1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-03 05:18:29 +03:00
lvm2/lib/device/dev-md.c
Peter Rajnoha c08c564e21 Use new dev_open_readonly fn to prevent opening devices for read-write when not necessary.
Before, we used vg_write_lock_held call to determnine the way a device is
opened. Unfortunately, this opened many devices in RW mode when it was not
really necessary. With the OPTIONS+="watch" rule used in the udev rules,
this could fire numerous events while closing such devices (and it caused
useless scans from within udev rules in return).

A common bug we hit with this was with the lvremove command which was unable
to remove the LV since it was being opened from within the udev rules. This
patch should minimize such situations (at least with respect to LVM handling
of devices).

Though there's still a possibility someone will open a device 'outside' in
parallel and fire the event based on the watch rule when closing a device
once opened for RW.
2011-05-28 09:48:14 +00:00

336 lines
7.4 KiB
C

/*
* Copyright (C) 2004 Luca Berra
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "lib.h"
#include "metadata.h"
#include "xlate.h"
#include "filter.h"
#ifdef linux
/* Lifted from <linux/raid/md_p.h> because of difficulty including it */
#define MD_SB_MAGIC 0xa92b4efc
#define MD_RESERVED_BYTES (64 * 1024ULL)
#define MD_RESERVED_SECTORS (MD_RESERVED_BYTES / 512)
#define MD_NEW_SIZE_SECTORS(x) ((x & ~(MD_RESERVED_SECTORS - 1)) \
- MD_RESERVED_SECTORS)
static int _dev_has_md_magic(struct device *dev, uint64_t sb_offset)
{
uint32_t md_magic;
/* Version 1 is little endian; version 0.90.0 is machine endian */
if (dev_read(dev, sb_offset, sizeof(uint32_t), &md_magic) &&
((md_magic == xlate32(MD_SB_MAGIC)) ||
(md_magic == MD_SB_MAGIC)))
return 1;
return 0;
}
/*
* Calculate the position of the superblock.
* It is always aligned to a 4K boundary and
* depending on minor_version, it can be:
* 0: At least 8K, but less than 12K, from end of device
* 1: At start of device
* 2: 4K from start of device.
*/
typedef enum {
MD_MINOR_VERSION_MIN,
MD_MINOR_V0 = MD_MINOR_VERSION_MIN,
MD_MINOR_V1,
MD_MINOR_V2,
MD_MINOR_VERSION_MAX = MD_MINOR_V2
} md_minor_version_t;
static uint64_t _v1_sb_offset(uint64_t size, md_minor_version_t minor_version)
{
uint64_t uninitialized_var(sb_offset);
switch(minor_version) {
case MD_MINOR_V0:
sb_offset = (size - 8 * 2) & ~(4 * 2 - 1ULL);
break;
case MD_MINOR_V1:
sb_offset = 0;
break;
case MD_MINOR_V2:
sb_offset = 4 * 2;
break;
}
sb_offset <<= SECTOR_SHIFT;
return sb_offset;
}
/*
* Returns -1 on error
*/
int dev_is_md(struct device *dev, uint64_t *sb)
{
int ret = 1;
md_minor_version_t minor;
uint64_t size, sb_offset;
if (!dev_get_size(dev, &size)) {
stack;
return -1;
}
if (size < MD_RESERVED_SECTORS * 2)
return 0;
if (!dev_open_readonly(dev)) {
stack;
return -1;
}
/* Check if it is an md component device. */
/* Version 0.90.0 */
sb_offset = MD_NEW_SIZE_SECTORS(size) << SECTOR_SHIFT;
if (_dev_has_md_magic(dev, sb_offset))
goto out;
minor = MD_MINOR_VERSION_MIN;
/* Version 1, try v1.0 -> v1.2 */
do {
sb_offset = _v1_sb_offset(size, minor);
if (_dev_has_md_magic(dev, sb_offset))
goto out;
} while (++minor <= MD_MINOR_VERSION_MAX);
ret = 0;
out:
if (!dev_close(dev))
stack;
if (ret && sb)
*sb = sb_offset;
return ret;
}
static int _md_sysfs_attribute_snprintf(char *path, size_t size,
const char *sysfs_dir,
struct device *blkdev,
const char *attribute)
{
struct stat info;
dev_t dev = blkdev->dev;
int ret = -1;
if (!sysfs_dir || !*sysfs_dir)
return ret;
if (MAJOR(dev) == blkext_major()) {
/* lookup parent MD device from blkext partition */
if (!get_primary_dev(sysfs_dir, blkdev, &dev))
return ret;
}
if (MAJOR(dev) != md_major())
return ret;
ret = dm_snprintf(path, size, "%s/dev/block/%d:%d/md/%s", sysfs_dir,
