocate_pvs)
|
|
{
|
|
uint32_t s;
|
|
struct lv_list *lvl_array;
|
|
struct dm_list data_lvs;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
|
|
dm_list_init(&data_lvs);
|
|
|
|
if (!(seg->meta_areas = dm_pool_zalloc(lv->vg->vgmem, seg->area_count * sizeof(*seg->meta_areas))))
|
|
return 0;
|
|
|
|
if (!(lvl_array = dm_pool_alloc(lv->vg->vgmem, seg->area_count * sizeof(*lvl_array))))
|
|
return_0;
|
|
|
|
for (s = 0; s < seg->area_count; s++) {
|
|
lvl_array[s].lv = seg_lv(seg, s);
|
|
dm_list_add(&data_lvs, &lvl_array[s].list);
|
|
}
|
|
|
|
if (!_alloc_rmeta_devs_for_rimage_devs(lv, &data_lvs, meta_lvs, allocate_pvs)) {
|
|
log_error("Failed to allocate metadata LVs for %s", lv->name);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Add metadata areas to raid0
|
|
*/
|
|
static int _alloc_and_add_rmeta_devs_for_lv(struct logical_volume *lv, struct dm_list *allocate_pvs)
|
|
{
|
|
struct lv_segment *seg = first_seg(lv);
|
|
struct dm_list meta_lvs;
|
|
|
|
dm_list_init(&meta_lvs);
|
|
|
|
log_debug_metadata("Allocating metadata LVs for %s", display_lvname(lv));
|
|
if (!_alloc_rmeta_devs_for_lv(lv, &meta_lvs, allocate_pvs)) {
|
|
log_error("Failed to allocate metadata LVs for %s", display_lvname(lv));
|
|
return_0;
|
|
}
|
|
|
|
/* Metadata LVs must be cleared before being added to the array */
|
|
log_debug_metadata("Clearing newly allocated metadata LVs for %s", display_lvname(lv));
|
|
if (!_clear_lvs(&meta_lvs)) {
|
|
log_error("Failed to initialize metadata LVs for %s", display_lvname(lv));
|
|
return_0;
|
|
}
|
|
|
|
/* Set segment areas for metadata sub_lvs */
|
|
log_debug_metadata("Adding newly allocated metadata LVs to %s", display_lvname(lv));
|
|
if (!_add_image_component_list(seg, 1, 0, &meta_lvs, 0)) {
|
|
log_error("Failed to add newly allocated metadata LVs to %s", display_lvname(lv));
|
|
return_0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Add/remove metadata areas to/from raid0
|
|
*/
|
|
static int _raid0_add_or_remove_metadata_lvs(struct logical_volume *lv,
|
|
int update_and_reload,
|
|
struct dm_list *allocate_pvs,
|
|
struct dm_list *removal_lvs)
|
|
{
|
|
uint64_t new_raid_type_flag;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
|
|
if (removal_lvs) {
|
|
if (seg->meta_areas) {
|
|
if (!_extract_image_component_list(seg, RAID_META, 0, removal_lvs))
|
|
return_0;
|
|
seg->meta_areas = NULL;
|
|
}
|
|
new_raid_type_flag = SEG_RAID0;
|
|
} else {
|
|
if (!_alloc_and_add_rmeta_devs_for_lv(lv, allocate_pvs))
|
|
return 0;
|
|
|
|
new_raid_type_flag = SEG_RAID0_META;
|
|
}
|
|
|
|
if (!(seg->segtype = get_segtype_from_flag(lv->vg->cmd, new_raid_type_flag)))
|
|
return_0;
|
|
|
|
if (update_and_reload) {
|
|
if (!lv_update_and_reload_origin(lv))
|
|
return_0;
|
|
|
|
/* If any residual LVs, eliminate them, write VG, commit it and take a backup */
|
|
return _eliminate_extracted_lvs(lv->vg, removal_lvs);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _raid0_meta_change_wrapper(struct logical_volume *lv,
|
|
const struct segment_type *new_segtype,
|
|
uint32_t new_stripes,
|
|
int yes, int force, int alloc_metadata_devs,
|
|
struct dm_list *allocate_pvs)
|
|
{
|
|
struct dm_list removal_lvs;
|
|
|
|
dm_list_init(&removal_lvs);
|
|
|
|
if (!_check_restriping(new_stripes, lv))
|
|
return_0;
|
|
|
|
if (!archive(lv->vg))
|
|
return_0;
|
|
|
|
if (alloc_metadata_devs)
|
|
return _raid0_add_or_remove_metadata_lvs(lv, 1, allocate_pvs, NULL);
|
|
else
|
|
return _raid0_add_or_remove_metadata_lvs(lv, 1, allocate_pvs, &removal_lvs);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Convert a RAID0 set to striped
|
|
*/
|
|
static int _convert_raid0_to_striped(struct logical_volume *lv,
|
|
int update_and_reload,
|
|
struct dm_list *removal_lvs)
|
|
{
|
|
struct lv_segment *seg = first_seg(lv);
|
|
|
|
/* Remove metadata devices */
|
|
if (seg_is_raid0_meta(seg) &&
|
|
!_raid0_add_or_remove_metadata_lvs(lv, 0 /* update_and_reload */, NULL, removal_lvs))
|
|
return_0;
|
|
|
|
/* Move the AREA_PV areas across to new top-level segments of type "striped" */
|
|
if (!_raid0_to_striped_retrieve_segments_and_lvs(lv, removal_lvs)) {
|
|
log_error("Failed to retrieve raid0 segments from %s.", lv->name);
|
|
return 0;
|
|
}
|
|
|
|
lv->status &= ~RAID;
|
|
|
|
if (!(seg->segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_STRIPED)))
|
|
return_0;
|
|
|
|
if (update_and_reload) {
|
|
if (!lv_update_and_reload(lv))
|
|
return_0;
|
|
|
|
/* Eliminate the residual LVs, write VG, commit it and take a backup */
|
|
return _eliminate_extracted_lvs(lv->vg, removal_lvs);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Inserts hidden LVs for all segments and the parallel areas in lv and moves
|
|
* given segments and areas across.
