1
0
mirror of git://sourceware.org/git/lvm2.git synced 2024-12-30 17:18:21 +03:00
lvm2/lib/metadata/metadata.c
Zdenek Kabelac 2cea1c1bd9 pvcreate: fix test for wiping status
Commit ed420fb691 changed
paramet wiped to be a pointer, but missed to switch
to test pointer dereferenced value and instead always
checked 'pointer'.
2015-05-08 13:36:39 +02:00

5163 lines
130 KiB
C

/*
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004-2012 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "lib.h"
#include "device.h"
#include "metadata.h"
#include "toolcontext.h"
#include "lvm-string.h"
#include "lvm-file.h"
#include "lvm-signal.h"
#include "lvmcache.h"
#include "lvmetad.h"
#include "memlock.h"
#include "str_list.h"
#include "pv_alloc.h"
#include "segtype.h"
#include "activate.h"
#include "display.h"
#include "locking.h"
#include "archiver.h"
#include "defaults.h"
#include <math.h>
#include <sys/param.h>
static struct physical_volume *_pv_read(struct cmd_context *cmd,
struct dm_pool *pvmem,
const char *pv_name,
struct format_instance *fid,
uint32_t warn_flags, int scan_label_only);
static uint32_t _vg_bad_status_bits(const struct volume_group *vg,
uint64_t status);
static int _alignment_overrides_default(unsigned long data_alignment,
unsigned long default_pe_align)
{
return data_alignment && (default_pe_align % data_alignment);
}
unsigned long set_pe_align(struct physical_volume *pv, unsigned long data_alignment)
{
unsigned long default_pe_align, temp_pe_align;
if (pv->pe_align)
goto out;
if (data_alignment) {
/* Always use specified data_alignment */
pv->pe_align = data_alignment;
goto out;
}
default_pe_align = find_config_tree_int(pv->fmt->cmd, devices_default_data_alignment_CFG, NULL);
if (default_pe_align)
/* align on 1 MiB multiple */
default_pe_align *= DEFAULT_PE_ALIGN;
else
/* align on 64 KiB multiple (old default) */
default_pe_align = DEFAULT_PE_ALIGN_OLD;
pv->pe_align = MAX((default_pe_align << SECTOR_SHIFT),
lvm_getpagesize()) >> SECTOR_SHIFT;
if (!pv->dev)
goto out;
/*
* Align to stripe-width of underlying md device if present
*/
if (find_config_tree_bool(pv->fmt->cmd, devices_md_chunk_alignment_CFG, NULL)) {
temp_pe_align = dev_md_stripe_width(pv->fmt->cmd->dev_types, pv->dev);
if (_alignment_overrides_default(temp_pe_align, default_pe_align))
pv->pe_align = temp_pe_align;
}
/*
* Align to topology's minimum_io_size or optimal_io_size if present
* - minimum_io_size - the smallest request the device can perform
* w/o incurring a read-modify-write penalty (e.g. MD's chunk size)
* - optimal_io_size - the device's preferred unit of receiving I/O
* (e.g. MD's stripe width)
*/
if (find_config_tree_bool(pv->fmt->cmd, devices_data_alignment_detection_CFG, NULL)) {
temp_pe_align = dev_minimum_io_size(pv->fmt->cmd->dev_types, pv->dev);
if (_alignment_overrides_default(temp_pe_align, default_pe_align))
pv->pe_align = temp_pe_align;
temp_pe_align = dev_optimal_io_size(pv->fmt->cmd->dev_types, pv->dev);
if (_alignment_overrides_default(temp_pe_align, default_pe_align))
pv->pe_align = temp_pe_align;
}
out:
log_very_verbose("%s: Setting PE alignment to %lu sectors.",
dev_name(pv->dev), pv->pe_align);
return pv->pe_align;
}
unsigned long set_pe_align_offset(struct physical_volume *pv,
unsigned long data_alignment_offset)
{
if (pv->pe_align_offset)
goto out;
if (data_alignment_offset) {
/* Always use specified data_alignment_offset */
pv->pe_align_offset = data_alignment_offset;
goto out;
}
if (!pv->dev)
goto out;
if (find_config_tree_bool(pv->fmt->cmd, devices_data_alignment_offset_detection_CFG, NULL)) {
int align_offset = dev_alignment_offset(pv->fmt->cmd->dev_types, pv->dev);
/* must handle a -1 alignment_offset; means dev is misaligned */
if (align_offset < 0)
align_offset = 0;
pv->pe_align_offset = MAX(pv->pe_align_offset, align_offset);
}
out:
log_very_verbose("%s: Setting PE alignment offset to %lu sectors.",
dev_name(pv->dev), pv->pe_align_offset);
return pv->pe_align_offset;
}
void add_pvl_to_vgs(struct volume_group *vg, struct pv_list *pvl)
{
dm_list_add(&vg->pvs, &pvl->list);
vg->pv_count++;
pvl->pv->vg = vg;
pv_set_fid(pvl->pv, vg->fid);
}
void del_pvl_from_vgs(struct volume_group *vg, struct pv_list *pvl)
{
struct lvmcache_info *info;
vg->pv_count--;
dm_list_del(&pvl->list);
pvl->pv->vg = vg->fid->fmt->orphan_vg; /* orphan */
if ((info = lvmcache_info_from_pvid((const char *) &pvl->pv->id, 0)))
lvmcache_fid_add_mdas(info, vg->fid->fmt->orphan_vg->fid,
(const char *) &pvl->pv->id, ID_LEN);
pv_set_fid(pvl->pv, vg->fid->fmt->orphan_vg->fid);
}
/**
* add_pv_to_vg - Add a physical volume to a volume group
* @vg - volume group to add to
* @pv_name - name of the pv (to be removed)
* @pv - physical volume to add to volume group
* @pp - physical volume creation params (OPTIONAL)
*
* Returns:
* 0 - failure
* 1 - success
* FIXME: remove pv_name - obtain safely from pv
*/
int add_pv_to_vg(struct volume_group *vg, const char *pv_name,
struct physical_volume *pv, struct pvcreate_params *pp)
{
struct pv_to_create *pvc;
struct pv_list *pvl;
struct format_instance *fid = vg->fid;
struct dm_pool *mem = vg->vgmem;
char uuid[64] __attribute__((aligned(8)));
log_verbose("Adding physical volume '%s' to volume group '%s'",
pv_name, vg->name);
if (!(pvl = dm_pool_zalloc(mem, sizeof(*pvl)))) {
log_error("pv_list allocation for '%s' failed", pv_name);
return 0;
}
if (!is_orphan_vg(pv->vg_name)) {
log_error("Physical volume '%s' is already in volume group "
"'%s'", pv_name, pv->vg_name);
return 0;
}
if (pv->fmt != fid->fmt) {
log_error("Physical volume %s is of different format type (%s)",
pv_name, pv->fmt->name);
return 0;
}
/* Ensure PV doesn't depend on another PV already in the VG */
if (pv_uses_vg(pv, vg)) {
log_error("Physical volume %s might be constructed from same "
"volume group %s", pv_name, vg->name);
return 0;
}
if (!(pv->vg_name = dm_pool_strdup(mem, vg->name))) {
log_error("vg->name allocation failed for '%s'", pv_name);
return 0;
}
memcpy(&pv->vgid, &vg->id, sizeof(vg->id));
/* Units of 512-byte sectors */
pv->pe_size = vg->extent_size;
/*
* pe_count must always be calculated by pv_setup
*/
pv->pe_alloc_count = 0;
if (!fid->fmt->ops->pv_setup(fid->fmt, pv, vg)) {
log_error("Format-specific setup of physical volume '%s' "
"failed.", pv_name);
return 0;
}
if (find_pv_in_vg(vg, pv_name) ||
find_pv_in_vg_by_uuid(vg, &pv->id)) {
if (!id_write_format(&pv->id, uuid, sizeof(uuid))) {
stack;
uuid[0] = '\0';
}
log_error("Physical volume '%s (%s)' already in the VG.",
pv_name, uuid);
return 0;
}
if (vg->pv_count && (vg->pv_count == vg->max_pv)) {
log_error("No space for '%s' - volume group '%s' "
"holds max %d physical volume(s).", pv_name,
vg->name, vg->max_pv);
return 0;
}
if (!alloc_pv_segment_whole_pv(mem, pv))
return_0;
if ((uint64_t) vg->extent_count + pv->pe_count > MAX_EXTENT_COUNT) {
log_error("Unable to add %s to %s: new extent count (%"
PRIu64 ") exceeds limit (%" PRIu32 ").",
pv_name, vg->name,
(uint64_t) vg->extent_count + pv->pe_count,
MAX_EXTENT_COUNT);
return 0;
}
pvl->pv = pv;
add_pvl_to_vgs(vg, pvl);
vg->extent_count += pv->pe_count;
vg->free_count += pv->pe_count;
dm_list_iterate_items(pvl, &fid->fmt->orphan_vg->pvs)
if (pv == pvl->pv) { /* unlink from orphan */
dm_list_del(&pvl->list);
break;
}
if (pv->status & UNLABELLED_PV) {
if (!(pvc = dm_pool_zalloc(mem, sizeof(*pvc)))) {
log_error("pv_to_create allocation for '%s' failed", pv_name);
return 0;
}
pvc->pv = pv;
pvc->pp = pp;
dm_list_add(&vg->pvs_to_create, &pvc->list);
}
return 1;
}
static int _copy_pv(struct dm_pool *pvmem,
struct physical_volume *pv_to,
struct physical_volume *pv_from)
{
memcpy(pv_to, pv_from, sizeof(*pv_to));
/* We must use pv_set_fid here to update the reference counter! */
pv_to->fid = NULL;
pv_set_fid(pv_to, pv_from->fid);
if (!(pv_to->vg_name = dm_pool_strdup(pvmem, pv_from->vg_name)))
return_0;
if (!str_list_dup(pvmem, &pv_to->tags, &pv_from->tags))
return_0;
if (!peg_dup(pvmem, &pv_to->segments, &pv_from->segments))
return_0;
return 1;
}
static struct pv_list *_copy_pvl(struct dm_pool *pvmem, struct pv_list *pvl_from)
{
struct pv_list *pvl_to = NULL;
if (!(pvl_to = dm_pool_zalloc(pvmem, sizeof(*pvl_to))))
return_NULL;
if (!(pvl_to->pv = dm_pool_alloc(pvmem, sizeof(*pvl_to->pv))))
goto_bad;
if(!_copy_pv(pvmem, pvl_to->pv, pvl_from->pv))
goto_bad;
return pvl_to;
bad:
dm_pool_free(pvmem, pvl_to);
return NULL;
}
int get_pv_from_vg_by_id(const struct format_type *fmt, const char *vg_name,
const char *vgid, const char *pvid,
struct physical_volume *pv)
{
struct volume_group *vg;
struct pv_list *pvl;
uint32_t warn_flags = WARN_PV_READ | WARN_INCONSISTENT;
int r = 0, consistent = 0;
if (!(vg = vg_read_internal(fmt->cmd, vg_name, vgid, warn_flags, &consistent))) {
log_error("get_pv_from_vg_by_id: vg_read_internal failed to read VG %s",
vg_name);
return 0;
}
dm_list_iterate_items(pvl, &vg->pvs) {
if (id_equal(&pvl->pv->id, (const struct id *) pvid)) {
if (!_copy_pv(fmt->cmd->mem, pv, pvl->pv)) {
log_error("internal PV duplication failed");
r = 0;
goto out;
}
r = 1;
goto out;
}
}
out:
release_vg(vg);
return r;
}
static int _move_pv(struct volume_group *vg_from, struct volume_group *vg_to,
const char *pv_name, int enforce_pv_from_source)
{
struct physical_volume *pv;
struct pv_list *pvl;
/* FIXME: handle tags */
if (!(pvl = find_pv_in_vg(vg_from, pv_name))) {
if (!enforce_pv_from_source &&
find_pv_in_vg(vg_to, pv_name))
/*
* PV has already been moved. This can happen if an
* LV is being moved that has multiple sub-LVs on the
* same PV.
