1
0
mirror of git://sourceware.org/git/lvm2.git synced 2024-10-28 11:55:55 +03:00
lvm2/lib/format_pool/disk_rep.c
Milan Broz 4059d2219c Recognise DRBD device part and handle it similar to MD devices.
The DRBD uses underlying device so code should prefer top
device if duplicate is found.

Patch also introduce
        dev_subsystem_part_major and dev_subsytem_name
functions to easily handle all these replication susbystems
and not hardcode md_major call.

See https://bugzilla.redhat.com/show_bug.cgi?id=530881
for full problem description.
2009-10-27 17:00:44 +00:00

370 lines
9.7 KiB
C

/*
* Copyright (C) 1997-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "lib.h"
#include "label.h"
#include "metadata.h"
#include "lvmcache.h"
#include "filter.h"
#include "xlate.h"
#include "disk_rep.h"
#include <assert.h>
/* FIXME: memcpy might not be portable */
#define CPIN_8(x, y, z) {memcpy((x), (y), (z));}
#define CPOUT_8(x, y, z) {memcpy((y), (x), (z));}
#define CPIN_16(x, y) {(x) = xlate16_be((y));}
#define CPOUT_16(x, y) {(y) = xlate16_be((x));}
#define CPIN_32(x, y) {(x) = xlate32_be((y));}
#define CPOUT_32(x, y) {(y) = xlate32_be((x));}
#define CPIN_64(x, y) {(x) = xlate64_be((y));}
#define CPOUT_64(x, y) {(y) = xlate64_be((x));}
static int __read_pool_disk(const struct format_type *fmt, struct device *dev,
struct dm_pool *mem __attribute((unused)), struct pool_list *pl,
const char *vg_name __attribute((unused)))
{
char buf[512] __attribute((aligned(8)));
/* FIXME: Need to check the cache here first */
if (!dev_read(dev, UINT64_C(0), 512, buf)) {
log_very_verbose("Failed to read PV data from %s",
dev_name(dev));
return 0;
}
if (!read_pool_label(pl, fmt->labeller, dev, buf, NULL))
return_0;
return 1;
}
static void _add_pl_to_list(struct dm_list *head, struct pool_list *data)
{
struct pool_list *pl;
dm_list_iterate_items(pl, head) {
if (id_equal(&data->pv_uuid, &pl->pv_uuid)) {
char uuid[ID_LEN + 7] __attribute((aligned(8)));
id_write_format(&pl->pv_uuid, uuid, ID_LEN + 7);
if (!dev_subsystem_part_major(data->dev)) {
log_very_verbose("Ignoring duplicate PV %s on "
"%s", uuid,
dev_name(data->dev));
return;
}
log_very_verbose("Duplicate PV %s - using %s %s",
uuid, dev_subsystem_name(data->dev),
dev_name(data->dev));
dm_list_del(&pl->list);
break;
}
}
dm_list_add(head, &data->list);
}
int read_pool_label(struct pool_list *pl, struct labeller *l,
struct device *dev, char *buf, struct label **label)
{
struct lvmcache_info *info;
struct id pvid;
struct id vgid;
char uuid[ID_LEN + 7] __attribute((aligned(8)));
struct pool_disk *pd = &pl->pd;
pool_label_in(pd, buf);
get_pool_pv_uuid(&pvid, pd);
id_write_format(&pvid, uuid, ID_LEN + 7);
log_debug("Calculated uuid %s for %s", uuid, dev_name(dev));
get_pool_vg_uuid(&vgid, pd);
id_write_format(&vgid, uuid, ID_LEN + 7);
log_debug("Calculated uuid %s for %s", uuid, pd->pl_pool_name);
if (!(info = lvmcache_add(l, (char *) &pvid, dev, pd->pl_pool_name,
(char *) &vgid, 0)))
return_0;
if (label)
*label = info->label;
info->device_size = xlate32_be(pd->pl_blocks) << SECTOR_SHIFT;
dm_list_init(&info->mdas);
info->status &= ~CACHE_INVALID;
pl->dev = dev;
pl->pv = NULL;
memcpy(&pl->pv_uuid, &pvid, sizeof(pvid));
return 1;
}
/**
* pool_label_out - copies a pool_label_t into a char buffer
* @pl: ptr to a pool_label_t struct
* @buf: ptr to raw space where label info will be copied
*
* This function is important because it takes care of all of
* the endian issues when copying to disk. This way, when
* machines of different architectures are used, they will
* be able to interpret ondisk labels correctly. Always use
* this function before writing to disk.