|
|
*
|
|
* Optionally updates metadata and reloads mappings.
|
|
*/
|
|
static struct lv_segment *_convert_striped_to_raid0(struct logical_volume *lv,
|
|
int alloc_metadata_devs,
|
|
int update_and_reload,
|
|
struct dm_list *allocate_pvs)
|
|
{
|
|
uint32_t area_count, area_len = 0, stripe_size;
|
|
struct lv_segment *seg, *raid0_seg;
|
|
struct segment_type *segtype;
|
|
struct dm_list data_lvs;
|
|
|
|
dm_list_iterate_items(seg, &lv->segments)
|
|
area_len += seg->area_len;
|
|
|
|
seg = first_seg(lv);
|
|
stripe_size = seg->stripe_size;
|
|
area_count = seg->area_count;
|
|
|
|
/* Check for not (yet) supported varying area_count on multi-segment striped LVs */
|
|
if (!lv_has_constant_stripes(lv)) {
|
|
log_error("Cannot convert striped LV %s with varying stripe count to raid0",
|
|
display_lvname(lv));
|
|
return NULL;
|
|
}
|
|
|
|
if (!is_power_of_2(seg->stripe_size)) {
|
|
log_error("Cannot convert striped LV %s with non-power of 2 stripe size %u",
|
|
display_lvname(lv), seg->stripe_size);
|
|
// log_error("Please use \"lvconvert --duplicate ...\"");
|
|
return NULL;
|
|
}
|
|
|
|
if (!(segtype = get_segtype_from_flag(lv->vg->cmd, SEG_RAID0)))
|
|
return_NULL;
|
|
|
|
/* Allocate empty rimage components */
|
|
dm_list_init(&data_lvs);
|
|
if (!_alloc_image_components(lv, NULL, area_count, NULL, &data_lvs)) {
|
|
log_error("Failed to allocate empty image components for raid0 LV %s.",
|
|
display_lvname(lv));
|
|
return NULL;
|
|
}
|
|
|
|
/* Move the AREA_PV areas across to the new rimage components; empties lv->segments */
|
|
if (!_striped_to_raid0_move_segs_to_raid0_lvs(lv, &data_lvs)) {
|
|
log_error("Failed to insert linear LVs underneath %s.", display_lvname(lv));
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Allocate single segment to hold the image component
|
|
* areas based on the first data LVs properties derived
|
|
* from the first new raid0 LVs first segment
|
|
*/
|
|
seg = first_seg(dm_list_item(dm_list_first(&data_lvs), struct lv_list)->lv);
|
|
if (!(raid0_seg = alloc_lv_segment(segtype, lv,
|
|
0 /* le */, lv->le_count /* len */,
|
|
seg->status | SEG_RAID,
|
|
stripe_size, NULL /* log_lv */,
|
|
area_count, area_len,
|
|
0 /* chunk_size */,
|
|
0 /* seg->region_size */, 0u /* extents_copied */ ,
|
|
NULL /* pvmove_source_seg */))) {
|
|
log_error("Failed to allocate new raid0 segement for LV %s.", display_lvname(lv));
|
|
return NULL;
|
|
}
|
|
|
|
/* Add new single raid0 segment to emptied LV segments list */
|
|
dm_list_add(&lv->segments, &raid0_seg->list);
|
|
|
|
/* Add data LVs to the top-level LVs segment; resets LV_REBUILD flag on them */
|
|
if (!_add_image_component_list(raid0_seg, 1, 0, &data_lvs, 0))
|
|
return NULL;
|
|
|
|
lv->status |= RAID;
|
|
|
|
/* Allocate metadata LVs if requested */
|
|
if (alloc_metadata_devs && !_raid0_add_or_remove_metadata_lvs(lv, 0, allocate_pvs, NULL))
|
|
return NULL;
|
|
|
|
if (update_and_reload && !lv_update_and_reload(lv))
|
|
return NULL;
|
|
|
|
return raid0_seg;
|
|
}
|
|
|
|
/************************************************/
|
|
|
|
/*
|
|
* Individual takeover functions.