*/
return 1;
log_error("Physical volume %s not in volume group %s",
pv_name, vg_from->name);
return 0;
}
if (_vg_bad_status_bits(vg_from, RESIZEABLE_VG) ||
_vg_bad_status_bits(vg_to, RESIZEABLE_VG))
return 0;
del_pvl_from_vgs(vg_from, pvl);
add_pvl_to_vgs(vg_to, pvl);
pv = pvl->pv;
vg_from->extent_count -= pv_pe_count(pv);
vg_to->extent_count += pv_pe_count(pv);
vg_from->free_count -= pv_pe_count(pv) - pv_pe_alloc_count(pv);
vg_to->free_count += pv_pe_count(pv) - pv_pe_alloc_count(pv);
return 1;
}
int move_pv(struct volume_group *vg_from, struct volume_group *vg_to,
const char *pv_name)
{
return _move_pv(vg_from, vg_to, pv_name, 1);
}
int move_pvs_used_by_lv(struct volume_group *vg_from,
struct volume_group *vg_to,
const char *lv_name)
{
struct lv_segment *lvseg;
unsigned s;
struct lv_list *lvl;
struct logical_volume *lv;
/* FIXME: handle tags */
if (!(lvl = find_lv_in_vg(vg_from, lv_name))) {
log_error("Logical volume %s not in volume group %s",
lv_name, vg_from->name);
return 0;
}
if (_vg_bad_status_bits(vg_from, RESIZEABLE_VG) ||
_vg_bad_status_bits(vg_to, RESIZEABLE_VG))
return 0;
dm_list_iterate_items(lvseg, &lvl->lv->segments) {
if (lvseg->log_lv)
if (!move_pvs_used_by_lv(vg_from, vg_to,
lvseg->log_lv->name))
return_0;
for (s = 0; s < lvseg->area_count; s++) {
if (seg_type(lvseg, s) == AREA_PV) {
if (!_move_pv(vg_from, vg_to,
pv_dev_name(seg_pv(lvseg, s)), 0))
return_0;
} else if (seg_type(lvseg, s) == AREA_LV) {
lv = seg_lv(lvseg, s);
if (!move_pvs_used_by_lv(vg_from, vg_to,
lv->name))
return_0;
}
}
}
return 1;
}
int validate_new_vg_name(struct cmd_context *cmd, const char *vg_name)
{
static char vg_path[PATH_MAX];
name_error_t name_error;
name_error = validate_name_detailed(vg_name);
if (NAME_VALID != name_error) {
display_name_error(name_error);
log_error("New volume group name \"%s\" is invalid.", vg_name);
return 0;
}
snprintf(vg_path, sizeof(vg_path), "%s%s", cmd->dev_dir, vg_name);
if (path_exists(vg_path)) {
log_error("%s: already exists in filesystem", vg_path);
return 0;
}
return 1;
}
int validate_vg_rename_params(struct cmd_context *cmd,
const char *vg_name_old,
const char *vg_name_new)
{
unsigned length;
char *dev_dir;
dev_dir = cmd->dev_dir;
length = strlen(dev_dir);
/* Check sanity of new name */
if (strlen(vg_name_new) > NAME_LEN - length - 2) {
log_error("New volume group path exceeds maximum length "
"of %d!", NAME_LEN - length - 2);
return 0;
}
if (!validate_new_vg_name(cmd, vg_name_new))
return_0;
if (!strcmp(vg_name_old, vg_name_new)) {
log_error("Old and new volume group names must differ");
return 0;
}
return 1;
}
int vg_rename(struct cmd_context *cmd, struct volume_group *vg,
const char *new_name)
{
struct dm_pool *mem = vg->vgmem;
struct pv_list *pvl;
vg->old_name = vg->name;
if (!(vg->name = dm_pool_strdup(mem, new_name))) {
log_error("vg->name allocation failed for '%s'", new_name);
return 0;
}
dm_list_iterate_items(pvl, &vg->pvs) {
if (!(pvl->pv->vg_name = dm_pool_strdup(mem, new_name))) {
log_error("pv->vg_name allocation failed for '%s'",
pv_dev_name(pvl->pv));
return 0;
}
}
return 1;
}
int vg_remove_check(struct volume_group *vg)
{
unsigned lv_count;
if (vg_read_error(vg) || vg_missing_pv_count(vg)) {
log_error("Volume group \"%s\" not found, is inconsistent "
"or has PVs missing.", vg ? vg->name : "");
log_error("Consider vgreduce --removemissing if metadata "
"is inconsistent.");
return 0;
}
if (!vg_check_status(vg, EXPORTED_VG))
return 0;
lv_count = vg_visible_lvs(vg);
if (lv_count) {
log_error("Volume group \"%s\" still contains %u "
"logical volume(s)", vg->name, lv_count);
return 0;
}
if (!archive(vg))
return 0;
return 1;
}
void vg_remove_pvs(struct volume_group *vg)
{
struct pv_list *pvl, *tpvl;
dm_list_iterate_items_safe(pvl, tpvl, &vg->pvs) {
del_pvl_from_vgs(vg, pvl);
dm_list_add(&vg->removed_pvs, &pvl->list);
}
}
int vg_remove(struct volume_group *vg)
{
struct physical_volume *pv;
struct pv_list *pvl;
int ret = 1;
if (!lock_vol(vg->cmd, VG_ORPHANS, LCK_VG_WRITE, NULL)) {
log_error("Can't get lock for orphan PVs");
return 0;
}
if (!vg_remove_mdas(vg)) {
log_error("vg_remove_mdas %s failed", vg->name);
unlock_vg(vg->cmd, VG_ORPHANS);
return 0;
}
/* init physical volumes */
dm_list_iterate_items(pvl, &vg->removed_pvs) {
pv = pvl->pv;
if (is_missing_pv(pv))
continue;
log_verbose("Removing physical volume \"%s\" from "
"volume group \"%s\"", pv_dev_name(pv), vg->name);
pv->vg_name = vg->fid->fmt->orphan_vg_name;
pv->status &= ~ALLOCATABLE_PV;
if (!dev_get_size(pv_dev(pv), &pv->size)) {
log_error("%s: Couldn't get size.", pv_dev_name(pv));
ret = 0;
continue;
}
/* FIXME Write to same sector label was read from */
if (!pv_write(vg->cmd, pv, 0)) {
log_error("Failed to remove physical volume \"%s\""
" from volume group \"%s\"",
pv_dev_name(pv), vg->name);
ret = 0;
}
}
/* FIXME Handle partial failures from above. */
if (!lvmetad_vg_remove(vg))
stack;
if (!backup_remove(vg->cmd, vg->name))
stack;
if (ret)
log_print_unless_silent("Volume group \"%s\" successfully removed", vg->name);
else
log_error("Volume group \"%s\" not properly removed", vg->name);
unlock_vg(vg->cmd, VG_ORPHANS);
return ret;
}
int check_dev_block_size_for_vg(struct device *dev, const struct volume_group *vg,
unsigned int *max_phys_block_size_found)
{
unsigned int phys_block_size, block_size;
if (!(dev_get_block_size(dev, &phys_block_size, &block_size)))
return_0;
if (phys_block_size > *max_phys_block_size_found)
*max_phys_block_size_found = phys_block_size;
if (phys_block_size >> SECTOR_SHIFT > vg->extent_size) {
log_error("Physical extent size used for volume group %s "
"is less than physical block size that %s uses.",
vg->name, dev_name(dev));
return 0;
}
return 1;
}
int vg_check_pv_dev_block_sizes(const struct volume_group *vg)
{
struct pv_list *pvl;
unsigned int max_phys_block_size_found = 0;
dm_list_iterate_items(pvl, &vg->pvs) {
if (!check_dev_block_size_for_vg(pvl->pv->dev, vg, &max_phys_block_size_found))
return 0;
}
return 1;
}
/*
* Extend a VG by a single PV / device path
*
* Parameters:
* - vg: handle of volume group to extend by 'pv_name'
* - pv_name: device path of PV to add to VG
* - pp: parameters to pass to implicit pvcreate; if NULL, do not pvcreate
* - max_phys_block_size: largest physical block size found amongst PVs in a VG
*
*/
static int vg_extend_single_pv(struct volume_group *vg, char *pv_name,
struct pvcreate_params *pp,
unsigned int *max_phys_block_size)
{
struct physical_volume *pv;
pv = find_pv_by_name(vg->cmd, pv_name, 1, 1);
if (!pv && !pp) {
log_error("%s not identified as an existing "
"physical volume", pv_name);
return 0;
} else if (!pv && pp) {
if (!(pv = pvcreate_vol(vg->cmd, pv_name, pp, 0)))
return_0;
}
if (!(check_dev_block_size_for_vg(pv->dev, (const struct volume_group *) vg,
max_phys_block_size)))
goto_bad;
if (!add_pv_to_vg(vg, pv_name, pv, pp))
goto_bad;
return 1;
bad:
free_pv_fid(pv);
return 0;
}
/*
* Extend a VG by a single PV / device path
*
* Parameters:
* - vg: handle of volume group to extend by 'pv_name'
* - pv_count: count of device paths of PVs
* - pv_names: device paths of PVs to add to VG
* - pp: parameters to pass to implicit pvcreate; if NULL, do not pvcreate
*
*/
int vg_extend(struct volume_group *vg, int pv_count, const char *const *pv_names,
struct pvcreate_params *pp)
{
int i;
char *pv_name;
unsigned int max_phys_block_size = 0;
if (_vg_bad_status_bits(vg, RESIZEABLE_VG))
return_0;
/* attach each pv */
for (i = 0; i < pv_count; i++) {
if (!(pv_name = dm_strdup(pv_names[i]))) {
log_error("Failed to duplicate pv name %s.", pv_names[i]);
return 0;
}
dm_unescape_colons_and_at_signs(pv_name, NULL, NULL);
if (!vg_extend_single_pv(vg, pv_name, pp, &max_phys_block_size)) {
log_error("Unable to add physical volume '%s' to "
"volume group '%s'.", pv_name, vg->name);
dm_free(pv_name);
return 0;
}
dm_free(pv_name);
}
/* FIXME Decide whether to initialise and add new mdahs to format instance */
return 1;
}
int vg_reduce(struct volume_group *vg, const char *pv_name)
{
struct physical_volume *pv;
struct pv_list *pvl;
if (!(pvl = find_pv_in_vg(vg, pv_name))) {
log_error("Physical volume %s not in volume group %s.",
pv_name, vg->name);
return 0;
}
pv = pvl->pv;
if (vgreduce_single(vg->cmd, vg, pv, 0)) {
dm_list_add(&vg->removed_pvs, &pvl->list);
return 1;
}
log_error("Unable to remove physical volume '%s' from "
"volume group '%s'.", pv_name, vg->name);
return 0;
}
int lv_change_tag(struct logical_volume *lv, const char *tag, int add_tag)
{
char *tag_new;
if (!(lv->vg->fid->fmt->features & FMT_TAGS)) {
log_error("Logical volume %s/%s does not support tags",
lv->vg->name, lv->name);
return 0;
}
if (add_tag) {
if (!(tag_new = dm_pool_strdup(lv->vg->vgmem, tag))) {
log_error("Failed to duplicate tag %s from %s/%s",
tag, lv->vg->name, lv->name);
return 0;
}
if (!str_list_add(lv->vg->vgmem, &lv->tags, tag_new)) {
log_error("Failed to add tag %s to %s/%s",
tag, lv->vg->name, lv->name);
return 0;
}
} else
str_list_del(&lv->tags, tag);
return 1;
}
int vg_change_tag(struct volume_group *vg, const char *tag, int add_tag)
{
char *tag_new;
if (!(vg->fid->fmt->features & FMT_TAGS)) {
log_error("Volume group %s does not support tags", vg->name);
return 0;
}
if (add_tag) {
if (!(tag_new = dm_pool_strdup(vg->vgmem, tag))) {
log_error("Failed to duplicate tag %s from %s",
tag, vg->name);
return 0;
}
if (!str_list_add(vg->vgmem, &vg->tags, tag_new)) {
log_error("Failed to add tag %s to volume group %s",
tag, vg->name);
return 0;
}
} else
str_list_del(&vg->tags, tag);
return 1;
}
const char *strip_dir(const char *vg_name, const char *dev_dir)
{
size_t len = strlen(dev_dir);
if (!strncmp(vg_name, dev_dir, len))
vg_name += len;
return vg_name;
}
/*
* Validates major and minor numbers.
* On >2.4 kernel we only support dynamic major number.
*/
int validate_major_minor(const struct cmd_context *cmd,
const struct format_type *fmt,
int32_t major, int32_t minor)
{
int r = 1;
if (!strncmp(cmd->kernel_vsn, "2.4.", 4) ||
(fmt->features & FMT_RESTRICTED_LVIDS)) {
if (major < 0 || major > 255) {
log_error("Major number %d outside range 0-255.", major);
r = 0;
}
if (minor < 0 || minor > 255) {
log_error("Minor number %d outside range 0-255.", minor);
r = 0;
}
} else {
/* 12 bits for major number */
if ((major != -1) &&
(major != cmd->dev_types->device_mapper_major)) {
/* User supplied some major number */
if (major < 0 || major > 4095) {
log_error("Major number %d outside range 0-4095.", major);
r = 0;
} else
log_print_unless_silent("Ignoring supplied major %d number - "
"kernel assigns major numbers dynamically.",
major);
}
/* 20 bits for minor number */
if (minor < 0 || minor > 1048575) {
log_error("Minor number %d outside range 0-1048575.", minor);
r = 0;
}
}
return r;
}
/*
* Validate parameters to vg_create() before calling.
* FIXME: Move inside vg_create library function.
* FIXME: Change vgcreate_params struct to individual gets/sets
*/
int vgcreate_params_validate(struct cmd_context *cmd,
struct vgcreate_params *vp)
{
if (!validate_new_vg_name(cmd, vp->vg_name))
return_0;
if (vp->alloc == ALLOC_INHERIT) {
log_error("Volume Group allocation policy cannot inherit "
"from anything");
return 0;
}
if (!vp->extent_size) {
log_error("Physical extent size may not be zero");
return 0;
}
if (!(cmd->fmt->features & FMT_UNLIMITED_VOLS)) {
if (!vp->max_lv)
vp->max_lv = 255;
if (!vp->max_pv)
vp->max_pv = 255;
if (vp->max_lv > 255 || vp->max_pv > 255) {
log_error("Number of volumes may not exceed 255");
return 0;
}
}
return 1;
}
/*
* Update content of precommitted VG
*
* TODO: Optimize in the future, since lvmetad needs similar
* config tree processing in lvmetad_vg_update().
*/
static int _vg_update_vg_precommitted(struct volume_group *vg)
{
release_vg(vg->vg_precommitted);
vg->vg_precommitted = NULL;
if (vg->cft_precommitted) {
dm_config_destroy(vg->cft_precommitted);
vg->cft_precommitted = NULL;
}
if (!(vg->cft_precommitted = export_vg_to_config_tree(vg)))
return_0;
if (!(vg->vg_precommitted = import_vg_from_config_tree(vg->cft_precommitted, vg->fid))) {
dm_config_destroy(vg->cft_precommitted);
vg->cft_precommitted = NULL;
return_0;
}
return 1;
}
static int _vg_update_vg_ondisk(struct volume_group *vg)
{
if (dm_pool_locked(vg->vgmem))
return 1;
if (vg->vg_ondisk || is_orphan_vg(vg->name)) /* we already have it */
return 1;
if (!_vg_update_vg_precommitted(vg))
return_0;
vg->vg_ondisk = vg->vg_precommitted;
vg->vg_precommitted = NULL;
if (vg->cft_precommitted) {
dm_config_destroy(vg->cft_precommitted);
vg->cft_precommitted = NULL;
}
return 1;
}
/*
* Create a (struct volume_group) volume group handle from a struct volume_group pointer and a
* possible failure code or zero for success.
*/
static struct volume_group *_vg_make_handle(struct cmd_context *cmd,
struct volume_group *vg,
uint32_t failure)
{
/* Never return a cached VG structure for a failure */
if (vg && vg->vginfo && failure != SUCCESS) {
release_vg(vg);
vg = NULL;
}
if (!vg && !(vg = alloc_vg("vg_make_handle", cmd, NULL)))
return_NULL;
if (vg->read_status != failure)
vg->read_status = failure;
if (vg->fid && !_vg_update_vg_ondisk(vg))
vg->read_status |= FAILED_ALLOCATION;
return vg;
}
int lv_has_unknown_segments(const struct logical_volume *lv)
{
struct lv_segment *seg;
/* foreach segment */
dm_list_iterate_items(seg, &lv->segments)
if (seg_unknown(seg))
return 1;
return 0;
}
int vg_has_unknown_segments(const struct volume_group *vg)
{
struct lv_list *lvl;
/* foreach LV */
dm_list_iterate_items(lvl, &vg->lvs)
if (lv_has_unknown_segments(lvl->lv))
return 1;
return 0;
}
/*
* Create a VG with default parameters.
* Returns:
* - struct volume_group* with SUCCESS code: VG structure created
* - NULL or struct volume_group* with FAILED_* code: error creating VG structure
* Use vg_read_error() to determine success or failure.
* FIXME: cleanup usage of _vg_make_handle()
*/
struct volume_group *vg_create(struct cmd_context *cmd, const char *vg_name)
{
struct volume_group *vg;
struct format_instance_ctx fic = {
.type = FMT_INSTANCE_MDAS | FMT_INSTANCE_AUX_MDAS,
.context.vg_ref.vg_name = vg_name
};
struct format_instance *fid;
uint32_t rc;
if (!validate_name(vg_name)) {
log_error("Invalid vg name %s", vg_name);
/* FIXME: use _vg_make_handle() w/proper error code */
return NULL;
}
rc = vg_lock_newname(cmd, vg_name);
if (rc != SUCCESS)
/* NOTE: let caller decide - this may be check for existence */
return _vg_make_handle(cmd, NULL, rc);
/* Strip dev_dir if present */
vg_name = strip_dir(vg_name, cmd->dev_dir);
if (!(vg = alloc_vg("vg_create", cmd, vg_name)))
goto_bad;
if (!id_create(&vg->id)) {
log_error("Couldn't create uuid for volume group '%s'.",
vg_name);
goto bad;
}
vg->status = (RESIZEABLE_VG | LVM_READ | LVM_WRITE);
vg->system_id = NULL;
if (!(vg->lvm1_system_id = dm_pool_zalloc(vg->vgmem, NAME_LEN + 1)))
goto_bad;
vg->extent_size = DEFAULT_EXTENT_SIZE * 2;
vg->max_lv = DEFAULT_MAX_LV;
vg->max_pv = DEFAULT_MAX_PV;
vg->alloc = DEFAULT_ALLOC_POLICY;
vg->mda_copies = DEFAULT_VGMETADATACOPIES;
if (!(fid = cmd->fmt->ops->create_instance(cmd->fmt, &fic))) {
log_error("Failed to create format instance");
goto bad;
}
vg_set_fid(vg, fid);
if (vg->fid->fmt->ops->vg_setup &&
!vg->fid->fmt->ops->vg_setup(vg->fid, vg)) {
log_error("Format specific setup of volume group '%s' failed.",
vg_name);
goto bad;
}
return _vg_make_handle(cmd, vg, SUCCESS);
bad:
unlock_and_release_vg(cmd, vg, vg_name);
/* FIXME: use _vg_make_handle() w/proper error code */
return NULL;
}
/* Rounds up by default */
uint32_t extents_from_size(struct cmd_context *cmd, uint64_t size,
uint32_t extent_size)
{
if (size % extent_size) {
size += extent_size - size % extent_size;
log_print_unless_silent("Rounding up size to full physical extent %s",
display_size(cmd, size));
}
if (size > (uint64_t) MAX_EXTENT_COUNT * extent_size) {
log_error("Volume too large (%s) for extent size %s. "
"Upper limit is %s.",
display_size(cmd, size),
display_size(cmd, (uint64_t) extent_size),
display_size(cmd, (uint64_t) MAX_EXTENT_COUNT *
extent_size));
return 0;
}
return (uint32_t) (size / extent_size);
}
/*
* Converts size according to percentage with specified rounding to extents
*
* For PERCENT_NONE size is in standard sector units.
* For all other percent type is in DM_PERCENT_1 base unit (supports decimal point)
*
* Return value of 0 extents is an error.