*/
void pool_label_out(struct pool_disk *pl, void *buf)
{
struct pool_disk *bufpl = (struct pool_disk *) buf;
CPOUT_64(pl->pl_magic, bufpl->pl_magic);
CPOUT_64(pl->pl_pool_id, bufpl->pl_pool_id);
CPOUT_8(pl->pl_pool_name, bufpl->pl_pool_name, POOL_NAME_SIZE);
CPOUT_32(pl->pl_version, bufpl->pl_version);
CPOUT_32(pl->pl_subpools, bufpl->pl_subpools);
CPOUT_32(pl->pl_sp_id, bufpl->pl_sp_id);
CPOUT_32(pl->pl_sp_devs, bufpl->pl_sp_devs);
CPOUT_32(pl->pl_sp_devid, bufpl->pl_sp_devid);
CPOUT_32(pl->pl_sp_type, bufpl->pl_sp_type);
CPOUT_64(pl->pl_blocks, bufpl->pl_blocks);
CPOUT_32(pl->pl_striping, bufpl->pl_striping);
CPOUT_32(pl->pl_sp_dmepdevs, bufpl->pl_sp_dmepdevs);
CPOUT_32(pl->pl_sp_dmepid, bufpl->pl_sp_dmepid);
CPOUT_32(pl->pl_sp_weight, bufpl->pl_sp_weight);
CPOUT_32(pl->pl_minor, bufpl->pl_minor);
CPOUT_32(pl->pl_padding, bufpl->pl_padding);
CPOUT_8(pl->pl_reserve, bufpl->pl_reserve, 184);
}
/**
* pool_label_in - copies a char buffer into a pool_label_t
* @pl: ptr to a pool_label_t struct
* @buf: ptr to raw space where label info is copied from
*
* This function is important because it takes care of all of
* the endian issues when information from disk is about to be
* used. This way, when machines of different architectures
* are used, they will be able to interpret ondisk labels
* correctly. Always use this function before using labels that
* were read from disk.
*/
void pool_label_in(struct pool_disk *pl, void *buf)
{
struct pool_disk *bufpl = (struct pool_disk *) buf;
CPIN_64(pl->pl_magic, bufpl->pl_magic);
CPIN_64(pl->pl_pool_id, bufpl->pl_pool_id);
CPIN_8(pl->pl_pool_name, bufpl->pl_pool_name, POOL_NAME_SIZE);
CPIN_32(pl->pl_version, bufpl->pl_version);
CPIN_32(pl->pl_subpools, bufpl->pl_subpools);
CPIN_32(pl->pl_sp_id, bufpl->pl_sp_id);
CPIN_32(pl->pl_sp_devs, bufpl->pl_sp_devs);
CPIN_32(pl->pl_sp_devid, bufpl->pl_sp_devid);
CPIN_32(pl->pl_sp_type, bufpl->pl_sp_type);
CPIN_64(pl->pl_blocks, bufpl->pl_blocks);
CPIN_32(pl->pl_striping, bufpl->pl_striping);
CPIN_32(pl->pl_sp_dmepdevs, bufpl->pl_sp_dmepdevs);
CPIN_32(pl->pl_sp_dmepid, bufpl->pl_sp_dmepid);
CPIN_32(pl->pl_sp_weight, bufpl->pl_sp_weight);
CPIN_32(pl->pl_minor, bufpl->pl_minor);
CPIN_32(pl->pl_padding, bufpl->pl_padding);
CPIN_8(pl->pl_reserve, bufpl->pl_reserve, 184);
}
static char _calc_char(unsigned int id)
{
/*
* [0-9A-Za-z!#] - 64 printable chars (6-bits)
*/
if (id < 10)
return id + 48;
if (id < 36)
return (id - 10) + 65;
if (id < 62)
return (id - 36) + 97;
if (id == 62)
return '!';
if (id == 63)
return '#';
return '%';
}
void get_pool_uuid(char *uuid, uint64_t poolid, uint32_t spid, uint32_t devid)
{
int i;
unsigned shifter = 0x003F;
assert(ID_LEN == 32);
memset(uuid, 0, ID_LEN);
strcat(uuid, "POOL0000000000");
/* We grab the entire 64 bits (+2 that get shifted in) */
for (i = 13; i < 24; i++) {
uuid[i] = _calc_char(((unsigned) poolid) & shifter);
poolid = poolid >> 6;
}