|
|
*/
|
|
#define TAKEOVER_FN_ARGS \
|
|
struct logical_volume *lv, \
|
|
const struct segment_type *new_segtype, \
|
|
int yes, \
|
|
int force, \
|
|
unsigned new_image_count, \
|
|
const unsigned new_stripes, \
|
|
unsigned new_stripe_size, \
|
|
struct dm_list *allocate_pvs
|
|
|
|
typedef int (*takeover_fn_t)(TAKEOVER_FN_ARGS);
|
|
|
|
/*
|
|
* Common takeover functions.
|
|
*/
|
|
static int _takeover_noop(TAKEOVER_FN_ARGS)
|
|
{
|
|
log_error("Logical volume %s is already of requested type %s.",
|
|
display_lvname(lv), lvseg_name(first_seg(lv)));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _takeover_unsupported(TAKEOVER_FN_ARGS)
|
|
{
|
|
log_error("Converting the segment type for %s from %s to %s is not supported.",
|
|
display_lvname(lv), lvseg_name(first_seg(lv)),
|
|
(segtype_is_striped(new_segtype) && !segtype_is_any_raid0(new_segtype) &&
|
|
(new_stripes == 1)) ? SEG_TYPE_NAME_LINEAR : new_segtype->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Will this particular takeover combination be possible?
|
|
*/
|
|
static int _takeover_not_possible(takeover_fn_t takeover_fn)
|
|
{
|
|
if (takeover_fn == _takeover_noop || takeover_fn == _takeover_unsupported)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _takeover_unsupported_yet(const struct logical_volume *lv, const unsigned new_stripes, const struct segment_type *new_segtype)
|
|
{
|
|
log_error("Converting the segment type for %s from %s to %s is not supported yet.",
|
|
display_lvname(lv), lvseg_name(first_seg(lv)),
|
|
(segtype_is_striped(new_segtype) && !segtype_is_any_raid0(new_segtype) &&
|
|
(new_stripes == 1)) ? SEG_TYPE_NAME_LINEAR : new_segtype->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Customised takeover functions
|
|
*/
|
|
static int _takeover_from_linear_to_raid0(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_linear_to_raid1(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_linear_to_raid10(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_linear_to_raid45(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_mirrored_to_raid0(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_mirrored_to_raid0_meta(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_mirrored_to_raid1(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _convert_mirror_to_raid1(lv, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_mirrored_to_raid10(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_mirrored_to_raid45(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid0_to_linear(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid0_to_mirrored(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
static int _takeover_from_raid0_to_raid0_meta(TAKEOVER_FN_ARGS)
|
|
{
|
|
if (!_raid0_meta_change_wrapper(lv, new_segtype, new_stripes, yes, force, 1, allocate_pvs))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _takeover_from_raid0_to_raid1(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid0_to_raid10(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid0_to_raid45(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid0_to_raid6(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _raid0_to_striped_wrapper(struct logical_volume *lv,
|
|
const struct segment_type *new_segtype,
|
|
uint32_t new_stripes,
|
|
int yes, int force,
|
|
struct dm_list *allocate_pvs)
|
|
{
|
|
struct dm_list removal_lvs;
|
|
|
|
dm_list_init(&removal_lvs);
|
|
|
|
if (!_check_restriping(new_stripes, lv))
|
|
return_0;
|
|
|
|
/* Archive metadata */
|
|
if (!archive(lv->vg))
|
|
return_0;
|
|
|
|
/* FIXME update_and_reload is only needed if the LV is already active */
|
|
/* FIXME Some of the validation in here needs moving before the archiving */
|
|
if (!_convert_raid0_to_striped(lv, 1 /* update_and_reload */, &removal_lvs))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _takeover_from_raid0_to_striped(TAKEOVER_FN_ARGS)
|
|
{
|
|
if (!_raid0_to_striped_wrapper(lv, new_segtype, new_stripes, yes, force, allocate_pvs))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _takeover_from_raid0_meta_to_linear(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid0_meta_to_mirrored(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid0_meta_to_raid0(TAKEOVER_FN_ARGS)
|
|
{
|
|
if (!_raid0_meta_change_wrapper(lv, new_segtype, new_stripes, yes, force, 0, allocate_pvs))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _takeover_from_raid0_meta_to_raid1(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid0_meta_to_raid10(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid0_meta_to_raid45(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid0_meta_to_raid6(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid0_meta_to_striped(TAKEOVER_FN_ARGS)
|
|
{
|
|