*/
uint32_t extents_from_percent_size(struct volume_group *vg, const struct dm_list *pvh,
uint32_t extents, int roundup,
percent_type_t percent, uint64_t size)
{
uint32_t count;
switch (percent) {
case PERCENT_NONE:
if (!roundup && (size % vg->extent_size)) {
if (!(size -= size % vg->extent_size)) {
log_error("Specified size is smaller then physical extent boundary.");
return 0;
}
log_print_unless_silent("Rounding size to boundary between physical extents: %s.",
display_size(vg->cmd, size));
}
return extents_from_size(vg->cmd, size, vg->extent_size);
case PERCENT_LV:
break; /* Base extents already passed in. */
case PERCENT_VG:
extents = vg->extent_count;
break;
case PERCENT_PVS:
if (pvh != &vg->pvs) {
/* Physical volumes are specified on cmdline */
if (!(extents = pv_list_extents_free(pvh))) {
log_error("No free extents in the list of physical volumes.");
return 0;
}
break;
}
/* Fall back to use all PVs in VG like %FREE */
case PERCENT_FREE:
if (!(extents = vg->free_count)) {
log_error("No free extents in Volume group %s.", vg->name);
return 0;
}
break;
default:
log_error(INTERNAL_ERROR "Unsupported percent type %u.", percent);
return 0;
}
if (!(count = percent_of_extents(size, extents, roundup)))
log_error("Converted %.2f%%%s into 0 extents.",
(double) size / DM_PERCENT_1, get_percent_string(percent));
else
log_verbose("Converted %.2f%%%s into %" PRIu32 " extents.",
(double) size / DM_PERCENT_1, get_percent_string(percent), count);
return count;
}
static dm_bitset_t _bitset_with_random_bits(struct dm_pool *mem, uint32_t num_bits,
uint32_t num_set_bits, unsigned *seed)
{
dm_bitset_t bs;
unsigned bit_selected;
char buf[32];
uint32_t i = num_bits - num_set_bits;
if (!(bs = dm_bitset_create(mem, (unsigned) num_bits))) {
log_error("Failed to allocate bitset for setting random bits.");
return NULL;
}
if (!dm_pool_begin_object(mem, 512)) {
log_error("dm_pool_begin_object failed for random list of bits.");
dm_pool_free(mem, bs);
return NULL;
}
/* Perform loop num_set_bits times, selecting one bit each time */
while (i++ < num_bits) {
/* Select a random bit between 0 and (i-1) inclusive. */
bit_selected = lvm_even_rand(seed, i);
/*
* If the bit was already set, set the new bit that became
* choosable for the first time during this pass.
* This maintains a uniform probability distribution by compensating
* for being unable to select it until this pass.
*/
if (dm_bit(bs, bit_selected))
bit_selected = i - 1;
dm_bit_set(bs, bit_selected);
if (dm_snprintf(buf, sizeof(buf), "%u ", bit_selected) < 0) {
log_error("snprintf random bit failed.");
dm_pool_free(mem, bs);
return NULL;
}
if (!dm_pool_grow_object(mem, buf, strlen(buf))) {
log_error("Failed to generate list of random bits.");
dm_pool_free(mem, bs);
return NULL;
}
}
if (!dm_pool_grow_object(mem, "\0", 1)) {
log_error("Failed to finish list of random bits.");
dm_pool_free(mem, bs);
return NULL;
}
log_debug_metadata("Selected %" PRIu32 " random bits from %" PRIu32 ": %s", num_set_bits, num_bits, (char *) dm_pool_end_object(mem));
return bs;
}
static int _vg_ignore_mdas(struct volume_group *vg, uint32_t num_to_ignore)
{
struct metadata_area *mda;
uint32_t mda_used_count = vg_mda_used_count(vg);
dm_bitset_t mda_to_ignore_bs;
int r = 1;
log_debug_metadata("Adjusting ignored mdas for %s: %" PRIu32 " of %" PRIu32 " mdas in use "
"but %" PRIu32 " required. Changing %" PRIu32 " mda.",
vg->name, mda_used_count, vg_mda_count(vg), vg_mda_copies(vg), num_to_ignore);
if (!num_to_ignore)
return 1;
if (!(mda_to_ignore_bs = _bitset_with_random_bits(vg->vgmem, mda_used_count,
num_to_ignore, &vg->cmd->rand_seed)))
return_0;
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use)
if (!mda_is_ignored(mda) && (--mda_used_count,
dm_bit(mda_to_ignore_bs, mda_used_count))) {
mda_set_ignored(mda, 1);
if (!--num_to_ignore)
goto out;
}
log_error(INTERNAL_ERROR "Unable to find %"PRIu32" metadata areas to ignore "
"on volume group %s", num_to_ignore, vg->name);
r = 0;
out:
dm_pool_free(vg->vgmem, mda_to_ignore_bs);
return r;
}
static int _vg_unignore_mdas(struct volume_group *vg, uint32_t num_to_unignore)
{
struct metadata_area *mda, *tmda;
uint32_t mda_used_count = vg_mda_used_count(vg);
uint32_t mda_count = vg_mda_count(vg);
uint32_t mda_free_count = mda_count - mda_used_count;
dm_bitset_t mda_to_unignore_bs;
int r = 1;
if (!num_to_unignore)
return 1;
log_debug_metadata("Adjusting ignored mdas for %s: %" PRIu32 " of %" PRIu32 " mdas in use "
"but %" PRIu32 " required. Changing %" PRIu32 " mda.",
vg->name, mda_used_count, mda_count, vg_mda_copies(vg), num_to_unignore);
if (!(mda_to_unignore_bs = _bitset_with_random_bits(vg->vgmem, mda_free_count,
num_to_unignore, &vg->cmd->rand_seed)))
return_0;
dm_list_iterate_items_safe(mda, tmda, &vg->fid->metadata_areas_ignored)
if (mda_is_ignored(mda) && (--mda_free_count,
dm_bit(mda_to_unignore_bs, mda_free_count))) {
mda_set_ignored(mda, 0);
dm_list_move(&vg->fid->metadata_areas_in_use,
&mda->list);
if (!--num_to_unignore)
goto out;
}
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use)
if (mda_is_ignored(mda) && (--mda_free_count,
dm_bit(mda_to_unignore_bs, mda_free_count))) {
mda_set_ignored(mda, 0);
if (!--num_to_unignore)
goto out;
}
log_error(INTERNAL_ERROR "Unable to find %"PRIu32" metadata areas to unignore "
"on volume group %s", num_to_unignore, vg->name);
r = 0;
out:
dm_pool_free(vg->vgmem, mda_to_unignore_bs);
return r;
}
static int _vg_adjust_ignored_mdas(struct volume_group *vg)
{
uint32_t mda_copies_used = vg_mda_used_count(vg);
if (vg->mda_copies == VGMETADATACOPIES_UNMANAGED) {
/* Ensure at least one mda is in use. */
if (!mda_copies_used && vg_mda_count(vg) && !_vg_unignore_mdas(vg, 1))
return_0;
else
return 1;
}
/* Not an error to have vg_mda_count larger than total mdas. */
if (vg->mda_copies == VGMETADATACOPIES_ALL ||
vg->mda_copies >= vg_mda_count(vg)) {
/* Use all */
if (!_vg_unignore_mdas(vg, vg_mda_count(vg) - mda_copies_used))
return_0;
} else if (mda_copies_used < vg->mda_copies) {
if (!_vg_unignore_mdas(vg, vg->mda_copies - mda_copies_used))
return_0;
} else if (mda_copies_used > vg->mda_copies)
if (!_vg_ignore_mdas(vg, mda_copies_used - vg->mda_copies))
return_0;
/*
* The VGMETADATACOPIES_ALL value will never be written disk.
* It is a special cmdline value that means 2 things:
* 1. clear all ignore bits in all mdas in this vg
* 2. set the "unmanaged" policy going forward for metadata balancing
*/
if (vg->mda_copies == VGMETADATACOPIES_ALL)
vg->mda_copies = VGMETADATACOPIES_UNMANAGED;
return 1;
}
uint64_t find_min_mda_size(struct dm_list *mdas)
{
uint64_t min_mda_size = UINT64_MAX, mda_size;
struct metadata_area *mda;
dm_list_iterate_items(mda, mdas) {
if (!mda->ops->mda_total_sectors)
continue;
mda_size = mda->ops->mda_total_sectors(mda);
if (mda_size < min_mda_size)
min_mda_size = mda_size;
}
if (min_mda_size == UINT64_MAX)
min_mda_size = UINT64_C(0);
return min_mda_size;
}
static int _move_mdas(struct volume_group *vg_from, struct volume_group *vg_to,
struct dm_list *mdas_from, struct dm_list *mdas_to)
{
struct metadata_area *mda, *mda2;
int common_mda = 0;
dm_list_iterate_items_safe(mda, mda2, mdas_from) {
if (!mda->ops->mda_in_vg) {
common_mda = 1;
continue;
}
if (!mda->ops->mda_in_vg(vg_from->fid, vg_from, mda)) {
if (is_orphan_vg(vg_to->name))
dm_list_del(&mda->list);
else
dm_list_move(mdas_to, &mda->list);
}
}
return common_mda;
}
/*
* Separate metadata areas after splitting a VG.
* Also accepts orphan VG as destination (for vgreduce).
*/
int vg_split_mdas(struct cmd_context *cmd __attribute__((unused)),
struct volume_group *vg_from, struct volume_group *vg_to)
{
struct dm_list *mdas_from_in_use, *mdas_to_in_use;
struct dm_list *mdas_from_ignored, *mdas_to_ignored;
int common_mda = 0;
mdas_from_in_use = &vg_from->fid->metadata_areas_in_use;
mdas_from_ignored = &vg_from->fid->metadata_areas_ignored;
mdas_to_in_use = &vg_to->fid->metadata_areas_in_use;
mdas_to_ignored = &vg_to->fid->metadata_areas_ignored;
common_mda = _move_mdas(vg_from, vg_to,
mdas_from_in_use, mdas_to_in_use);
common_mda = _move_mdas(vg_from, vg_to,
mdas_from_ignored, mdas_to_ignored);
if ((dm_list_empty(mdas_from_in_use) &&
dm_list_empty(mdas_from_ignored)) ||
((!is_orphan_vg(vg_to->name) &&
dm_list_empty(mdas_to_in_use) &&
dm_list_empty(mdas_to_ignored))))
return common_mda;
return 1;
}
/*
* See if we may pvcreate on this device.
* 0 indicates we may not.
*/
static int _pvcreate_check(struct cmd_context *cmd, const char *name,
struct pvcreate_params *pp, int *wiped)
{
struct physical_volume *pv;
struct device *dev;
int r = 0;
int scan_needed = 0;
int filter_refresh_needed = 0;
/* FIXME Check partition type is LVM unless --force is given */
*wiped = 0;
/* Is there a pv here already? */
pv = find_pv_by_name(cmd, name, 1, 1);
/* Allow partial & exported VGs to be destroyed. */
/* We must have -ff to overwrite a non orphan */
if (pv && !is_orphan(pv) && pp->force != DONT_PROMPT_OVERRIDE) {
log_error("Can't initialize physical volume \"%s\" of "
"volume group \"%s\" without -ff", name, pv_vg_name(pv));
goto out;
}
/* prompt */
if (pv && !is_orphan(pv) && !pp->yes &&
yes_no_prompt("Really INITIALIZE physical volume \"%s\" of volume group \"%s\" [y/n]? ",
name, pv_vg_name(pv)) == 'n') {
log_error("%s: physical volume not initialized", name);
goto out;
}
if (sigint_caught())
goto_out;
dev = dev_cache_get(name, cmd->full_filter);
/*
* Refresh+rescan at the end is needed if:
* - we don't obtain device list from udev,
* hence persistent cache file is used
* and we need to trash it and reevaluate
* for any changes done outside - adding
* any new foreign signature which may affect
* filtering - before we do pvcreate, we
* need to be sure that we have up-to-date
* view for filters
*
* - we have wiped existing foreign signatures
* from dev as this may affect what's filtered
* as well
*
*
* Only rescan at the end is needed if:
* - we've just checked whether dev is fileterd
* by MD filter. We do the refresh in-situ,
* so no need to require the refresh at the
* end of this fn. This is to allow for
* wiping MD signature during pvcreate for
* the dev - the dev would normally be
* filtered because of MD filter.
* This is an exception.
*/
/* Is there an md superblock here? */
if (!dev && md_filtering()) {
if (!refresh_filters(cmd))
goto_out;
init_md_filtering(0);
dev = dev_cache_get(name, cmd->full_filter);
init_md_filtering(1);
scan_needed = 1;
} else if (!obtain_device_list_from_udev())
filter_refresh_needed = scan_needed = 1;
if (!dev) {
log_error("Device %s not found (or ignored by filtering).", name);
goto out;
}
/*
* This test will fail if the device belongs to an MD array.
*/
if (!dev_test_excl(dev)) {
/* FIXME Detect whether device-mapper itself is still using it */
log_error("Can't open %s exclusively. Mounted filesystem?",
name);
goto out;
}
if (!wipe_known_signatures(cmd, dev, name,
TYPE_LVM1_MEMBER | TYPE_LVM2_MEMBER,
0, pp->yes, pp->force, wiped)) {
log_error("Aborting pvcreate on %s.", name);
goto out;
}
if (*wiped)
filter_refresh_needed = scan_needed = 1;
if (sigint_caught())
goto_out;
if (pv && !is_orphan(pv) && pp->force)
log_warn("WARNING: Forcing physical volume creation on "
"%s%s%s%s", name,
!is_orphan(pv) ? " of volume group \"" : "",
pv_vg_name(pv),
!is_orphan(pv) ? "\"" : "");
r = 1;
out:
if (filter_refresh_needed)
if (!refresh_filters(cmd)) {
stack;
r = 0;
}
if (scan_needed) {
if (!lvmcache_label_scan(cmd, 2)) {
stack;
r = 0;
}
}
free_pv_fid(pv);
return r;
}
void pvcreate_params_set_defaults(struct pvcreate_params *pp)
{
memset(pp, 0, sizeof(*pp));
pp->zero = 1;
pp->size = 0;
pp->data_alignment = UINT64_C(0);
pp->data_alignment_offset = UINT64_C(0);
pp->pvmetadatacopies = DEFAULT_PVMETADATACOPIES;
pp->pvmetadatasize = DEFAULT_PVMETADATASIZE;
pp->labelsector = DEFAULT_LABELSECTOR;
pp->force = PROMPT;
pp->yes = 0;
pp->metadataignore = DEFAULT_PVMETADATAIGNORE;
pp->rp.restorefile = 0;
pp->rp.idp = 0;
pp->rp.ba_start = 0;
pp->rp.ba_size = 0;
pp->rp.pe_start = PV_PE_START_CALC;
pp->rp.extent_count = 0;
pp->rp.extent_size = 0;
}
static int _pvcreate_write(struct cmd_context *cmd, struct pv_to_create *pvc)
{
int zero = pvc->pp->zero;
struct physical_volume *pv = pvc->pv;
struct device *dev = pv->dev;
const char *pv_name = dev_name(dev);
/* Wipe existing label first */
if (!label_remove(pv_dev(pv))) {
log_error("Failed to wipe existing label on %s", pv_name);
return 0;
}
if (zero) {
log_verbose("Zeroing start of device %s", pv_name);
if (!dev_open_quiet(dev)) {
log_error("%s not opened: device not zeroed", pv_name);
return 0;
}
if (!dev_set(dev, UINT64_C(0), (size_t) 2048, 0)) {
log_error("%s not wiped: aborting", pv_name);
if (!dev_close(dev))
stack;
return 0;
}
if (!dev_close(dev))
stack;
}
log_verbose("Writing physical volume data to disk \"%s\"",
pv_name);
if (!(pv_write(cmd, pv, 1))) {
log_error("Failed to write physical volume \"%s\"", pv_name);
return 0;
}
log_print_unless_silent("Physical volume \"%s\" successfully created", pv_name);
return 1;
}
static int _verify_pv_create_params(struct pvcreate_params *pp)
{
/*
* FIXME: Some of these checks are duplicates in pvcreate_params_validate.
*/
if (pp->pvmetadatacopies > 2) {
log_error("Metadatacopies may only be 0, 1 or 2");
return 0;
}
if (pp->data_alignment > UINT32_MAX) {
log_error("Physical volume data alignment is too big.");
return 0;
}
if (pp->data_alignment_offset > UINT32_MAX) {
log_error("Physical volume data alignment offset is too big.");
return 0;
}
return 1;
}
/*
* pvcreate_vol() - initialize a device with PV label and metadata area
*
* Parameters:
* - pv_name: device path to initialize
* - pp: parameters to pass to pv_create; if NULL, use default values
*
* Returns:
* NULL: error
* struct physical_volume * (non-NULL): handle to physical volume created
*/
struct physical_volume *pvcreate_vol(struct cmd_context *cmd, const char *pv_name,
struct pvcreate_params *pp, int write_now)
{
struct physical_volume *pv = NULL;
struct device *dev;
int wiped = 0;
struct dm_list mdas;
struct pvcreate_params default_pp;
char buffer[64] __attribute__((aligned(8)));
dev_ext_t dev_ext_src;
pvcreate_params_set_defaults(&default_pp);
if (!pp)
pp = &default_pp;
if (!_verify_pv_create_params(pp)) {
goto bad;
}
if (pp->rp.idp) {
if ((dev = lvmcache_device_from_pvid(cmd, pp->rp.idp, NULL, NULL)) &&
(dev != dev_cache_get(pv_name, cmd->full_filter))) {
if (!id_write_format((const struct id*)&pp->rp.idp->uuid,
buffer, sizeof(buffer)))
goto_bad;
log_error("uuid %s already in use on \"%s\"", buffer,
dev_name(dev));
goto bad;
}
}
if (!_pvcreate_check(cmd, pv_name, pp, &wiped))
goto_bad;
if (sigint_caught())
goto_bad;
/*
* wipe_known_signatures called in _pvcreate_check fires
* WATCH event to update udev database. But at the moment,
* we have no way to synchronize with such event - we may
* end up still seeing the old info in udev db and pvcreate
* can fail to proceed because of the device still being
* filtered (because of the stale info in udev db).