(int)MAJOR(dev), (int)MINOR(dev), attribute);
if (ret < 0) {
log_error("dm_snprintf md %s failed", attribute);
return ret;
}
if (stat(path, &info) == -1) {
if (errno != ENOENT) {
log_sys_error("stat", path);
return ret;
}
/* old sysfs structure */
ret = dm_snprintf(path, size, "%s/block/md%d/md/%s",
sysfs_dir, (int)MINOR(dev), attribute);
if (ret < 0) {
log_error("dm_snprintf old md %s failed", attribute);
return ret;
}
}
return ret;
}
static int _md_sysfs_attribute_scanf(const char *sysfs_dir,
struct device *dev,
const char *attribute_name,
const char *attribute_fmt,
void *attribute_value)
{
char path[PATH_MAX+1], buffer[64];
FILE *fp;
int ret = 0;
if (_md_sysfs_attribute_snprintf(path, PATH_MAX, sysfs_dir,
dev, attribute_name) < 0)
return ret;
if (!(fp = fopen(path, "r"))) {
log_sys_error("fopen", path);
return ret;
}
if (!fgets(buffer, sizeof(buffer), fp)) {
log_sys_error("fgets", path);
goto out;
}
if ((ret = sscanf(buffer, attribute_fmt, attribute_value)) != 1) {
log_error("%s sysfs attr %s not in expected format: %s",
dev_name(dev), attribute_name, buffer);
goto out;
}
out:
if (fclose(fp))
log_sys_error("fclose", path);
return ret;
}
/*
* Retrieve chunk size from md device using sysfs.
*/
static unsigned long dev_md_chunk_size(const char *sysfs_dir,
struct device *dev)
{
const char *attribute = "chunk_size";
unsigned long chunk_size_bytes = 0UL;
if (_md_sysfs_attribute_scanf(sysfs_dir, dev, attribute,
"%lu", &chunk_size_bytes) != 1)
return 0;
log_very_verbose("Device %s %s is %lu bytes.",
dev_name(dev), attribute, chunk_size_bytes);
return chunk_size_bytes >> SECTOR_SHIFT;
}
/*
* Retrieve level from md device using sysfs.
*/
static int dev_md_level(const char *sysfs_dir, struct device *dev)
{
const char *attribute = "level";
int level = -1;
if (_md_sysfs_attribute_scanf(sysfs_dir, dev, attribute,
"raid%d", &level) != 1)
return -1;
log_very_verbose("Device %s %s is raid%d.",
dev_name(dev), attribute, level);
return level;
}
/*
* Retrieve raid_disks from md device using sysfs.
*/
static int dev_md_raid_disks(const char *sysfs_dir, struct device *dev)
{
const char *attribute = "raid_disks";
int raid_disks = 0;
if (_md_sysfs_attribute_scanf(sysfs_dir, dev, attribute,
"%d", &raid_disks) != 1)
return 0;
log_very_verbose("Device %s %s is %d.",
dev_name(dev), attribute, raid_disks);
return raid_disks;
}
/*
* Calculate stripe width of md device using its sysfs files.
*/
unsigned long dev_md_stripe_width(const char *sysfs_dir, struct device *dev)
{
unsigned long chunk_size_sectors = 0UL;
unsigned long stripe_width_sectors = 0UL;
int level, raid_disks, data_disks;
chunk_size_sectors = dev_md_chunk_size(sysfs_dir, dev);
if (!chunk_size_sectors)
return 0;
level = dev_md_level(sysfs_dir, dev);
if (level < 0)
return 0;
raid_disks = dev_md_raid_disks(sysfs_dir, dev);
if (!raid_disks)
return 0;
/* The raid level governs the number of data disks. */
switch (level) {
case 0:
/* striped md does not have any parity disks */
data_disks = raid_disks;
break;
case 1:
case 10:
/* mirrored md effectively has 1 data disk */
data_disks = 1;
break;
case 4:
case 5:
/* both raid 4 and 5 have a single parity disk */
data_disks = raid_disks - 1;
break;
case 6:
/* raid 6 has 2 parity disks */
data_disks = raid_disks - 2;
break;
default:
log_error("Device %s has an unknown md raid level: %d",
dev_name(dev), level);
return 0;
}
stripe_width_sectors = chunk_size_sectors * data_disks;
log_very_verbose("Device %s stripe-width is %lu bytes.",
dev_name(dev),
stripe_width_sectors << SECTOR_SHIFT);
return stripe_width_sectors;
}
#else
int dev_is_md(struct device *dev __attribute__((unused)),
uint64_t *sb __attribute__((unused)))
{
return 0;
}
unsigned long dev_md_stripe_width(const char *sysfs_dir __attribute__((unused)),
struct device *dev __attribute__((unused)))
{
return 0UL;
}
#endif