if (!_raid0_to_striped_wrapper(lv, new_segtype, new_stripes, yes, force, allocate_pvs))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _takeover_from_raid1_to_linear(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid1_to_mirrored(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid1_to_raid0(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid1_to_raid0_meta(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid1_to_raid1(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid1_to_raid10(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid1_to_raid45(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid1_to_striped(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid45_to_linear(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid45_to_mirrored(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid45_to_raid0(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid45_to_raid0_meta(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid45_to_raid1(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid45_to_raid54(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid45_to_raid6(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid45_to_striped(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid6_to_raid0(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid6_to_raid0_meta(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid6_to_raid45(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid6_to_striped(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _striped_to_raid0_wrapper(struct logical_volume *lv,
|
|
const struct segment_type *new_segtype,
|
|
uint32_t new_stripes,
|
|
int yes, int force, int alloc_metadata_devs,
|
|
struct dm_list *allocate_pvs)
|
|
{
|
|
if (!_check_restriping(new_stripes, lv))
|
|
return_0;
|
|
|
|
/* Archive metadata */
|
|
if (!archive(lv->vg))
|
|
return_0;
|
|
|
|
/* FIXME update_and_reload is only needed if the LV is already active */
|
|
/* FIXME Some of the validation in here needs moving before the archiving */
|
|
if (!_convert_striped_to_raid0(lv, alloc_metadata_devs, 1 /* update_and_reload */, allocate_pvs))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _takeover_from_striped_to_raid0(TAKEOVER_FN_ARGS)
|
|
{
|
|
if (!_striped_to_raid0_wrapper(lv, new_segtype, new_stripes, yes, force, 0, allocate_pvs))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _takeover_from_striped_to_raid01(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_striped_to_raid0_meta(TAKEOVER_FN_ARGS)
|
|
{
|
|
if (!_striped_to_raid0_wrapper(lv, new_segtype, new_stripes, yes, force, 1, allocate_pvs))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int _takeover_from_striped_to_raid10(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_striped_to_raid45(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_striped_to_raid6(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
/*
|
|
static int _takeover_from_raid01_to_raid01(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid01_to_raid10(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid01_to_striped(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid10_to_linear(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid10_to_mirrored(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid10_to_raid0(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid10_to_raid01(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid10_to_raid0_meta(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid10_to_raid1(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid10_to_raid10(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
|
|
static int _takeover_from_raid10_to_striped(TAKEOVER_FN_ARGS)
|
|
{
|
|
return _takeover_unsupported_yet(lv, new_stripes, new_segtype);
|
|
}
|
|
*/
|
|
|
|
/*
|
|
* Import takeover matrix.
|
|
*/
|
|
#include "takeover_matrix.h"
|
|
|
|
static unsigned _segtype_ix(const struct segment_type *segtype, uint32_t area_count)
|
|
{
|
|
int i = 2, j;
|
|
|
|
/* Linear special case */
|
|
if (segtype_is_striped(segtype) && !segtype_is_any_raid0(segtype)) {
|
|
if (area_count == 1)
|
|
return 0; /* linear */
|
|
return 1; /* striped */
|
|
}
|
|
|
|
while ((j = _segtype_index[i++]))
|
|
if (segtype->flags & j)
|
|
break;
|
|
|
|
return (i - 1);
|
|
}
|
|
|
|
/* Call appropriate takeover function */
|
|
static takeover_fn_t _get_takeover_fn(const struct lv_segment *seg, const struct segment_type *new_segtype, unsigned new_image_count)
|
|
{
|
|
return _takeover_fns[_segtype_ix(seg->segtype, seg->area_count)][_segtype_ix(new_segtype, new_image_count)];
|
|
}
|
|
|
|
/*
|
|
* Check for maximum number of raid devices.
|
|
* Constrained by kernel MD maximum device limits _and_ dm-raid superblock
|
|
* bitfield constraints.
|
|
*/
|
|
static int _check_max_raid_devices(uint32_t image_count)
|
|
{
|
|
if (image_count > DEFAULT_RAID_MAX_IMAGES) {
|
|
log_error("Unable to handle arrays with more than %u devices",
|
|
DEFAULT_RAID_MAX_IMAGES);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Number of data (not parity) rimages */
|
|
static uint32_t _data_rimages_count(const struct lv_segment *seg, const uint32_t total_rimages)
|
|
{
|
|
return total_rimages - seg->segtype->parity_devs;
|
|
}
|
|
|
|
/*
|
|