* Disable udev dev-ext source temporarily here for
* this reason and rescan with DEV_EXT_NONE dev-ext
* source (so filters use DEV_EXT_NONE source).
*/
dev_ext_src = external_device_info_source();
if (wiped && (dev_ext_src == DEV_EXT_UDEV))
init_external_device_info_source(DEV_EXT_NONE);
dev = dev_cache_get(pv_name, cmd->full_filter);
init_external_device_info_source(dev_ext_src);
if (!dev) {
log_error("%s: Couldn't find device. Check your filters?",
pv_name);
goto bad;
}
dm_list_init(&mdas);
if (!(pv = pv_create(cmd, dev, pp->size, pp->data_alignment,
pp->data_alignment_offset, pp->labelsector,
pp->pvmetadatacopies, pp->pvmetadatasize,
pp->metadataignore, &pp->rp))) {
log_error("Failed to setup physical volume \"%s\"", pv_name);
goto bad;
}
log_verbose("Set up physical volume for \"%s\" with %" PRIu64
" available sectors", pv_name, pv_size(pv));
pv->status |= UNLABELLED_PV;
if (write_now) {
struct pv_to_create pvc;
pvc.pp = pp;
pvc.pv = pv;
if (!_pvcreate_write(cmd, &pvc))
goto bad;
}
return pv;
bad:
return NULL;
}
static struct physical_volume *_alloc_pv(struct dm_pool *mem, struct device *dev)
{
struct physical_volume *pv;
if (!(pv = dm_pool_zalloc(mem, sizeof(*pv)))) {
log_error("Failed to allocate pv structure.");
return NULL;
}
pv->dev = dev;
dm_list_init(&pv->tags);
dm_list_init(&pv->segments);
return pv;
}
/**
* pv_create - initialize a physical volume for use with a volume group
* created PV belongs to Orphan VG.
*
* @fmt: format type
* @dev: PV device to initialize
* @size: size of the PV in sectors
* @data_alignment: requested alignment of data
* @data_alignment_offset: requested offset to aligned data
* @pe_start: physical extent start
* @existing_extent_count
* @existing_extent_size
* @pvmetadatacopies
* @pvmetadatasize
* @mdas
*
* Returns:
* PV handle - physical volume initialized successfully
* NULL - invalid parameter or problem initializing the physical volume
*
* Note:
* FIXME: shorten argument list and replace with explict 'set' functions
*/
struct physical_volume *pv_create(const struct cmd_context *cmd,
struct device *dev,
uint64_t size,
unsigned long data_alignment,
unsigned long data_alignment_offset,
uint64_t label_sector,
unsigned pvmetadatacopies,
uint64_t pvmetadatasize,
unsigned metadataignore,
struct pvcreate_restorable_params *rp)
{
const struct format_type *fmt = cmd->fmt;
struct dm_pool *mem = fmt->orphan_vg->vgmem;
struct physical_volume *pv = _alloc_pv(mem, dev);
unsigned mda_index;
struct pv_list *pvl;
if (!pv)
return_NULL;
if (rp->idp)
memcpy(&pv->id, rp->idp, sizeof(*rp->idp));
else if (!id_create(&pv->id)) {
log_error("Failed to create random uuid for %s.",
dev_name(dev));
goto bad;
}
if (!dev_get_size(pv->dev, &pv->size)) {
log_error("%s: Couldn't get size.", pv_dev_name(pv));
goto bad;
}
if (size) {
if (size > pv->size)
log_warn("WARNING: %s: Overriding real size. "
"You could lose data.", pv_dev_name(pv));
log_verbose("%s: Pretending size is %" PRIu64 " sectors.",
pv_dev_name(pv), size);
pv->size = size;
}
if (pv->size < pv_min_size()) {
log_error("%s: Size must exceed minimum of %" PRIu64 " sectors.",
pv_dev_name(pv), pv_min_size());
goto bad;
}
if (pv->size < data_alignment + data_alignment_offset) {
log_error("%s: Data alignment must not exceed device size.",
pv_dev_name(pv));
goto bad;
}
if (!(pvl = dm_pool_zalloc(mem, sizeof(*pvl)))) {
log_error("pv_list allocation in pv_create failed");
goto bad;
}
pvl->pv = pv;
add_pvl_to_vgs(fmt->orphan_vg, pvl);
fmt->orphan_vg->extent_count += pv->pe_count;
fmt->orphan_vg->free_count += pv->pe_count;
pv->fmt = fmt;
pv->vg_name = fmt->orphan_vg_name;
if (!fmt->ops->pv_initialise(fmt, label_sector, data_alignment,
data_alignment_offset, rp, pv)) {
log_error("Format-specific initialisation of physical "
"volume %s failed.", pv_dev_name(pv));
goto bad;
}
for (mda_index = 0; mda_index < pvmetadatacopies; mda_index++) {
if (pv->fmt->ops->pv_add_metadata_area &&
!pv->fmt->ops->pv_add_metadata_area(pv->fmt, pv,
rp->pe_start != PV_PE_START_CALC,
mda_index, pvmetadatasize,
metadataignore)) {
log_error("Failed to add metadata area for "
"new physical volume %s", pv_dev_name(pv));
goto bad;
}
}
return pv;
bad:
// FIXME: detach from orphan in error path
//free_pv_fid(pv);
//dm_pool_free(mem, pv);
return NULL;
}
/* FIXME: liblvm todo - make into function that returns handle */
struct pv_list *find_pv_in_vg(const struct volume_group *vg,
const char *pv_name)
{
struct pv_list *pvl;
struct device *dev = dev_cache_get(pv_name, vg->cmd->filter);
/*
* If the device does not exist or is filtered out, don't bother trying
* to find it in the list. This also prevents accidentally finding a
* non-NULL PV which happens to be missing (i.e. its pv->dev is NULL)
* for such devices.
*/
if (!dev)
return NULL;
dm_list_iterate_items(pvl, &vg->pvs)
if (pvl->pv->dev == dev)
return pvl;
return NULL;
}
struct pv_list *find_pv_in_pv_list(const struct dm_list *pl,
const struct physical_volume *pv)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, pl)
if (pvl->pv == pv)
return pvl;
return NULL;
}
int pv_is_in_vg(struct volume_group *vg, struct physical_volume *pv)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, &vg->pvs)
if (pv == pvl->pv)
return 1;
return 0;
}
/**
* find_pv_in_vg_by_uuid - Find PV in VG by PV UUID
* @vg: volume group to search
* @id: UUID of the PV to match
*
* Returns:
* struct pv_list within owning struct volume_group - if UUID of PV found in VG
* NULL - invalid parameter or UUID of PV not found in VG
*
* Note
* FIXME - liblvm todo - make into function that takes VG handle
*/
struct pv_list *find_pv_in_vg_by_uuid(const struct volume_group *vg,
const struct id *id)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, &vg->pvs)
if (id_equal(&pvl->pv->id, id))
return pvl;
return NULL;
}
struct lv_list *find_lv_in_vg(const struct volume_group *vg,
const char *lv_name)
{
struct lv_list *lvl;
const char *ptr;
/* Use last component */
if ((ptr = strrchr(lv_name, '/')))
ptr++;
else
ptr = lv_name;
dm_list_iterate_items(lvl, &vg->lvs)
if (!strcmp(lvl->lv->name, ptr))
return lvl;
return NULL;
}
struct lv_list *find_lv_in_lv_list(const struct dm_list *ll,
const struct logical_volume *lv)
{
struct lv_list *lvl;
dm_list_iterate_items(lvl, ll)
if (lvl->lv == lv)
return lvl;
return NULL;
}
struct lv_list *find_lv_in_vg_by_lvid(struct volume_group *vg,
const union lvid *lvid)
{
struct lv_list *lvl;
dm_list_iterate_items(lvl, &vg->lvs)
if (!strncmp(lvl->lv->lvid.s, lvid->s, sizeof(*lvid)))
return lvl;
return NULL;
}
struct logical_volume *find_lv(const struct volume_group *vg,
const char *lv_name)
{
struct lv_list *lvl = find_lv_in_vg(vg, lv_name);
return lvl ? lvl->lv : NULL;
}
struct physical_volume *find_pv(struct volume_group *vg, struct device *dev)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, &vg->pvs)
if (dev == pvl->pv->dev)
return pvl->pv;
return NULL;
}
/* FIXME: liblvm todo - make into function that returns handle */
struct physical_volume *find_pv_by_name(struct cmd_context *cmd,
const char *pv_name,
int allow_orphan, int allow_unformatted)
{
struct device *dev;
struct pv_list *pvl;
struct dm_list *pvslist;
struct physical_volume *pv = NULL;
lvmcache_seed_infos_from_lvmetad(cmd);
if (!(dev = dev_cache_get(pv_name, cmd->filter))) {
if (!allow_unformatted)
log_error("Physical volume %s not found", pv_name);
return_NULL;
}
if (!(pvslist = get_pvs(cmd)))
return_NULL;
dm_list_iterate_items(pvl, pvslist)
if (pvl->pv->dev == dev)
pv = pvl->pv;
else
free_pv_fid(pvl->pv);
if (!pv && !allow_unformatted)
log_error("Physical volume %s not found", pv_name);
if (pv && !allow_orphan && is_orphan_vg(pv->vg_name)) {
log_error("Physical volume %s not in a volume group", pv_name);
goto bad;
}
return pv;
bad:
free_pv_fid(pv);
return NULL;
}
/* Find segment at a given logical extent in an LV */
struct lv_segment *find_seg_by_le(const struct logical_volume *lv, uint32_t le)
{
struct lv_segment *seg;
dm_list_iterate_items(seg, &lv->segments)
if (le >= seg->le && le < seg->le + seg->len)
return seg;
return NULL;
}
struct lv_segment *first_seg(const struct logical_volume *lv)
{
struct lv_segment *seg;
dm_list_iterate_items(seg, &lv->segments)
return seg;
return NULL;
}
struct lv_segment *last_seg(const struct logical_volume *lv)
{
struct lv_segment *seg;
dm_list_iterate_back_items(seg, &lv->segments)
return seg;
return NULL;
}
int vg_remove_mdas(struct volume_group *vg)
{
struct metadata_area *mda;
/* FIXME Improve recovery situation? */
/* Remove each copy of the metadata */
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) {
if (mda->ops->vg_remove &&
!mda->ops->vg_remove(vg->fid, vg, mda))
return_0;
}
return 1;
}
/*
* Determine whether two vgs are compatible for merging.
*/
int vgs_are_compatible(struct cmd_context *cmd __attribute__((unused)),
struct volume_group *vg_from,
struct volume_group *vg_to)
{
struct lv_list *lvl1, *lvl2;
struct pv_list *pvl;
const char *name1, *name2;
if (lvs_in_vg_activated(vg_from)) {
log_error("Logical volumes in \"%s\" must be inactive",
vg_from->name);
return 0;
}
/* Check compatibility */
if (vg_to->extent_size != vg_from->extent_size) {
log_error("Extent sizes differ: %d (%s) and %d (%s)",
vg_to->extent_size, vg_to->name,
vg_from->extent_size, vg_from->name);
return 0;
}
if (vg_to->max_pv &&
(vg_to->max_pv < vg_to->pv_count + vg_from->pv_count)) {
log_error("Maximum number of physical volumes (%d) exceeded "
" for \"%s\" and \"%s\"", vg_to->max_pv, vg_to->name,
vg_from->name);
return 0;
}
if (vg_to->max_lv &&
(vg_to->max_lv < vg_visible_lvs(vg_to) + vg_visible_lvs(vg_from))) {
log_error("Maximum number of logical volumes (%d) exceeded "
" for \"%s\" and \"%s\"", vg_to->max_lv, vg_to->name,
vg_from->name);
return 0;
}
/* Metadata types must be the same */
if (vg_to->fid->fmt != vg_from->fid->fmt) {
log_error("Metadata types differ for \"%s\" and \"%s\"",
vg_to->name, vg_from->name);
return 0;
}
/* Clustering attribute must be the same */
if (vg_is_clustered(vg_to) != vg_is_clustered(vg_from)) {
log_error("Clustered attribute differs for \"%s\" and \"%s\"",
vg_to->name, vg_from->name);
return 0;
}
/* Check no conflicts with LV names */
dm_list_iterate_items(lvl1, &vg_to->lvs) {
name1 = lvl1->lv->name;
dm_list_iterate_items(lvl2, &vg_from->lvs) {
name2 = lvl2->lv->name;
if (!strcmp(name1, name2)) {
log_error("Duplicate logical volume "
"name \"%s\" "
"in \"%s\" and \"%s\"",
name1, vg_to->name, vg_from->name);
return 0;
}
}
}
/* Check no PVs are constructed from either VG */
dm_list_iterate_items(pvl, &vg_to->pvs) {
if (pv_uses_vg(pvl->pv, vg_from)) {
log_error("Physical volume %s might be constructed "
"from same volume group %s.",
pv_dev_name(pvl->pv), vg_from->name);
return 0;
}
}
dm_list_iterate_items(pvl, &vg_from->pvs) {
if (pv_uses_vg(pvl->pv, vg_to)) {
log_error("Physical volume %s might be constructed "
"from same volume group %s.",
pv_dev_name(pvl->pv), vg_to->name);
return 0;
}
}
return 1;
}
struct _lv_postorder_baton {
int (*fn)(struct logical_volume *lv, void *data);
void *data;
};
static int _lv_postorder_visit(struct logical_volume *,
int (*fn)(struct logical_volume *lv, void *data),
void *data);
static int _lv_each_dependency(struct logical_volume *lv,
int (*fn)(struct logical_volume *lv, void *data),
void *data)
{
unsigned i, s;
struct lv_segment *lvseg;
struct dm_list *snh;
struct logical_volume *deps[] = {
(lv->rdevice && lv != lv->rdevice->lv) ? lv->rdevice->lv : 0,
(lv->rdevice && lv != lv->rdevice->slog) ? lv->rdevice->slog : 0,
lv->snapshot ? lv->snapshot->origin : 0,
lv->snapshot ? lv->snapshot->cow : 0 };
for (i = 0; i < DM_ARRAY_SIZE(deps); ++i) {
if (deps[i] && !fn(deps[i], data))
return_0;
}
dm_list_iterate_items(lvseg, &lv->segments) {
if (lvseg->external_lv && !fn(lvseg->external_lv, data))
return_0;
if (lvseg->log_lv && !fn(lvseg->log_lv, data))
return_0;
if (lvseg->rlog_lv && !fn(lvseg->rlog_lv, data))
return_0;
if (lvseg->pool_lv && !fn(lvseg->pool_lv, data))
return_0;
if (lvseg->metadata_lv && !fn(lvseg->metadata_lv, data))
return_0;
for (s = 0; s < lvseg->area_count; ++s) {
if (seg_type(lvseg, s) == AREA_LV && !fn(seg_lv(lvseg,s), data))
return_0;
}
}
if (lv_is_origin(lv))
dm_list_iterate(snh, &lv->snapshot_segs)
if (!fn(dm_list_struct_base(snh, struct lv_segment, origin_list)->cow, data))
return_0;
return 1;
}
static int _lv_postorder_cleanup(struct logical_volume *lv, void *data)
{
if (!(lv->status & POSTORDER_FLAG))
return 1;
lv->status &= ~POSTORDER_FLAG;
if (!_lv_each_dependency(lv, _lv_postorder_cleanup, data))
return_0;
return 1;
}
static int _lv_postorder_level(struct logical_volume *lv, void *data)
{
struct _lv_postorder_baton *baton = data;
return _lv_postorder_visit(lv, baton->fn, baton->data);
};
static int _lv_postorder_visit(struct logical_volume *lv,
int (*fn)(struct logical_volume *lv, void *data),
void *data)
{
struct _lv_postorder_baton baton;
int r;
if (lv->status & POSTORDER_FLAG)
return 1;
if (lv->status & POSTORDER_OPEN_FLAG)
return 1; // a data structure loop has closed...
lv->status |= POSTORDER_OPEN_FLAG;
baton.fn = fn;
baton.data = data;
r = _lv_each_dependency(lv, _lv_postorder_level, &baton);
if (r)
r = fn(lv, data);
lv->status &= ~POSTORDER_OPEN_FLAG;
lv->status |= POSTORDER_FLAG;
return r;
}
/*
* This will walk the LV dependency graph in depth-first order and in the
* postorder, call a callback function "fn". The void *data is passed along all
* the calls. The callback may return zero to indicate an error and terminate
* the depth-first walk. The error is propagated to return value of
* _lv_postorder.