/* We grab the entire 32 bits (+4 that get shifted in) */
for (i = 24; i < 30; i++) {
uuid[i] = _calc_char((unsigned) (spid & shifter));
spid = spid >> 6;
}
/*
* Since we can only have 128 devices, we only worry about the
* last 12 bits
*/
for (i = 30; i < 32; i++) {
uuid[i] = _calc_char((unsigned) (devid & shifter));
devid = devid >> 6;
}
}
static int _read_vg_pds(const struct format_type *fmt, struct dm_pool *mem,
struct lvmcache_vginfo *vginfo, struct dm_list *head,
uint32_t *devcount)
{
struct lvmcache_info *info;
struct pool_list *pl = NULL;
struct dm_pool *tmpmem;
uint32_t sp_count = 0;
uint32_t *sp_devs = NULL;
uint32_t i;
/* FIXME: maybe should return a different error in memory
* allocation failure */
if (!(tmpmem = dm_pool_create("pool read_vg", 512)))
return_0;
dm_list_iterate_items(info, &vginfo->infos) {
if (info->dev &&
!(pl = read_pool_disk(fmt, info->dev, mem, vginfo->vgname)))
break;
/*
* We need to keep track of the total expected number
* of devices per subpool
*/
if (!sp_count) {
/* FIXME pl left uninitialised if !info->dev */
sp_count = pl->pd.pl_subpools;
if (!(sp_devs =
dm_pool_zalloc(tmpmem,
sizeof(uint32_t) * sp_count))) {
log_error("Unable to allocate %d 32-bit uints",
sp_count);
dm_pool_destroy(tmpmem);
return 0;
}
}
/*
* watch out for a pool label with a different subpool
* count than the original - give up if it does
*/
if (sp_count != pl->pd.pl_subpools)
break;
_add_pl_to_list(head, pl);
if (sp_count > pl->pd.pl_sp_id && sp_devs[pl->pd.pl_sp_id] == 0)
sp_devs[pl->pd.pl_sp_id] = pl->pd.pl_sp_devs;
}
*devcount = 0;
for (i = 0; i < sp_count; i++)
*devcount += sp_devs[i];
dm_pool_destroy(tmpmem);
if (pl && *pl->pd.pl_pool_name)
return 1;
return 0;
}
int read_pool_pds(const struct format_type *fmt, const char *vg_name,
struct dm_pool *mem, struct dm_list *pdhead)
{
struct lvmcache_vginfo *vginfo;
uint32_t totaldevs;
int full_scan = -1;
do {
/*
* If the cache scanning doesn't work, this will never work
*/
if (vg_name && (vginfo = vginfo_from_vgname(vg_name, NULL)) &&
vginfo->infos.n) {
if (_read_vg_pds(fmt, mem, vginfo, pdhead, &totaldevs)) {
/*
* If we found all the devices we were
* expecting, return success
*/
if (dm_list_size(pdhead) == totaldevs)
return 1;
/*
* accept partial pool if we've done a full
* rescan of the cache
*/
if (full_scan > 0)
return 1;
}
}
/* Failed */
dm_list_init(pdhead);
full_scan++;
if (full_scan > 1) {
log_debug("No devices for vg %s found in cache",
vg_name);
return 0;
}
lvmcache_label_scan(fmt->cmd, full_scan);
} while (1);
}
struct pool_list *read_pool_disk(const struct format_type *fmt,
struct device *dev, struct dm_pool *mem,
const char *vg_name)
{
struct pool_list *pl;
if (!dev_open(dev))
return_NULL;
if (!(pl = dm_pool_zalloc(mem, sizeof(*pl)))) {
log_error("Unable to allocate pool list structure");
return 0;
}
if (!__read_pool_disk(fmt, dev, mem, pl, vg_name))
return_NULL;
if (!dev_close(dev))
stack;
return pl;
}