* lv_raid_convert
|
|
*
|
|
* Convert an LV from one RAID type (or 'mirror' segtype) to another.
|
|
*
|
|
* Returns: 1 on success, 0 on failure
|
|
*/
|
|
int lv_raid_convert(struct logical_volume *lv,
|
|
const struct segment_type *new_segtype,
|
|
int yes, int force,
|
|
const unsigned new_stripes,
|
|
const unsigned new_stripe_size,
|
|
struct dm_list *allocate_pvs)
|
|
{
|
|
struct lv_segment *seg = first_seg(lv);
|
|
uint32_t stripes, stripe_size;
|
|
uint32_t new_image_count = seg->area_count;
|
|
takeover_fn_t takeover_fn;
|
|
|
|
if (!new_segtype) {
|
|
log_error(INTERNAL_ERROR "New segtype not specified");
|
|
return 0;
|
|
}
|
|
|
|
stripes = new_stripes ?: _data_rimages_count(seg, seg->area_count);
|
|
|
|
if (segtype_is_striped(new_segtype))
|
|
new_image_count = stripes;
|
|
|
|
if (segtype_is_raid(new_segtype) && !_check_max_raid_devices(new_image_count))
|
|
return_0;
|
|
|
|
/* FIXME Ensure caller does *not* set wrong default value! */
|
|
/* Define new stripe size if not passed in */
|
|
stripe_size = new_stripe_size ?: seg->stripe_size;
|
|
|
|
takeover_fn = _get_takeover_fn(first_seg(lv), new_segtype, new_image_count);
|
|
|
|
/* Exit without doing activation checks if the combination isn't possible */
|
|
if (_takeover_not_possible(takeover_fn))
|
|
return takeover_fn(lv, new_segtype, yes, force, new_image_count, new_stripes, stripe_size, allocate_pvs);
|
|
|
|
log_verbose("Converting %s from %s to %s.",
|
|
display_lvname(lv), lvseg_name(first_seg(lv)),
|
|
(segtype_is_striped(new_segtype) && !segtype_is_any_raid0(new_segtype) &&
|
|
(new_stripes == 1)) ? SEG_TYPE_NAME_LINEAR : new_segtype->name);
|
|
|
|
/* FIXME If not active, prompt and activate */
|
|
/* FIXME Some operations do not require the LV to be active */
|
|
/* LV must be active to perform raid conversion operations */
|
|
if (!lv_is_active(lv)) {
|
|
log_error("%s must be active to perform this operation.",
|
|
display_lvname(lv));
|
|
return 0;
|
|
}
|
|
|
|
/* In clustered VGs, the LV must be active on this node exclusively. */
|
|
if (vg_is_clustered(lv->vg) && !lv_is_active_exclusive_locally(lv)) {
|
|
log_error("%s must be active exclusive locally to "
|
|
"perform this operation.", display_lvname(lv));
|
|
return 0;
|
|
}
|
|
|
|
/* LV must be in sync. */
|
|
if (!_raid_in_sync(lv)) {
|
|
log_error("Unable to convert %s while it is not in-sync",
|
|
display_lvname(lv));
|
|
return 0;
|
|
}
|
|
|
|
return takeover_fn(lv, new_segtype, yes, force, new_image_count, new_stripes, stripe_size, allocate_pvs);
|
|
}
|
|
|
|
static int _remove_partial_multi_segment_image(struct logical_volume *lv,
|
|
struct dm_list *remove_pvs)
|
|
{
|
|
uint32_t s, extents_needed;
|
|
struct lv_segment *rm_seg, *raid_seg = first_seg(lv);
|
|
struct logical_volume *rm_image = NULL;
|
|
struct physical_volume *pv;
|
|
|
|
if (!lv_is_partial(lv))
|
|
return_0;
|
|
|
|
for (s = 0; s < raid_seg->area_count; s++) {
|
|
extents_needed = 0;
|
|
if (lv_is_partial(seg_lv(raid_seg, s)) &&
|
|
lv_is_on_pvs(seg_lv(raid_seg, s), remove_pvs) &&
|
|
(dm_list_size(&(seg_lv(raid_seg, s)->segments)) > 1)) {
|
|
rm_image = seg_lv(raid_seg, s);
|
|
|
|
/* First, how many damaged extents are there */
|
|
if (lv_is_partial(seg_metalv(raid_seg, s)))
|
|
extents_needed += seg_metalv(raid_seg, s)->le_count;
|
|
dm_list_iterate_items(rm_seg, &rm_image->segments) {
|
|
/*
|
|
* segment areas are for stripe, mirror, raid,
|
|
* etc. We only need to check the first area
|
|
* if we are dealing with RAID image LVs.
|
|
*/
|
|
if (seg_type(rm_seg, 0) != AREA_PV)
|
|
continue;
|
|
pv = seg_pv(rm_seg, 0);
|
|
if (pv->status & MISSING_PV)
|
|
extents_needed += rm_seg->len;
|
|
}
|
|
log_debug("%u extents needed to repair %s",
|
|
extents_needed, rm_image->name);
|
|
|
|
/* Second, do the other PVs have the space */
|
|
dm_list_iterate_items(rm_seg, &rm_image->segments) {
|
|
if (seg_type(rm_seg, 0) != AREA_PV)
|
|
continue;
|
|
pv = seg_pv(rm_seg, 0);
|
|
if (pv->status & MISSING_PV)
|
|
continue;
|
|
|
|
if ((pv->pe_count - pv->pe_alloc_count) >
|
|
extents_needed) {
|
|
log_debug("%s has enough space for %s",
|
|
pv_dev_name(pv),
|
|
rm_image->name);
|
|
goto has_enough_space;
|
|
}
|
|
log_debug("Not enough space on %s for %s",
|
|
pv_dev_name(pv), rm_image->name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is likely to be the normal case - single
|
|
* segment images.
|
|
*/
|
|
return_0;
|
|
|
|
has_enough_space:
|
|
/*
|
|
* Now we have a multi-segment, partial image that has enough
|
|
* space on just one of its PVs for the entire image to be
|
|
* replaced. So, we replace the image's space with an error
|
|
* target so that the allocator can find that space (along with
|
|
* the remaining free space) in order to allocate the image
|
|
* anew.
|
|
*/
|
|
if (!replace_lv_with_error_segment(rm_image))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* lv_raid_replace
|
|
* @lv
|
|
* @remove_pvs
|
|
* @allocate_pvs
|
|
*
|
|
* Replace the specified PVs.