*/
static int _lv_postorder(struct logical_volume *lv,
int (*fn)(struct logical_volume *lv, void *data),
void *data)
{
int r;
int pool_locked = dm_pool_locked(lv->vg->vgmem);
if (pool_locked && !dm_pool_unlock(lv->vg->vgmem, 0))
return_0;
r = _lv_postorder_visit(lv, fn, data);
_lv_postorder_cleanup(lv, 0);
if (pool_locked && !dm_pool_lock(lv->vg->vgmem, 0))
return_0;
return r;
}
/*
* Calls _lv_postorder() on each LV from VG. Avoids duplicate transitivity visits.
* Clears with _lv_postorder_cleanup() when all LVs were visited by postorder.
*/
static int _lv_postorder_vg(struct volume_group *vg,
int (*fn)(struct logical_volume *lv, void *data),
void *data)
{
struct lv_list *lvl;
int r = 1;
int pool_locked = dm_pool_locked(vg->vgmem);
if (pool_locked && !dm_pool_unlock(vg->vgmem, 0))
return_0;
dm_list_iterate_items(lvl, &vg->lvs)
if (!_lv_postorder_visit(lvl->lv, fn, data)) {
stack;
r = 0;
}
dm_list_iterate_items(lvl, &vg->lvs)
_lv_postorder_cleanup(lvl->lv, 0);
if (pool_locked && !dm_pool_lock(vg->vgmem, 0))
return_0;
return r;
}
struct _lv_mark_if_partial_baton {
int partial;
};
static int _lv_mark_if_partial_collect(struct logical_volume *lv, void *data)
{
struct _lv_mark_if_partial_baton *baton = data;
if (lv->status & PARTIAL_LV)
baton->partial = 1;
return 1;
}
static int _lv_mark_if_partial_single(struct logical_volume *lv, void *data)
{
unsigned s;
struct _lv_mark_if_partial_baton baton;
struct lv_segment *lvseg;
dm_list_iterate_items(lvseg, &lv->segments) {
for (s = 0; s < lvseg->area_count; ++s) {
if (seg_type(lvseg, s) == AREA_PV) {
if (is_missing_pv(seg_pv(lvseg, s)))
lv->status |= PARTIAL_LV;
}
}
}
baton.partial = 0;
if (!_lv_each_dependency(lv, _lv_mark_if_partial_collect, &baton))
return_0;
if (baton.partial)
lv->status |= PARTIAL_LV;
return 1;
}
/*
* Mark LVs with missing PVs using PARTIAL_LV status flag. The flag is
* propagated transitively, so LVs referencing other LVs are marked
* partial as well, if any of their referenced LVs are marked partial.
*/
int vg_mark_partial_lvs(struct volume_group *vg, int clear)
{
struct lv_list *lvl;
if (clear)
dm_list_iterate_items(lvl, &vg->lvs)
lvl->lv->status &= ~PARTIAL_LV;
if (!_lv_postorder_vg(vg, _lv_mark_if_partial_single, NULL))
return_0;
return 1;
}
/*
* Be sure that all PV devices have cached read ahead in dev-cache
* Currently it takes read_ahead from first PV segment only
*/
static int _lv_read_ahead_single(struct logical_volume *lv, void *data)
{
struct lv_segment *seg = first_seg(lv);
uint32_t seg_read_ahead = 0, *read_ahead = data;
if (!read_ahead) {
log_error(INTERNAL_ERROR "Read ahead data missing.");
return 0;
}
if (seg && seg->area_count && seg_type(seg, 0) == AREA_PV)
dev_get_read_ahead(seg_pv(seg, 0)->dev, &seg_read_ahead);
if (seg_read_ahead > *read_ahead)
*read_ahead = seg_read_ahead;
return 1;
}
/*
* Calculate readahead for logical volume from underlying PV devices.
* If read_ahead is NULL, only ensure that readahead of PVs are preloaded
* into PV struct device in dev cache.
*/
void lv_calculate_readahead(const struct logical_volume *lv, uint32_t *read_ahead)
{
uint32_t _read_ahead = 0;
if (lv->read_ahead == DM_READ_AHEAD_AUTO)
_lv_postorder((struct logical_volume *)lv, _lv_read_ahead_single, &_read_ahead);
if (read_ahead) {
log_debug_metadata("Calculated readahead of LV %s is %u", lv->name, _read_ahead);
*read_ahead = _read_ahead;
}
}
struct validate_hash {
struct dm_hash_table *lvname;
struct dm_hash_table *lvid;
struct dm_hash_table *pvid;
};
/*
* Check that an LV and all its PV references are correctly listed in vg->lvs
* and vg->pvs, respectively. This only looks at a single LV, but *not* at the
* LVs it is using. To do the latter, you should use _lv_postorder with this
* function. C.f. vg_validate.
*/
static int _lv_validate_references_single(struct logical_volume *lv, void *data)
{
struct volume_group *vg = lv->vg;
struct validate_hash *vhash = data;
struct lv_segment *lvseg;
struct physical_volume *pv;
unsigned s;
int r = 1;
if (lv != dm_hash_lookup_binary(vhash->lvid, &lv->lvid.id[1],
sizeof(lv->lvid.id[1]))) {
log_error(INTERNAL_ERROR
"Referenced LV %s not listed in VG %s.",
lv->name, vg->name);
r = 0;
}
dm_list_iterate_items(lvseg, &lv->segments) {
for (s = 0; s < lvseg->area_count; ++s) {
if (seg_type(lvseg, s) != AREA_PV)
continue;
pv = seg_pv(lvseg, s);
/* look up the reference in vg->pvs */
if (pv != dm_hash_lookup_binary(vhash->pvid, &pv->id,
sizeof(pv->id))) {
log_error(INTERNAL_ERROR
"Referenced PV %s not listed in VG %s.",
pv_dev_name(pv), vg->name);
r = 0;
}
}
}
return r;
}
int vg_validate(struct volume_group *vg)
{
struct pv_list *pvl;
struct lv_list *lvl;
struct lv_segment *seg;
struct dm_str_list *sl;
char uuid[64] __attribute__((aligned(8)));
char uuid2[64] __attribute__((aligned(8)));
int r = 1;
unsigned hidden_lv_count = 0, lv_count = 0, lv_visible_count = 0;
unsigned pv_count = 0;
unsigned num_snapshots = 0;
unsigned spare_count = 0;
size_t vg_name_len = strlen(vg->name);
size_t dev_name_len;
struct validate_hash vhash = { NULL };
if (vg->alloc == ALLOC_CLING_BY_TAGS) {
log_error(INTERNAL_ERROR "VG %s allocation policy set to invalid cling_by_tags.",
vg->name);
r = 0;
}
if (vg->status & LVM_WRITE_LOCKED) {
log_error(INTERNAL_ERROR "VG %s has external flag LVM_WRITE_LOCKED set internally.",
vg->name);
r = 0;
}
/* FIXME Also check there's no data/metadata overlap */
if (!(vhash.pvid = dm_hash_create(vg->pv_count))) {
log_error("Failed to allocate pvid hash.");
return 0;
}
dm_list_iterate_items(sl, &vg->tags)
if (!validate_tag(sl->str)) {
log_error(INTERNAL_ERROR "VG %s tag %s has invalid form.",
vg->name, sl->str);
r = 0;
}
dm_list_iterate_items(pvl, &vg->pvs) {
if (++pv_count > vg->pv_count) {
log_error(INTERNAL_ERROR "PV list corruption detected in VG %s.", vg->name);
/* FIXME Dump list structure? */
r = 0;
}
if (pvl->pv->vg != vg) {
log_error(INTERNAL_ERROR "VG %s PV list entry points "
"to different VG %s.", vg->name,
pvl->pv->vg ? pvl->pv->vg->name : "NULL");
r = 0;
}
if (strcmp(pvl->pv->vg_name, vg->name)) {
log_error(INTERNAL_ERROR "VG name for PV %s is corrupted.",
pv_dev_name(pvl->pv));
r = 0;
}
if (dm_hash_lookup_binary(vhash.pvid, &pvl->pv->id,
sizeof(pvl->pv->id))) {
if (!id_write_format(&pvl->pv->id, uuid,
sizeof(uuid)))
stack;
log_error(INTERNAL_ERROR "Duplicate PV id "
"%s detected for %s in %s.",
uuid, pv_dev_name(pvl->pv),
vg->name);
r = 0;
}
dm_list_iterate_items(sl, &pvl->pv->tags)
if (!validate_tag(sl->str)) {
log_error(INTERNAL_ERROR "PV %s tag %s has invalid form.",
pv_dev_name(pvl->pv), sl->str);
r = 0;
}
if (!dm_hash_insert_binary(vhash.pvid, &pvl->pv->id,
sizeof(pvl->pv->id), pvl->pv)) {
log_error("Failed to hash pvid.");
r = 0;
break;
}
}
if (!check_pv_segments(vg)) {
log_error(INTERNAL_ERROR "PV segments corrupted in %s.",
vg->name);
r = 0;
}
dm_list_iterate_items(lvl, &vg->removed_lvs) {
if (!(lvl->lv->status & LV_REMOVED)) {
log_error(INTERNAL_ERROR "LV %s is not marked as removed while it's part "
"of removed LV list for VG %s", lvl->lv->name, vg->name);
r = 0;
}
}
/*
* Count all non-snapshot invisible LVs
*/
dm_list_iterate_items(lvl, &vg->lvs) {
lv_count++;
if (lvl->lv->status & LV_REMOVED) {
log_error(INTERNAL_ERROR "LV %s is marked as removed while it's "
"still part of the VG %s", lvl->lv->name, vg->name);
r = 0;
}
if (lvl->lv->status & LVM_WRITE_LOCKED) {
log_error(INTERNAL_ERROR "LV %s has external flag LVM_WRITE_LOCKED set internally.",
lvl->lv->name);
r = 0;
}
dev_name_len = strlen(lvl->lv->name) + vg_name_len + 3;
if (dev_name_len >= NAME_LEN) {
log_error(INTERNAL_ERROR "LV name \"%s/%s\" length %"
PRIsize_t " is not supported.",
vg->name, lvl->lv->name, dev_name_len);
r = 0;
}
if (!id_equal(&lvl->lv->lvid.id[0], &lvl->lv->vg->id)) {
if (!id_write_format(&lvl->lv->lvid.id[0], uuid,
sizeof(uuid)))
stack;
if (!id_write_format(&lvl->lv->vg->id, uuid2,
sizeof(uuid2)))
stack;
log_error(INTERNAL_ERROR "LV %s has VG UUID %s but its VG %s has UUID %s",
lvl->lv->name, uuid, lvl->lv->vg->name, uuid2);
r = 0;
}
if (lv_is_pool_metadata_spare(lvl->lv)) {
if (++spare_count > 1) {
log_error(INTERNAL_ERROR "LV %s is extra pool metadata spare volume. %u found but only 1 allowed.",
lvl->lv->name, spare_count);
r = 0;
}
if (vg->pool_metadata_spare_lv != lvl->lv) {
log_error(INTERNAL_ERROR "LV %s is not the VG's pool metadata spare volume.",
lvl->lv->name);
r = 0;
}
}
if (lv_is_cow(lvl->lv))
num_snapshots++;
if (lv_is_visible(lvl->lv))
lv_visible_count++;
if (!check_lv_segments(lvl->lv, 0)) {
log_error(INTERNAL_ERROR "LV segments corrupted in %s.",
lvl->lv->name);
r = 0;
}
if (lvl->lv->alloc == ALLOC_CLING_BY_TAGS) {
log_error(INTERNAL_ERROR "LV %s allocation policy set to invalid cling_by_tags.",
lvl->lv->name);
r = 0;
}
if (!validate_name(lvl->lv->name)) {
log_error(INTERNAL_ERROR "LV name %s has invalid form.", lvl->lv->name);
r = 0;
}
dm_list_iterate_items(sl, &lvl->lv->tags)
if (!validate_tag(sl->str)) {
log_error(INTERNAL_ERROR "LV %s tag %s has invalid form.",
lvl->lv->name, sl->str);
r = 0;
}
if (lvl->lv->status & VISIBLE_LV)
continue;
/* snapshots */
if (lv_is_cow(lvl->lv))
continue;
/* virtual origins are always hidden */
if (lv_is_origin(lvl->lv) && !lv_is_virtual_origin(lvl->lv))
continue;
/* count other non-snapshot invisible volumes */
hidden_lv_count++;
/*
* FIXME: add check for unreferenced invisible LVs
* - snapshot cow & origin
* - mirror log & images
* - mirror conversion volumes (_mimagetmp*)
*/
}
/*
* all volumes = visible LVs + snapshot_cows + invisible LVs
*/
if (lv_count != lv_visible_count + num_snapshots + hidden_lv_count) {
log_error(INTERNAL_ERROR "#LVs (%u) != #visible LVs (%u) "
"+ #snapshots (%u) + #internal LVs (%u) in VG %s",
lv_count, lv_visible_count, num_snapshots,
hidden_lv_count, vg->name);
r = 0;
}
/* Avoid endless loop if lv->segments list is corrupt */
if (!r)
goto out;
if (!(vhash.lvname = dm_hash_create(lv_count))) {
log_error("Failed to allocate lv_name hash");
r = 0;
goto out;
}
if (!(vhash.lvid = dm_hash_create(lv_count))) {
log_error("Failed to allocate uuid hash");
r = 0;
goto out;
}
dm_list_iterate_items(lvl, &vg->lvs) {
if (dm_hash_lookup(vhash.lvname, lvl->lv->name)) {
log_error(INTERNAL_ERROR
"Duplicate LV name %s detected in %s.",
lvl->lv->name, vg->name);
r = 0;
}
if (dm_hash_lookup_binary(vhash.lvid, &lvl->lv->lvid.id[1],
sizeof(lvl->lv->lvid.id[1]))) {
if (!id_write_format(&lvl->lv->lvid.id[1], uuid,
sizeof(uuid)))
stack;
log_error(INTERNAL_ERROR "Duplicate LV id "
"%s detected for %s in %s.",
uuid, lvl->lv->name, vg->name);
r = 0;
}
if (!check_lv_segments(lvl->lv, 1)) {
log_error(INTERNAL_ERROR "LV segments corrupted in %s.",
lvl->lv->name);
r = 0;
}
if (!dm_hash_insert(vhash.lvname, lvl->lv->name, lvl)) {
log_error("Failed to hash lvname.");
r = 0;
break;
}
if (!dm_hash_insert_binary(vhash.lvid, &lvl->lv->lvid.id[1],
sizeof(lvl->lv->lvid.id[1]), lvl->lv)) {
log_error("Failed to hash lvid.");
r = 0;
break;
}
}
if (!_lv_postorder_vg(vg, _lv_validate_references_single, &vhash)) {
stack;
r = 0;
}
dm_list_iterate_items(lvl, &vg->lvs) {
if (!lv_is_pvmove(lvl->lv))
continue;
dm_list_iterate_items(seg, &lvl->lv->segments) {
if (seg_is_mirrored(seg)) {
if (seg->area_count != 2) {
log_error(INTERNAL_ERROR
"Segment in %s is not 2-way.",
lvl->lv->name);
r = 0;
}
} else if (seg->area_count != 1) {
log_error(INTERNAL_ERROR
"Segment in %s has wrong number of areas: %d.",
lvl->lv->name, seg->area_count);
r = 0;
}
}
}
if (!(vg->fid->fmt->features & FMT_UNLIMITED_VOLS) &&
(!vg->max_lv || !vg->max_pv)) {
log_error(INTERNAL_ERROR "Volume group %s has limited PV/LV count"
" but limit is not set.", vg->name);
r = 0;
}
if (vg->pool_metadata_spare_lv &&
!lv_is_pool_metadata_spare(vg->pool_metadata_spare_lv)) {
log_error(INTERNAL_ERROR "VG references non pool metadata spare LV %s.",
vg->pool_metadata_spare_lv->name);
r = 0;
}
if (vg_max_lv_reached(vg))
stack;
out:
if (vhash.lvid)
dm_hash_destroy(vhash.lvid);
if (vhash.lvname)
dm_hash_destroy(vhash.lvname);
if (vhash.pvid)
dm_hash_destroy(vhash.pvid);
return r;
}
/*
* After vg_write() returns success,
* caller MUST call either vg_commit() or vg_revert()
*/
int vg_write(struct volume_group *vg)
{
struct dm_list *mdah;
struct pv_to_create *pv_to_create;
struct metadata_area *mda;
int revert = 0, wrote = 0;
if (!vg_validate(vg))
return_0;
if (vg->status & PARTIAL_VG) {
log_error("Cannot update partial volume group %s.", vg->name);
return 0;
}
if (vg_missing_pv_count(vg) && !vg->cmd->handles_missing_pvs) {
log_error("Cannot update volume group %s while physical "
"volumes are missing.", vg->name);
return 0;
}
if (vg_has_unknown_segments(vg) && !vg->cmd->handles_unknown_segments) {
log_error("Cannot update volume group %s with unknown segments in it!",
vg->name);
return 0;
}
if ((vg->fid->fmt->features & FMT_MDAS) && !_vg_adjust_ignored_mdas(vg))
return_0;
if (!vg_mda_used_count(vg)) {
log_error("Aborting vg_write: No metadata areas to write to!");
return 0;
}
if (!drop_cached_metadata(vg)) {
log_error("Unable to drop cached metadata for VG %s.", vg->name);
return 0;
}
if (critical_section())
log_error(INTERNAL_ERROR
"Writing metadata in critical section.");
/* Unlock memory if possible */
memlock_unlock(vg->cmd);
vg->seqno++;
dm_list_iterate_items(pv_to_create, &vg->pvs_to_create) {
if (!_pvcreate_write(vg->cmd, pv_to_create))
return 0;
}
/* Write to each copy of the metadata area */
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) {
if (!mda->ops->vg_write) {
log_error("Format does not support writing volume"
"group metadata areas");
revert = 1;
break;
}
if (!mda->ops->vg_write(vg->fid, vg, mda)) {
if (vg->cmd->handles_missing_pvs) {
log_warn("WARNING: Failed to write an MDA of VG %s.", vg->name);
mda->status |= MDA_FAILED;
} else {
stack;
revert = 1;
break;
}
} else
++ wrote;
}
if (revert || !wrote) {
log_error("Failed to write VG %s.", vg->name);
dm_list_uniterate(mdah, &vg->fid->metadata_areas_in_use, &mda->list) {
mda = dm_list_item(mdah, struct metadata_area);
if (mda->ops->vg_revert &&
!mda->ops->vg_revert(vg->fid, vg, mda)) {
stack;
}
}
return 0;
}
/* Now pre-commit each copy of the new metadata */
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) {
if (mda->status & MDA_FAILED)
continue;
if (mda->ops->vg_precommit &&
!mda->ops->vg_precommit(vg->fid, vg, mda)) {
stack;
/* Revert */
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) {
if (mda->status & MDA_FAILED)
continue;
if (mda->ops->vg_revert &&
!mda->ops->vg_revert(vg->fid, vg, mda)) {
stack;
}
}
return 0;
}
}
if (!_vg_update_vg_precommitted(vg)) /* prepare precommited */
return_0;
/*
* If precommit is not supported, changes take effect immediately.
* FIXME Replace with a more-accurate FMT_COMMIT flag.
*/
if (!(vg->fid->fmt->features & FMT_PRECOMMIT) && !lvmetad_vg_update(vg))
return_0;
return 1;
}
static int _vg_commit_mdas(struct volume_group *vg)
{
struct metadata_area *mda, *tmda;
struct dm_list ignored;
int failed = 0;
int cache_updated = 0;
/* Rearrange the metadata_areas_in_use so ignored mdas come first. */
dm_list_init(&ignored);
dm_list_iterate_items_safe(mda, tmda, &vg->fid->metadata_areas_in_use)
if (mda_is_ignored(mda))
dm_list_move(&ignored, &mda->list);
dm_list_iterate_items_safe(mda, tmda, &ignored)
dm_list_move(&vg->fid->metadata_areas_in_use, &mda->list);
/* Commit to each copy of the metadata area */
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) {
if (mda->status & MDA_FAILED)
continue;
failed = 0;
if (mda->ops->vg_commit &&
!mda->ops->vg_commit(vg->fid, vg, mda)) {
stack;
failed = 1;
}
/* Update cache first time we succeed */
if (!failed && !cache_updated) {
lvmcache_update_vg(vg, 0);
// lvmetad_vg_commit(vg);
cache_updated = 1;
}
}
return cache_updated;
}
/* Commit pending changes */
int vg_commit(struct volume_group *vg)
{
int cache_updated = 0;
if (!lvmcache_vgname_is_locked(vg->name)) {
log_error(INTERNAL_ERROR "Attempt to write new VG metadata "
"without locking %s", vg->name);
return cache_updated;
}
/* Skip if we already did this in vg_write */
if ((vg->fid->fmt->features & FMT_PRECOMMIT) && !lvmetad_vg_update(vg))
return_0;
cache_updated = _vg_commit_mdas(vg);
if (cache_updated) {
/* Instruct remote nodes to upgrade cached metadata. */
if (!remote_commit_cached_metadata(vg))
stack; // FIXME: What should we do?
/*
* We need to clear old_name after a successful commit.
* The volume_group structure could be reused later.
*/
vg->old_name = NULL;
/* This *is* the original now that it's commited. */
release_vg(vg->vg_ondisk);
vg->vg_ondisk = vg->vg_precommitted;
vg->vg_precommitted = NULL;
if (vg->cft_precommitted) {
dm_config_destroy(vg->cft_precommitted);
vg->cft_precommitted = NULL;
}
}
/* If update failed, remove any cached precommitted metadata. */
if (!cache_updated && !drop_cached_metadata(vg))
log_error("Attempt to drop cached metadata failed "
"after commit for VG %s.", vg->name);
/* If at least one mda commit succeeded, it was committed */
return cache_updated;
}
/* Don't commit any pending changes */
void vg_revert(struct volume_group *vg)
{
struct metadata_area *mda;
release_vg(vg->vg_precommitted); /* VG is no longer needed */
vg->vg_precommitted = NULL;
if (vg->cft_precommitted) {
dm_config_destroy(vg->cft_precommitted);
vg->cft_precommitted = NULL;
}
dm_list_iterate_items(mda, &vg->fid->metadata_areas_in_use) {
if (mda->ops->vg_revert &&
!mda->ops->vg_revert(vg->fid, vg, mda)) {
stack;
}
}
if (!drop_cached_metadata(vg))
log_error("Attempt to drop cached metadata failed "
"after reverted update for VG %s.", vg->name);
if (!remote_revert_cached_metadata(vg))
stack; // FIXME: What should we do?
}
struct _vg_read_orphan_baton {
struct volume_group *vg;
uint32_t warn_flags;
};
static int _vg_read_orphan_pv(struct lvmcache_info *info, void *baton)
{
struct _vg_read_orphan_baton *b = baton;
struct physical_volume *pv = NULL;
struct pv_list *pvl;
if (!(pv = _pv_read(b->vg->cmd, b->vg->vgmem, dev_name(lvmcache_device(info)),
b->vg->fid, b->warn_flags, 0))) {
stack;
return 1;
}
if (!(pvl = dm_pool_zalloc(b->vg->vgmem, sizeof(*pvl)))) {
log_error("pv_list allocation failed");
free_pv_fid(pv);
return 0;
}
pvl->pv = pv;
add_pvl_to_vgs(b->vg, pvl);
return 1;
}
/* Make orphan PVs look like a VG. */
static struct volume_group *_vg_read_orphans(struct cmd_context *cmd,
uint32_t warn_flags,
const char *orphan_vgname)
{
const struct format_type *fmt;
struct lvmcache_vginfo *vginfo;
struct volume_group *vg = NULL;
struct _vg_read_orphan_baton baton;
struct pv_list *pvl, *tpvl;
struct pv_list head;
dm_list_init(&head.list);
lvmcache_label_scan(cmd, 0);
lvmcache_seed_infos_from_lvmetad(cmd);
if (!(vginfo = lvmcache_vginfo_from_vgname(orphan_vgname, NULL)))
return_NULL;
if (!(fmt = lvmcache_fmt_from_vgname(cmd, orphan_vgname, NULL, 0)))
return_NULL;
vg = fmt->orphan_vg;
dm_list_iterate_items_safe(pvl, tpvl, &vg->pvs)
if (pvl->pv->status & UNLABELLED_PV )
dm_list_move(&head.list, &pvl->list);
else
pv_set_fid(pvl->pv, NULL);
dm_list_init(&vg->pvs);
vg->pv_count = 0;
vg->extent_count = 0;
vg->free_count = 0;
baton.warn_flags = warn_flags;
baton.vg = vg;
while ((pvl = (struct pv_list *) dm_list_first(&head.list))) {
dm_list_del(&pvl->list);
add_pvl_to_vgs(vg, pvl);
vg->extent_count += pvl->pv->pe_count;
vg->free_count += pvl->pv->pe_count;
}
if (!lvmcache_foreach_pv(vginfo, _vg_read_orphan_pv, &baton))
return_NULL;
return vg;
}
static int _update_pv_list(struct dm_pool *pvmem, struct dm_list *all_pvs, struct volume_group *vg)
{
struct pv_list *pvl, *pvl2;
dm_list_iterate_items(pvl, &vg->pvs) {
dm_list_iterate_items(pvl2, all_pvs) {
if (pvl->pv->dev == pvl2->pv->dev)
goto next_pv;
}
/*
* PV is not on list so add it.
*/
if (!(pvl2 = _copy_pvl(pvmem, pvl))) {
log_error("pv_list allocation for '%s' failed",
pv_dev_name(pvl->pv));
return 0;
}
dm_list_add(all_pvs, &pvl2->list);
next_pv:
;
}
return 1;
}
static void _free_pv_list(struct dm_list *all_pvs)
{
struct pv_list *pvl;
dm_list_iterate_items(pvl, all_pvs)
pvl->pv->fid->fmt->ops->destroy_instance(pvl->pv->fid);
}
static void _destroy_fid(struct format_instance **fid)
{
if (*fid) {
(*fid)->fmt->ops->destroy_instance(*fid);
*fid = NULL;
}
}
int vg_missing_pv_count(const struct volume_group *vg)
{
int ret = 0;
struct pv_list *pvl;
dm_list_iterate_items(pvl, &vg->pvs) {
if (is_missing_pv(pvl->pv))
++ ret;
}
return ret;
}
static int _check_reappeared_pv(struct volume_group *correct_vg,
struct physical_volume *pv, int act)
{
struct pv_list *pvl;
int rv = 0;
/*
* Skip these checks in case the tool is going to deal with missing
* PVs, especially since the resulting messages can be pretty
* confusing.
*/
if (correct_vg->cmd->handles_missing_pvs)
return rv;
dm_list_iterate_items(pvl, &correct_vg->pvs)
if (pv->dev == pvl->pv->dev && is_missing_pv(pvl->pv)) {
if (act)
log_warn("Missing device %s reappeared, updating "
"metadata for VG %s to version %u.",
pv_dev_name(pvl->pv), pv_vg_name(pvl->pv),
correct_vg->seqno);
if (pvl->pv->pe_alloc_count == 0) {
if (act) {
pv->status &= ~MISSING_PV;
pvl->pv->status &= ~MISSING_PV;
}
++ rv;
} else if (act)
log_warn("Device still marked missing because of allocated data "
"on it, remove volumes and consider vgreduce --removemissing.");
}
return rv;
}
static int _repair_inconsistent_vg(struct volume_group *vg)
{
unsigned saved_handles_missing_pvs = vg->cmd->handles_missing_pvs;
vg->cmd->handles_missing_pvs = 1;
if (!vg_write(vg)) {
log_error("Automatic metadata correction failed");
vg->cmd->handles_missing_pvs = saved_handles_missing_pvs;
return 0;
}
vg->cmd->handles_missing_pvs = saved_handles_missing_pvs;
if (!vg_commit(vg)) {
log_error("Automatic metadata correction commit failed");
return 0;
}
return 1;
}
static int _check_mda_in_use(struct metadata_area *mda, void *_in_use)
{
int *in_use = _in_use;
if (!mda_is_ignored(mda))
*in_use = 1;
return 1;
}
/* Caller sets consistent to 1 if it's safe for vg_read_internal to correct
* inconsistent metadata on disk (i.e. the VG write lock is held).
* This guarantees only consistent metadata is returned.
* If consistent is 0, caller must check whether consistent == 1 on return
* and take appropriate action if it isn't (e.g. abort; get write lock
* and call vg_read_internal again).
*
* If precommitted is set, use precommitted metadata if present.
*
* Either of vgname or vgid may be NULL.
*
* Note: vginfo structs must not be held or used as parameters
* across the call to this function.
*/
static struct volume_group *_vg_read(struct cmd_context *cmd,
const char *vgname,
const char *vgid,
uint32_t warn_flags,
int *consistent, unsigned precommitted)
{
struct format_instance *fid = NULL;
struct format_instance_ctx fic;
const struct format_type *fmt;
struct volume_group *vg, *correct_vg = NULL;
struct metadata_area *mda;
struct lvmcache_info *info;
int inconsistent = 0;
int inconsistent_vgid = 0;
int inconsistent_pvs = 0;
int inconsistent_mdas = 0;
int inconsistent_mda_count = 0;
unsigned use_precommitted = precommitted;
struct dm_list *pvids;
struct pv_list *pvl, *pvl2;
struct dm_list all_pvs;
char uuid[64] __attribute__((aligned(8)));
unsigned seqno = 0;
int reappeared = 0;
struct cached_vg_fmtdata *vg_fmtdata = NULL; /* Additional format-specific data about the vg */
unsigned use_previous_vg;
if (is_orphan_vg(vgname)) {
if (use_precommitted) {
log_error(INTERNAL_ERROR "vg_read_internal requires vgname "
"with pre-commit.");
return NULL;
}
*consistent = 1;
return _vg_read_orphans(cmd, warn_flags, vgname);
}
if (lvmetad_active() && !use_precommitted) {
if ((correct_vg = lvmcache_get_vg(cmd, vgname, vgid, precommitted))) {
dm_list_iterate_items(pvl, &correct_vg->pvs)
if (pvl->pv->dev)
reappeared += _check_reappeared_pv(correct_vg, pvl->pv, *consistent);
if (reappeared && *consistent)
*consistent = _repair_inconsistent_vg(correct_vg);
else
*consistent = !reappeared;
}
return correct_vg;
}
/*
* If cached metadata was inconsistent and *consistent is set
* then repair it now. Otherwise just return it.
* Also return if use_precommitted is set due to the FIXME in
* the missing PV logic below.
*/
if ((correct_vg = lvmcache_get_vg(cmd, vgname, vgid, precommitted)) &&
(use_precommitted || !*consistent)) {
*consistent = 1;
return correct_vg;
} else {
if (correct_vg && correct_vg->seqno > seqno)
seqno = correct_vg->seqno;
release_vg(correct_vg);
correct_vg = NULL;
}
/* Find the vgname in the cache */
/* If it's not there we must do full scan to be completely sure */
if (!(fmt = lvmcache_fmt_from_vgname(cmd, vgname, vgid, 1))) {
lvmcache_label_scan(cmd, 0);
if (!(fmt = lvmcache_fmt_from_vgname(cmd, vgname, vgid, 1))) {
/* Independent MDAs aren't supported under low memory */
if (!cmd->independent_metadata_areas && critical_section())
return_NULL;
lvmcache_label_scan(cmd, 2);
if (!(fmt = lvmcache_fmt_from_vgname(cmd, vgname, vgid, 0)))
return_NULL;
}
}
/* Now determine the correct vgname if none was supplied */
if (!vgname && !(vgname = lvmcache_vgname_from_vgid(cmd->mem, vgid)))
return_NULL;
if (use_precommitted && !(fmt->features & FMT_PRECOMMIT))
use_precommitted = 0;
/* create format instance with appropriate metadata area */
fic.type = FMT_INSTANCE_MDAS | FMT_INSTANCE_AUX_MDAS;
fic.context.vg_ref.vg_name = vgname;
fic.context.vg_ref.vg_id = vgid;
if (!(fid = fmt->ops->create_instance(fmt, &fic))) {
log_error("Failed to create format instance");
return NULL;
}
/* Store pvids for later so we can check if any are missing */
if (!(pvids = lvmcache_get_pvids(cmd, vgname, vgid))) {
_destroy_fid(&fid);
return_NULL;
}
/*
* We use the fid globally here so prevent the release_vg
* call to destroy the fid - we may want to reuse it!