|
|
*/
|
|
int lv_raid_replace(struct logical_volume *lv,
|
|
struct dm_list *remove_pvs,
|
|
struct dm_list *allocate_pvs)
|
|
{
|
|
int partial_segment_removed = 0;
|
|
uint32_t s, sd, match_count = 0;
|
|
struct dm_list old_lvs;
|
|
struct dm_list new_meta_lvs, new_data_lvs;
|
|
struct lv_segment *raid_seg = first_seg(lv);
|
|
struct lv_list *lvl;
|
|
char *tmp_names[raid_seg->area_count * 2];
|
|
|
|
dm_list_init(&old_lvs);
|
|
dm_list_init(&new_meta_lvs);
|
|
dm_list_init(&new_data_lvs);
|
|
|
|
if (lv_is_partial(lv))
|
|
lv->vg->cmd->partial_activation = 1;
|
|
|
|
if (!lv_is_active_exclusive_locally(lv_lock_holder(lv))) {
|
|
log_error("%s/%s must be active %sto perform this operation.",
|
|
lv->vg->name, lv->name,
|
|
vg_is_clustered(lv->vg) ? "exclusive locally " : "");
|
|
return 0;
|
|
}
|
|
|
|
if (!mirror_in_sync() && !_raid_in_sync(lv)) {
|
|
log_error("Unable to replace devices in %s/%s while it is"
|
|
" not in-sync.", lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!archive(lv->vg))
|
|
return_0;
|
|
|
|
/*
|
|
* How many sub-LVs are being removed?
|
|
*/
|
|
for (s = 0; s < raid_seg->area_count; s++) {
|
|
if ((seg_type(raid_seg, s) == AREA_UNASSIGNED) ||
|
|
(seg_metatype(raid_seg, s) == AREA_UNASSIGNED)) {
|
|
log_error("Unable to replace RAID images while the "
|
|
"array has unassigned areas");
|
|
return 0;
|
|
}
|
|
|
|
if (lv_is_virtual(seg_lv(raid_seg, s)) ||
|
|
lv_is_virtual(seg_metalv(raid_seg, s)) ||
|
|
lv_is_on_pvs(seg_lv(raid_seg, s), remove_pvs) ||
|
|
lv_is_on_pvs(seg_metalv(raid_seg, s), remove_pvs))
|
|
match_count++;
|
|
}
|
|
|
|
if (!match_count) {
|
|
log_verbose("%s/%s does not contain devices specified"
|
|
" for replacement", lv->vg->name, lv->name);
|
|
return 1;
|
|
} else if (match_count == raid_seg->area_count) {
|
|
log_error("Unable to remove all PVs from %s/%s at once.",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
} else if (raid_seg->segtype->parity_devs &&
|
|
(match_count > raid_seg->segtype->parity_devs)) {
|
|
log_error("Unable to replace more than %u PVs from (%s) %s/%s",
|
|
raid_seg->segtype->parity_devs,
|
|
lvseg_name(raid_seg),
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
} else if (seg_is_raid10(raid_seg)) {
|
|
uint32_t i, rebuilds_per_group = 0;
|
|
/* FIXME: We only support 2-way mirrors in RAID10 currently */
|
|
uint32_t copies = 2;
|
|
|
|
for (i = 0; i < raid_seg->area_count * copies; i++) {
|
|
s = i % raid_seg->area_count;
|
|
if (!(i % copies))
|
|
rebuilds_per_group = 0;
|
|
if (lv_is_on_pvs(seg_lv(raid_seg, s), remove_pvs) ||
|
|
lv_is_on_pvs(seg_metalv(raid_seg, s), remove_pvs) ||
|
|
lv_is_virtual(seg_lv(raid_seg, s)) ||
|
|
lv_is_virtual(seg_metalv(raid_seg, s)))
|
|
rebuilds_per_group++;
|
|
if (rebuilds_per_group >= copies) {
|
|
log_error("Unable to replace all the devices "
|
|
"in a RAID10 mirror group.");
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Prevent any PVs holding image components from being used for allocation */
|
|
if (!_avoid_pvs_with_other_images_of_lv(lv, allocate_pvs)) {
|
|
log_error("Failed to prevent PVs holding image components "
|
|
"from being used for allocation.");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate the new image components first
|
|
* - This makes it easy to avoid all currently used devs
|
|
* - We can immediately tell if there is enough space
|
|
*
|
|
* - We need to change the LV names when we insert them.
|
|
*/
|
|
try_again:
|
|
if (!_alloc_image_components(lv, allocate_pvs, match_count,
|
|
&new_meta_lvs, &new_data_lvs)) {
|
|
if (!lv_is_partial(lv)) {
|
|
log_error("LV %s in not partial.", display_lvname(lv));
|
|
return 0;
|
|
}
|
|
|
|
/* This is a repair, so try to do better than all-or-nothing */
|
|
match_count--;
|
|
if (match_count > 0) {
|
|
log_error("Failed to replace %u devices."
|
|
" Attempting to replace %u instead.",
|
|
match_count, match_count+1);
|
|
/*
|
|
* Since we are replacing some but not all of the bad
|
|
* devices, we must set partial_activation
|
|
*/
|
|
lv->vg->cmd->partial_activation = 1;
|
|
goto try_again;
|
|
} else if (!match_count && !partial_segment_removed) {
|
|
/*
|
|
* We are down to the last straw. We can only hope
|
|
* that a failed PV is just one of several PVs in
|
|
* the image; and if we extract the image, there may
|
|
* be enough room on the image's other PVs for a
|
|
* reallocation of the image.