*/
fid->ref_count++;
/* Ensure contents of all metadata areas match - else do recovery */
inconsistent_mda_count=0;
dm_list_iterate_items(mda, &fid->metadata_areas_in_use) {
use_previous_vg = 0;
if ((use_precommitted &&
!(vg = mda->ops->vg_read_precommit(fid, vgname, mda, &vg_fmtdata, &use_previous_vg)) && !use_previous_vg) ||
(!use_precommitted &&
!(vg = mda->ops->vg_read(fid, vgname, mda, &vg_fmtdata, &use_previous_vg, 0)) && !use_previous_vg)) {
inconsistent = 1;
vg_fmtdata = NULL;
continue;
}
/* Use previous VG because checksum matches */
if (!vg) {
vg = correct_vg;
continue;
}
if (!correct_vg) {
correct_vg = vg;
continue;
}
/* FIXME Also ensure contents same - checksum compare? */
if (correct_vg->seqno != vg->seqno) {
if (cmd->metadata_read_only)
log_very_verbose("Not repairing VG %s metadata seqno (%d != %d) "
"as global/metadata_read_only is set.",
vgname, vg->seqno, correct_vg->seqno);
else
inconsistent = 1;
if (vg->seqno > correct_vg->seqno) {
release_vg(correct_vg);
correct_vg = vg;
} else {
mda->status |= MDA_INCONSISTENT;
++inconsistent_mda_count;
}
}
if (vg != correct_vg) {
release_vg(vg);
vg_fmtdata = NULL;
}
}
fid->ref_count--;
/* Ensure every PV in the VG was in the cache */
if (correct_vg) {
/*
* Update the seqno from the cache, for the benefit of
* retro-style metadata formats like LVM1.
*/
// correct_vg->seqno = seqno > correct_vg->seqno ? seqno : correct_vg->seqno;
/*
* If the VG has PVs without mdas, or ignored mdas, they may
* still be orphans in the cache: update the cache state here,
* and update the metadata lists in the vg.
*/
if (!inconsistent &&
dm_list_size(&correct_vg->pvs) > dm_list_size(pvids)) {
dm_list_iterate_items(pvl, &correct_vg->pvs) {
if (!pvl->pv->dev) {
inconsistent_pvs = 1;
break;
}
if (str_list_match_item(pvids, pvl->pv->dev->pvid))
continue;
/*
* PV not marked as belonging to this VG in cache.
* Check it's an orphan without metadata area
* not ignored.
*/
if (!(info = lvmcache_info_from_pvid(pvl->pv->dev->pvid, 1)) ||
!lvmcache_is_orphan(info)) {
inconsistent_pvs = 1;
break;
}
if (lvmcache_mda_count(info)) {
if (!lvmcache_fid_add_mdas_pv(info, fid)) {
release_vg(correct_vg);
return_NULL;
}
log_debug_metadata("Empty mda found for VG %s.", vgname);
if (inconsistent_mdas)
continue;
/*
* If any newly-added mdas are in-use then their
* metadata needs updating.
*/
lvmcache_foreach_mda(info, _check_mda_in_use,
&inconsistent_mdas);
}
}
/* If the check passed, let's update VG and recalculate pvids */
if (!inconsistent_pvs) {
log_debug_metadata("Updating cache for PVs without mdas "
"in VG %s.", vgname);
/*
* If there is no precommitted metadata, committed metadata
* is read and stored in the cache even if use_precommitted is set
*/
lvmcache_update_vg(correct_vg, correct_vg->status & PRECOMMITTED);
if (!(pvids = lvmcache_get_pvids(cmd, vgname, vgid))) {
release_vg(correct_vg);
return_NULL;
}
}
}
fid->ref_count++;
if (dm_list_size(&correct_vg->pvs) !=
dm_list_size(pvids) + vg_missing_pv_count(correct_vg)) {
log_debug_metadata("Cached VG %s had incorrect PV list",
vgname);
if (critical_section())
inconsistent = 1;
else {
release_vg(correct_vg);
correct_vg = NULL;
}
} else dm_list_iterate_items(pvl, &correct_vg->pvs) {
if (is_missing_pv(pvl->pv))
continue;
if (!str_list_match_item(pvids, pvl->pv->dev->pvid)) {
log_debug_metadata("Cached VG %s had incorrect PV list",
vgname);
release_vg(correct_vg);
correct_vg = NULL;
break;
}
}
if (correct_vg && inconsistent_mdas) {
release_vg(correct_vg);
correct_vg = NULL;
}
fid->ref_count--;
}
dm_list_init(&all_pvs);
/* Failed to find VG where we expected it - full scan and retry */
if (!correct_vg) {
/*
* Free outstanding format instance that remained unassigned
* from previous step where we tried to get the "correct_vg",
* but we failed to do so (so there's a dangling fid now).
*/
_destroy_fid(&fid);
vg_fmtdata = NULL;
inconsistent = 0;
/* Independent MDAs aren't supported under low memory */
if (!cmd->independent_metadata_areas && critical_section())
return_NULL;
lvmcache_label_scan(cmd, 2);
if (!(fmt = lvmcache_fmt_from_vgname(cmd, vgname, vgid, 0)))
return_NULL;
if (precommitted && !(fmt->features & FMT_PRECOMMIT))
use_precommitted = 0;
/* create format instance with appropriate metadata area */
fic.type = FMT_INSTANCE_MDAS | FMT_INSTANCE_AUX_MDAS;
fic.context.vg_ref.vg_name = vgname;
fic.context.vg_ref.vg_id = vgid;
if (!(fid = fmt->ops->create_instance(fmt, &fic))) {
log_error("Failed to create format instance");
return NULL;
}
/*
* We use the fid globally here so prevent the release_vg
* call to destroy the fid - we may want to reuse it!
*/
fid->ref_count++;
/* Ensure contents of all metadata areas match - else recover */
inconsistent_mda_count=0;
dm_list_iterate_items(mda, &fid->metadata_areas_in_use) {
use_previous_vg = 0;
if ((use_precommitted &&
!(vg = mda->ops->vg_read_precommit(fid, vgname, mda, &vg_fmtdata, &use_previous_vg)) && !use_previous_vg) ||
(!use_precommitted &&
!(vg = mda->ops->vg_read(fid, vgname, mda, &vg_fmtdata, &use_previous_vg, 0)) && !use_previous_vg)) {
inconsistent = 1;
vg_fmtdata = NULL;
continue;
}
/* Use previous VG because checksum matches */
if (!vg) {
vg = correct_vg;
continue;
}
if (!correct_vg) {
correct_vg = vg;
if (!_update_pv_list(cmd->mem, &all_pvs, correct_vg)) {
_free_pv_list(&all_pvs);
fid->ref_count--;
release_vg(vg);
return_NULL;
}
continue;
}
if (!id_equal(&vg->id, &correct_vg->id)) {
inconsistent = 1;
inconsistent_vgid = 1;
}
/* FIXME Also ensure contents same - checksums same? */
if (correct_vg->seqno != vg->seqno) {
/* Ignore inconsistent seqno if told to skip repair logic */
if (cmd->metadata_read_only)
log_very_verbose("Not repairing VG %s metadata seqno (%d != %d) "
"as global/metadata_read_only is set.",
vgname, vg->seqno, correct_vg->seqno);
else
inconsistent = 1;
if (!_update_pv_list(cmd->mem, &all_pvs, vg)) {
_free_pv_list(&all_pvs);
fid->ref_count--;
release_vg(vg);
release_vg(correct_vg);
return_NULL;
}
if (vg->seqno > correct_vg->seqno) {
release_vg(correct_vg);
correct_vg = vg;
} else {
mda->status |= MDA_INCONSISTENT;
++inconsistent_mda_count;
}
}
if (vg != correct_vg) {
release_vg(vg);
vg_fmtdata = NULL;
}
}
fid->ref_count--;
/* Give up looking */
if (!correct_vg) {
_free_pv_list(&all_pvs);
_destroy_fid(&fid);
return_NULL;
}
}
/*
* If there is no precommitted metadata, committed metadata
* is read and stored in the cache even if use_precommitted is set
*/
lvmcache_update_vg(correct_vg, (correct_vg->status & PRECOMMITTED));
if (inconsistent) {
/* FIXME Test should be if we're *using* precommitted metadata not if we were searching for it */
if (use_precommitted) {
log_error("Inconsistent pre-commit metadata copies "
"for volume group %s", vgname);
/*
* Check whether all of the inconsistent MDAs were on
* MISSING PVs -- in that case, we should be safe.
*/
dm_list_iterate_items(mda, &fid->metadata_areas_in_use) {
if (mda->status & MDA_INCONSISTENT) {
log_debug_metadata("Checking inconsistent MDA: %s", dev_name(mda_get_device(mda)));
dm_list_iterate_items(pvl, &correct_vg->pvs) {
if (mda_get_device(mda) == pvl->pv->dev &&
(pvl->pv->status & MISSING_PV))
--inconsistent_mda_count;
}
}
}
if (inconsistent_mda_count < 0)
log_error(INTERNAL_ERROR "Too many inconsistent MDAs.");
if (!inconsistent_mda_count) {
*consistent = 0;
_free_pv_list(&all_pvs);
return correct_vg;
}
_free_pv_list(&all_pvs);
release_vg(correct_vg);
return NULL;
}
if (!*consistent) {
_free_pv_list(&all_pvs);
return correct_vg;
}
/* Don't touch if vgids didn't match */
if (inconsistent_vgid) {
log_warn("WARNING: Inconsistent metadata UUIDs found for "
"volume group %s.", vgname);
*consistent = 0;
_free_pv_list(&all_pvs);
return correct_vg;
}
log_warn("WARNING: Inconsistent metadata found for VG %s - updating "
"to use version %u", vgname, correct_vg->seqno);
/*
* If PV is marked missing but we found it,
* update metadata and remove MISSING flag
*/
dm_list_iterate_items(pvl, &all_pvs)
_check_reappeared_pv(correct_vg, pvl->pv, 1);
if (!_repair_inconsistent_vg(correct_vg)) {
_free_pv_list(&all_pvs);
release_vg(correct_vg);
return NULL;
}
dm_list_iterate_items(pvl, &all_pvs) {
dm_list_iterate_items(pvl2, &correct_vg->pvs) {
if (pvl->pv->dev == pvl2->pv->dev)
goto next_pv;
}
if (!id_write_format(&pvl->pv->id, uuid, sizeof(uuid))) {
_free_pv_list(&all_pvs);
release_vg(correct_vg);
return_NULL;
}
log_warn("WARNING: Removing PV %s (%s) that no longer belongs to VG %s",
pv_dev_name(pvl->pv), uuid, correct_vg->name);
if (!pv_write_orphan(cmd, pvl->pv)) {
_free_pv_list(&all_pvs);
release_vg(correct_vg);
return_NULL;
}
/* Refresh metadata after orphan write */
drop_cached_metadata(correct_vg);
next_pv:
;
}
}
_free_pv_list(&all_pvs);
if (vg_missing_pv_count(correct_vg)) {
log_verbose("There are %d physical volumes missing.",
vg_missing_pv_count(correct_vg));
vg_mark_partial_lvs(correct_vg, 1);
}
if ((correct_vg->status & PVMOVE) && !pvmove_mode()) {
log_error("Interrupted pvmove detected in volume group %s.",
correct_vg->name);
log_print("Please restore the metadata by running vgcfgrestore.");
release_vg(correct_vg);
return NULL;
}
*consistent = 1;
return correct_vg;
}
struct volume_group *vg_read_internal(struct cmd_context *cmd, const char *vgname,
const char *vgid, uint32_t warn_flags, int *consistent)
{
struct volume_group *vg;
struct lv_list *lvl;
if (!(vg = _vg_read(cmd, vgname, vgid, warn_flags, consistent, 0)))
goto_out;
if (!check_pv_segments(vg)) {
log_error(INTERNAL_ERROR "PV segments corrupted in %s.",
vg->name);
release_vg(vg);
vg = NULL;
goto out;
}
dm_list_iterate_items(lvl, &vg->lvs) {
if (!check_lv_segments(lvl->lv, 0)) {
log_error(INTERNAL_ERROR "LV segments corrupted in %s.",
lvl->lv->name);
release_vg(vg);
vg = NULL;
goto out;
}
}
dm_list_iterate_items(lvl, &vg->lvs) {
/*
* Checks that cross-reference other LVs.
*/
if (!check_lv_segments(lvl->lv, 1)) {
log_error(INTERNAL_ERROR "LV segments corrupted in %s.",
lvl->lv->name);
release_vg(vg);
vg = NULL;
goto out;
}
}
out:
if (!*consistent && (warn_flags & WARN_INCONSISTENT))
log_warn("WARNING: Volume Group %s is not consistent.", vgname);
return vg;
}
void free_pv_fid(struct physical_volume *pv)
{
if (!pv)
return;
pv_set_fid(pv, NULL);
}
/* This is only called by lv_from_lvid, which is only called from
* activate.c so we know the appropriate VG lock is already held and
* the vg_read_internal is therefore safe.
*/
static struct volume_group *_vg_read_by_vgid(struct cmd_context *cmd,
const char *vgid,
unsigned precommitted)
{
const char *vgname;
struct dm_list *vgnames;
struct volume_group *vg;
struct dm_str_list *strl;
uint32_t warn_flags = WARN_PV_READ | WARN_INCONSISTENT;
int consistent = 0;
/* Is corresponding vgname already cached? */
if (lvmcache_vgid_is_cached(vgid)) {
if ((vg = _vg_read(cmd, NULL, vgid, warn_flags, &consistent, precommitted)) &&
id_equal(&vg->id, (const struct id *)vgid)) {
return vg;
}
release_vg(vg);
}
/* Mustn't scan if memory locked: ensure cache gets pre-populated! */
if (critical_section())
return_NULL;
/* FIXME Need a genuine read by ID here - don't vg_read_internal by name! */
/* FIXME Disabled vgrenames while active for now because we aren't
* allowed to do a full scan here any more. */
// The slow way - full scan required to cope with vgrename
lvmcache_label_scan(cmd, 2);
if (!(vgnames = get_vgnames(cmd, 0))) {
log_error("vg_read_by_vgid: get_vgnames failed");
return NULL;
}
dm_list_iterate_items(strl, vgnames) {
vgname = strl->str;
if (!vgname)
continue; // FIXME Unnecessary?
consistent = 0;
if ((vg = _vg_read(cmd, vgname, vgid, warn_flags, &consistent, precommitted)) &&
id_equal(&vg->id, (const struct id *)vgid)) {
if (!consistent) {
release_vg(vg);
return NULL;
}
return vg;
}
release_vg(vg);
}
return NULL;
}
/* Only called by activate.c */
struct logical_volume *lv_from_lvid(struct cmd_context *cmd, const char *lvid_s,
unsigned precommitted)
{
struct lv_list *lvl;
struct volume_group *vg;
const union lvid *lvid;
lvid = (const union lvid *) lvid_s;
log_very_verbose("Finding %svolume group for uuid %s", precommitted ? "precommitted " : "", lvid_s);
if (!(vg = _vg_read_by_vgid(cmd, (const char *)lvid->id[0].uuid, precommitted))) {
log_error("Volume group for uuid not found: %s", lvid_s);
return NULL;
}
log_verbose("Found volume group \"%s\"", vg->name);
if (vg->status & EXPORTED_VG) {
log_error("Volume group \"%s\" is exported", vg->name);
goto out;
}
if (!(lvl = find_lv_in_vg_by_lvid(vg, lvid))) {
log_very_verbose("Can't find logical volume id %s", lvid_s);
goto out;
}
return lvl->lv;
out:
release_vg(vg);
return NULL;
}
const char *find_vgname_from_pvid(struct cmd_context *cmd,
const char *pvid)
{
char *vgname;
struct lvmcache_info *info;
vgname = lvmcache_vgname_from_pvid(cmd, pvid);
if (is_orphan_vg(vgname)) {
if (!(info = lvmcache_info_from_pvid(pvid, 0))) {
return_NULL;
}
/*
* If an orphan PV has no MDAs, or it has MDAs but the
* MDA is ignored, it may appear to be an orphan until
* the metadata is read off another PV in the same VG.
* Detecting this means checking every VG by scanning
* every PV on the system.