|
|
*/
|
|
if (!_remove_partial_multi_segment_image(lv, remove_pvs))
|
|
return_0;
|
|
|
|
match_count = 1;
|
|
partial_segment_removed = 1;
|
|
lv->vg->cmd->partial_activation = 1;
|
|
goto try_again;
|
|
}
|
|
log_error("Failed to allocate replacement images for %s/%s",
|
|
lv->vg->name, lv->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove the old images
|
|
* - If we did this before the allocate, we wouldn't have to rename
|
|
* the allocated images, but it'd be much harder to avoid the right
|
|
* PVs during allocation.
|
|
*
|
|
* - If this is a repair and we were forced to call
|
|
* _remove_partial_multi_segment_image, then the remove_pvs list
|
|
* is no longer relevant - _raid_extract_images is forced to replace
|
|
* the image with the error target. Thus, the full set of PVs is
|
|
* supplied - knowing that only the image with the error target
|
|
* will be affected.
|
|
*/
|
|
if (!_raid_extract_images(lv, raid_seg->area_count - match_count,
|
|
partial_segment_removed ?
|
|
&lv->vg->pvs : remove_pvs, 0,
|
|
&old_lvs, &old_lvs)) {
|
|
log_error("Failed to remove the specified images from %s/%s",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Now that they are extracted and visible, make the system aware
|
|
* of their new names.
|
|
*/
|
|
dm_list_iterate_items(lvl, &old_lvs)
|
|
if (!activate_lv_excl_local(lv->vg->cmd, lvl->lv))
|
|
return_0;
|
|
|
|
/*
|
|
* Skip metadata operation normally done to clear the metadata sub-LVs.
|
|
*
|
|
* The LV_REBUILD flag is set on the new sub-LVs,
|
|
* so they will be rebuilt and we don't need to clear the metadata dev.
|
|
*/
|
|
|
|
for (s = 0; s < raid_seg->area_count; s++) {
|
|
sd = s + raid_seg->area_count;
|
|
|
|
if ((seg_type(raid_seg, s) == AREA_UNASSIGNED) &&
|
|
(seg_metatype(raid_seg, s) == AREA_UNASSIGNED)) {
|
|
/* Adjust the new metadata LV name */
|
|
lvl = dm_list_item(dm_list_first(&new_meta_lvs),
|
|
struct lv_list);
|
|
dm_list_del(&lvl->list);
|
|
if (!(tmp_names[s] = _generate_raid_name(lv, "rmeta", s)))
|
|
return_0;
|
|
if (!set_lv_segment_area_lv(raid_seg, s, lvl->lv, 0,
|
|
lvl->lv->status)) {
|
|
log_error("Failed to add %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
return 0;
|
|
}
|
|
lv_set_hidden(lvl->lv);
|
|
|
|
/* Adjust the new data LV name */
|
|
lvl = dm_list_item(dm_list_first(&new_data_lvs),
|
|
struct lv_list);
|
|
dm_list_del(&lvl->list);
|
|
/* coverity[copy_paste_error] intentional */
|
|
if (!(tmp_names[sd] = _generate_raid_name(lv, "rimage", s)))
|
|
return_0;
|
|
if (!set_lv_segment_area_lv(raid_seg, s, lvl->lv, 0,
|
|
lvl->lv->status)) {
|
|
log_error("Failed to add %s to %s",
|
|
lvl->lv->name, lv->name);
|
|
return 0;
|
|
}
|
|
lv_set_hidden(lvl->lv);
|
|
} else
|
|
tmp_names[s] = tmp_names[sd] = NULL;
|
|
}
|
|
|
|
if (!lv_update_and_reload_origin(lv))
|
|
return_0;
|
|
|
|
dm_list_iterate_items(lvl, &old_lvs) {
|
|
if (!deactivate_lv(lv->vg->cmd, lvl->lv))
|
|
return_0;
|
|
if (!lv_remove(lvl->lv))
|
|
return_0;
|
|
}
|
|
|
|
/* Update new sub-LVs to correct name and clear REBUILD flag */
|
|
for (s = 0; s < raid_seg->area_count; s++) {
|
|
sd = s + raid_seg->area_count;
|
|
if (tmp_names[s] && tmp_names[sd]) {
|
|
seg_metalv(raid_seg, s)->name = tmp_names[s];
|
|
seg_lv(raid_seg, s)->name = tmp_names[sd];
|
|
seg_metalv(raid_seg, s)->status &= ~LV_REBUILD;
|
|
seg_lv(raid_seg, s)->status &= ~LV_REBUILD;
|
|
}
|
|
}
|
|
|
|
if (!lv_update_and_reload_origin(lv))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int lv_raid_remove_missing(struct logical_volume *lv)
|
|
{
|
|
uint32_t s;
|
|
struct lv_segment *seg = first_seg(lv);
|
|
|
|
if (!lv_is_partial(lv)) {
|
|
log_error(INTERNAL_ERROR "%s/%s is not a partial LV",
|
|
lv->vg->name, lv->name);
|
|
return 0;
|
|
}
|
|
|
|
if (!archive(lv->vg))
|
|
return_0;
|
|
|
|
log_debug("Attempting to remove missing devices from %s LV, %s",
|
|
lvseg_name(seg), lv->name);
|
|
|
|
/*
|
|
* FIXME: Make sure # of compromised components will not affect RAID
|
|
*/
|
|
|
|
for (s = 0; s < seg->area_count; s++) {
|
|
if (!lv_is_partial(seg_lv(seg, s)) &&
|
|
(!seg->meta_areas || !seg_metalv(seg, s) || !lv_is_partial(seg_metalv(seg, s))))
|
|
continue;
|
|
|
|
log_debug("Replacing %s and %s segments with error target",
|
|
seg_lv(seg, s)->name, seg_metalv(seg, s)->name);
|
|
if (!replace_lv_with_error_segment(seg_lv(seg, s))) {
|
|
log_error("Failed to replace %s's extents with error target.",
|
|
display_lvname(seg_lv(seg, s)));
|
|
return 0;
|
|
}
|
|
if (seg->meta_areas && !replace_lv_with_error_segment(seg_metalv(seg, s))) {
|
|
log_error("Failed to replace %s's extents with error target.",
|
|
display_lvname(seg_metalv(seg, s)));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (!lv_update_and_reload(lv))
|
|
return_0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Return 1 if a partial raid LV can be activated redundantly */
|
|
static int _partial_raid_lv_is_redundant(const struct logical_volume *lv)
|
|
{
|
|
struct lv_segment *raid_seg = first_seg(lv);
|
|
uint32_t copies;
|
|
uint32_t i, s, rebuilds_per_group = 0;
|
|
uint32_t failed_components = 0;
|
|
|
|
if (seg_is_raid10(raid_seg)) {
|
|
/* FIXME: We only support 2-way mirrors in RAID10 currently */
|
|
copies = 2;
|
|
for (i = 0; i < raid_seg->area_count * copies; i++) {
|
|
s = i % raid_seg->area_count;
|
|
|
|
if (!(i % copies))
|
|
rebuilds_per_group = 0;
|
|
|
|
if (lv_is_partial(seg_lv(raid_seg, s)) ||
|
|
lv_is_partial(seg_metalv(raid_seg, s)) ||
|
|
lv_is_virtual(seg_lv(raid_seg, s)) ||
|
|
lv_is_virtual(seg_metalv(raid_seg, s)))
|
|
rebuilds_per_group++;
|
|
|
|
if (rebuilds_per_group >= copies) {
|
|
log_verbose("An entire mirror group has failed in %s.",
|
|
display_lvname(lv));
|
|
return 0; /* Insufficient redundancy to activate */
|
|
}
|
|
}
|
|
|
|
return 1; /* Redundant */
|
|
}
|
|
|
|
for (s = 0; s < raid_seg->area_count; s++) {
|
|
if (lv_is_partial(seg_lv(raid_seg, s)) ||
|
|
lv_is_partial(seg_metalv(raid_seg, s)) ||
|
|
lv_is_virtual(seg_lv(raid_seg, s)) ||
|
|
lv_is_virtual(seg_metalv(raid_seg, s)))
|
|
failed_components++;
|
|
}
|
|
|
|
if (failed_components == raid_seg->area_count) {
|
|
log_verbose("All components of raid LV %s have failed.",
|
|
display_lvname(lv));
|
|
return 0; /* Insufficient redundancy to activate */
|
|
} else if (raid_seg->segtype->parity_devs &&
|
|
(failed_components > raid_seg->segtype->parity_devs)) {
|
|
log_verbose("More than %u components from %s %s have failed.",
|
|
raid_seg->segtype->parity_devs,
|
|
lvseg_name(raid_seg),
|
|
display_lvname(lv));
|
|
return 0; /* Insufficient redundancy to activate */
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Sets *data to 1 if the LV cannot be activated without data loss */
|
|
static int _lv_may_be_activated_in_degraded_mode(struct logical_volume *lv, void *data)
|
|
{
|
|
int *not_capable = (int *)data;
|
|
uint32_t s;
|
|
struct lv_segment *seg;
|
|
|
|
if (*not_capable)
|
|
return 1; /* No further checks needed */
|
|
|
|
if (!lv_is_partial(lv))
|
|
return 1;
|
|
|
|
if (lv_is_raid(lv)) {
|
|
*not_capable = !_partial_raid_lv_is_redundant(lv);
|
|
return 1;
|
|
}
|
|
|
|
/* Ignore RAID sub-LVs. */
|
|
if (lv_is_raid_type(lv))
|
|
return 1;
|
|
|
|
dm_list_iterate_items(seg, &lv->segments)
|
|
for (s = 0; s < seg->area_count; s++)
|
|
if (seg_type(seg, s) != AREA_LV) {
|
|
log_verbose("%s contains a segment incapable of degraded activation",
|
|
display_lvname(lv));
|
|
*not_capable = 1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int partial_raid_lv_supports_degraded_activation(const struct logical_volume *clv)
|
|
{
|
|
int not_capable = 0;
|
|
struct logical_volume * lv = (struct logical_volume *)clv; /* drop const */
|
|
|
|
if (!_lv_may_be_activated_in_degraded_mode(lv, ¬_capable) || not_capable)
|
|
return_0;
|
|
|
|
if (!for_each_sub_lv(lv, _lv_may_be_activated_in_degraded_mode, ¬_capable)) {
|
|
log_error(INTERNAL_ERROR "for_each_sub_lv failure.");
|
|
return 0;
|
|
}
|
|
|
|
return !not_capable;
|
|
}
|