*/
if (lvmcache_uncertain_ownership(info)) {
if (!scan_vgs_for_pvs(cmd, WARN_PV_READ)) {
log_error("Rescan for PVs without "
"metadata areas failed.");
return NULL;
}
/*
* Ask lvmcache again - we may have a non-orphan
* name now
*/
vgname = lvmcache_vgname_from_pvid(cmd, pvid);
}
}
return vgname;
}
const char *find_vgname_from_pvname(struct cmd_context *cmd,
const char *pvname)
{
const char *pvid;
pvid = lvmcache_pvid_from_devname(cmd, pvname);
if (!pvid)
/* Not a PV */
return NULL;
return find_vgname_from_pvid(cmd, pvid);
}
/* FIXME Use label functions instead of PV functions */
static struct physical_volume *_pv_read(struct cmd_context *cmd,
struct dm_pool *pvmem,
const char *pv_name,
struct format_instance *fid,
uint32_t warn_flags, int scan_label_only)
{
struct physical_volume *pv;
struct label *label;
struct lvmcache_info *info;
struct device *dev;
const struct format_type *fmt;
int found;
if (!(dev = dev_cache_get(pv_name, cmd->filter)))
return_NULL;
if (lvmetad_active()) {
info = lvmcache_info_from_pvid(dev->pvid, 0);
if (!info) {
if (!lvmetad_pv_lookup_by_dev(cmd, dev, &found))
return_NULL;
if (!found) {
if (warn_flags & WARN_PV_READ)
log_error("No physical volume found in lvmetad cache for %s",
pv_name);
return NULL;
}
if (!(info = lvmcache_info_from_pvid(dev->pvid, 0))) {
if (warn_flags & WARN_PV_READ)
log_error("No cache info in lvmetad cache for %s.",
pv_name);
return NULL;
}
}
label = lvmcache_get_label(info);
} else {
if (!(label_read(dev, &label, UINT64_C(0)))) {
if (warn_flags & WARN_PV_READ)
log_error("No physical volume label read from %s",
pv_name);
return NULL;
}
info = (struct lvmcache_info *) label->info;
}
fmt = lvmcache_fmt(info);
pv = _alloc_pv(pvmem, dev);
if (!pv) {
log_error("pv allocation for '%s' failed", pv_name);
return NULL;
}
pv->label_sector = label->sector;
/* FIXME Move more common code up here */
if (!(lvmcache_fmt(info)->ops->pv_read(lvmcache_fmt(info), pv_name, pv, scan_label_only))) {
log_error("Failed to read existing physical volume '%s'",
pv_name);
goto bad;
}
if (!pv->size)
goto bad;
if (!alloc_pv_segment_whole_pv(pvmem, pv))
goto_bad;
if (fid)
lvmcache_fid_add_mdas(info, fid, (const char *) &pv->id, ID_LEN);
else {
lvmcache_fid_add_mdas(info, fmt->orphan_vg->fid, (const char *) &pv->id, ID_LEN);
pv_set_fid(pv, fmt->orphan_vg->fid);
}
return pv;
bad:
free_pv_fid(pv);
dm_pool_free(pvmem, pv);
return NULL;
}
/* May return empty list */
struct dm_list *get_vgnames(struct cmd_context *cmd, int include_internal)
{
return lvmcache_get_vgnames(cmd, include_internal);
}
struct dm_list *get_vgids(struct cmd_context *cmd, int include_internal)
{
return lvmcache_get_vgids(cmd, include_internal);
}
static int _get_pvs(struct cmd_context *cmd, uint32_t warn_flags,
struct dm_list *pvslist, struct dm_list *vgslist)
{
struct dm_str_list *strl;
const char *vgname, *vgid;
struct pv_list *pvl, *pvl_copy;
struct dm_list *vgids;
struct volume_group *vg;
int consistent = 0;
int old_pvmove;
struct vg_list *vgl_item = NULL;
int have_pv = 0;
lvmcache_label_scan(cmd, 0);
/* Get list of VGs */
if (!(vgids = get_vgids(cmd, 1))) {
log_error("get_pvs: get_vgids failed");
return 0;
}
/* Read every VG to ensure cache consistency */
/* Orphan VG is last on list */
old_pvmove = pvmove_mode();
init_pvmove(1);
dm_list_iterate_items(strl, vgids) {
vgid = strl->str;
if (!vgid)
continue; /* FIXME Unnecessary? */
consistent = 0;
if (!(vgname = lvmcache_vgname_from_vgid(NULL, vgid))) {
stack;
continue;
}
/*
* When we are retrieving a list to return toliblvm we need
* that list to contain VGs that are modifiable as we are using
* the vgmem pool in the vg to provide allocation for liblvm.
* This is a hack to prevent the vg from getting cached as the
* vgid will be NULL.
* FIXME Remove this hack.
*/
warn_flags |= WARN_INCONSISTENT;
if (!(vg = vg_read_internal(cmd, vgname, (!vgslist) ? vgid : NULL, warn_flags, &consistent))) {
stack;
continue;
}
/* Move PVs onto results list */
if (pvslist)
dm_list_iterate_items(pvl, &vg->pvs) {
if (!(pvl_copy = _copy_pvl(cmd->mem, pvl))) {
log_error("PV list allocation failed");
release_vg(vg);
return 0;
}
/* If we are going to release the VG, don't
* store a pointer to it in the PV structure.
*/
if (!vgslist)
pvl_copy->pv->vg = NULL;
else
/*
* Make sure the vg mode indicates
* writeable.
* FIXME Rework function to take a
* parameter to control this
*/
pvl_copy->pv->vg->open_mode = 'w';
have_pv = 1;
dm_list_add(pvslist, &pvl_copy->list);
}
/*
* In the case of the library we want to preserve the embedded
* volume group as subsequent calls to retrieve data about the
* PV require it.
*/
if (!vgslist || !have_pv)
release_vg(vg);
else {
/*
* Add VG to list of VG objects that will be returned
*/
vgl_item = dm_pool_alloc(cmd->mem, sizeof(*vgl_item));
if (!vgl_item) {
log_error("VG list element allocation failed");
return 0;
}
vgl_item->vg = vg;
vg = NULL;
dm_list_add(vgslist, &vgl_item->list);
}
have_pv = 0;
}
init_pvmove(old_pvmove);
if (!pvslist)
dm_pool_free(cmd->mem, vgids);
return 1;
}
/*
* Retrieve a list of all physical volumes.
* @param cmd Command context
* @param pvslist Set to NULL if you want memory for list created,
* else valid memory
* @param vgslist Set to NULL if you need the pv structures to contain
* valid vg pointer. This is the list of VGs
* @returns NULL on errors, else pvslist which will equal passed-in value if
* supplied.
*/
struct dm_list *get_pvs_internal(struct cmd_context *cmd,
struct dm_list *pvslist,
struct dm_list *vgslist)
{
struct dm_list *results = pvslist;
if (NULL == results) {
if (!(results = dm_pool_alloc(cmd->mem, sizeof(*results)))) {
log_error("PV list allocation failed");
return 0;
}
dm_list_init(results);
}
if (!_get_pvs(cmd, WARN_PV_READ, results, vgslist)) {
if (!pvslist)
dm_pool_free(cmd->mem, results);
return NULL;
}
return results;
}
int scan_vgs_for_pvs(struct cmd_context *cmd, uint32_t warn_flags)
{
return _get_pvs(cmd, warn_flags, NULL, NULL);
}
int pv_write(struct cmd_context *cmd __attribute__((unused)),
struct physical_volume *pv, int allow_non_orphan)
{
if (!pv->fmt->ops->pv_write) {
log_error("Format does not support writing physical volumes");
return 0;
}
/*
* FIXME: Try to remove this restriction. This requires checking
* that the PV and the VG are in a consistent state. We need
* to provide some revert mechanism since PV label together
* with VG metadata write is not atomic.
*/
if (!allow_non_orphan &&
(!is_orphan_vg(pv->vg_name) || pv->pe_alloc_count)) {
log_error("Assertion failed: can't _pv_write non-orphan PV "
"(in VG %s)", pv_vg_name(pv));
return 0;
}
if (!pv->fmt->ops->pv_write(pv->fmt, pv))
return_0;
pv->status &= ~UNLABELLED_PV;
if (!lvmetad_pv_found(&pv->id, pv->dev, pv->fmt, pv->label_sector,
NULL, NULL))
return_0;
return 1;
}
int pv_write_orphan(struct cmd_context *cmd, struct physical_volume *pv)
{
const char *old_vg_name = pv->vg_name;
pv->vg_name = cmd->fmt->orphan_vg_name;
pv->status = ALLOCATABLE_PV;
pv->pe_alloc_count = 0;
if (!dev_get_size(pv->dev, &pv->size)) {
log_error("%s: Couldn't get size.", pv_dev_name(pv));
return 0;
}
if (!pv_write(cmd, pv, 0)) {
log_error("Failed to clear metadata from physical "
"volume \"%s\" after removal from \"%s\"",
pv_dev_name(pv), old_vg_name);
return 0;
}
return 1;
}
int is_global_vg(const char *vg_name)
{
return (vg_name && !strcmp(vg_name, VG_GLOBAL)) ? 1 : 0;
}
/**
* is_orphan_vg - Determine whether a vg_name is an orphan
* @vg_name: pointer to the vg_name
*/
int is_orphan_vg(const char *vg_name)
{
return (vg_name && !strncmp(vg_name, ORPHAN_PREFIX, sizeof(ORPHAN_PREFIX) - 1)) ? 1 : 0;
}
/*
* Exclude pseudo VG names used for locking.
*/
int is_real_vg(const char *vg_name)
{
return (vg_name && *vg_name != '#');
}
static int _analyze_mda(struct metadata_area *mda, void *baton)
{
const struct format_type *fmt = baton;
mda->ops->pv_analyze_mda(fmt, mda);
return 1;
}
/*
* Returns:
* 0 - fail
* 1 - success
*/
int pv_analyze(struct cmd_context *cmd, const char *pv_name,
uint64_t label_sector)
{
struct label *label;
struct device *dev;
struct lvmcache_info *info;
dev = dev_cache_get(pv_name, cmd->filter);
if (!dev) {
log_error("Device %s not found (or ignored by filtering).",
pv_name);
return 0;
}
/*
* First, scan for LVM labels.
*/
if (!label_read(dev, &label, label_sector)) {
log_error("Could not find LVM label on %s",
pv_name);
return 0;
}
log_print("Found label on %s, sector %"PRIu64", type=%.8s",
pv_name, label->sector, label->type);
/*
* Next, loop through metadata areas
*/
info = label->info;
lvmcache_foreach_mda(info, _analyze_mda, (void *)lvmcache_fmt(info));
return 1;
}
/* FIXME: remove / combine this with locking? */
int vg_check_write_mode(struct volume_group *vg)
{
if (vg->open_mode != 'w') {
log_errno(EPERM, "Attempt to modify a read-only VG");
return 0;
}
return 1;
}
/*
* Return 1 if the VG metadata should be written
* *without* the LVM_WRITE flag in the status line, and
* *with* the LVM_WRITE_LOCKED flag in the flags line.
*
* If this is done for a VG, it forces previous versions
* of lvm (before the LVM_WRITE_LOCKED flag was added), to view
* the VG and its LVs as read-only (because the LVM_WRITE flag
* is missing). Versions of lvm that understand the
* LVM_WRITE_LOCKED flag know to check the other methods of
* access control for the VG, specifically system_id and lock_type.
*
* So, if a VG has a system_id or lock_type, then the
* system_id and lock_type control access to the VG in
* addition to its basic writable status. Because previous
* lvm versions do not know about system_id or lock_type,
* VGs depending on either of these should have LVM_WRITE_LOCKED
* instead of LVM_WRITE to prevent the previous lvm versions from
* assuming they can write the VG and its LVs.
*/
int vg_flag_write_locked(struct volume_group *vg)
{
if (vg->system_id && vg->system_id[0])
return 1;
if (vg->lock_type && vg->lock_type[0] && strcmp(vg->lock_type, "none"))
return 1;
return 0;
}
/*
* Performs a set of checks against a VG according to bits set in status
* and returns FAILED_* bits for those that aren't acceptable.
*
* FIXME Remove the unnecessary duplicate definitions and return bits directly.
*/
static uint32_t _vg_bad_status_bits(const struct volume_group *vg,
uint64_t status)
{
uint32_t failure = 0;
if ((status & CLUSTERED) &&
(vg_is_clustered(vg)) && !locking_is_clustered()) {
if (!vg->cmd->ignore_clustered_vgs)
log_error("Skipping clustered volume group %s", vg->name);
else
log_verbose("Skipping clustered volume group %s", vg->name);
/* Return because other flags are considered undefined. */
return FAILED_CLUSTERED;
}
if ((status & EXPORTED_VG) &&
vg_is_exported(vg)) {
log_error("Volume group %s is exported", vg->name);
failure |= FAILED_EXPORTED;
}
if ((status & LVM_WRITE) &&
!(vg->status & LVM_WRITE)) {
log_error("Volume group %s is read-only", vg->name);
failure |= FAILED_READ_ONLY;
}
if ((status & RESIZEABLE_VG) &&
!vg_is_resizeable(vg)) {
log_error("Volume group %s is not resizeable.", vg->name);
failure |= FAILED_RESIZEABLE;
}
return failure;
}
/**
* vg_check_status - check volume group status flags and log error
* @vg - volume group to check status flags
* @status - specific status flags to check (e.g. EXPORTED_VG)
*/
int vg_check_status(const struct volume_group *vg, uint64_t status)
{
return !_vg_bad_status_bits(vg, status);
}
/*
* VG is left unlocked on failure
*/
static struct volume_group *_recover_vg(struct cmd_context *cmd,
const char *vg_name, const char *vgid)
{
int consistent = 1;
struct volume_group *vg;
unlock_vg(cmd, vg_name);
dev_close_all();
if (!lock_vol(cmd, vg_name, LCK_VG_WRITE, NULL))
return_NULL;
if (!(vg = vg_read_internal(cmd, vg_name, vgid, WARN_PV_READ, &consistent))) {
unlock_vg(cmd, vg_name);
return_NULL;
}
if (!consistent) {
release_vg(vg);
unlock_vg(cmd, vg_name);
return_NULL;
}
return (struct volume_group *)vg;
}
static int _allow_system_id(struct cmd_context *cmd, const char *system_id)
{
const struct dm_config_node *cn;
const struct dm_config_value *cv;
const char *str;
if (!(cn = find_config_tree_node(cmd, local_extra_system_ids_CFG, NULL)))
return 0;
for (cv = cn->v; cv; cv = cv->next) {
if (cv->type == DM_CFG_EMPTY_ARRAY)
break;
/* Ignore invalid data: Warning message already issued by config.c */
if (cv->type != DM_CFG_STRING)
continue;
str = cv->v.str;
if (!*str)
continue;
if (!strcmp(str, system_id))
return 1;
}
return 0;
}
static int _access_vg_clustered(struct cmd_context *cmd, struct volume_group *vg)
{
if (vg_is_clustered(vg) && !locking_is_clustered()) {
if (!cmd->ignore_clustered_vgs)
log_error("Skipping clustered volume group %s", vg->name);
else
log_verbose("Skipping clustered volume group %s", vg->name);
return 0;
}
return 1;
}
static int _access_vg_lock_type(struct cmd_context *cmd, struct volume_group *vg)
{
if (!is_real_vg(vg->name))
return 1;
/*
* Until lock_type support is added, reject any VG that has a lock_type.
*/
if (vg->lock_type && vg->lock_type[0] && strcmp(vg->lock_type, "none")) {
log_error("Cannot access VG %s with unsupported lock_type %s.",
vg->name, vg->lock_type);
return 0;
}
return 1;
}
static int _access_vg_systemid(struct cmd_context *cmd, struct volume_group *vg)
{
/*
* LVM1 VGs must not be accessed if a new-style LVM2 system ID is set.
*/
if (cmd->system_id && systemid_on_pvs(vg)) {
log_error("Cannot access VG %s with LVM1 system ID %s when host system ID is set.",
vg->name, vg->lvm1_system_id);
return 0;
}
/*
* A VG without a system_id can be accessed by anyone.
*/
if (!vg->system_id || !vg->system_id[0])
return 1;
/*
* A few commands allow read-only access to foreign VGs.
*/
if (cmd->include_foreign_vgs)
return 1;
/*
* A host can access a VG with a matching system_id.
*/
if (cmd->system_id && !strcmp(vg->system_id, cmd->system_id))
return 1;
/*
* A host can access a VG if the VG's system_id is in extra_system_ids list.
*/
if (cmd->system_id && _allow_system_id(cmd, vg->system_id))
return 1;
/*
* Allow VG access if the local host has active LVs in it.
*/
if (lvs_in_vg_activated(vg)) {
log_warn("WARNING: Found LVs active in VG %s with foreign system ID %s. Possible data corruption.",
vg->name, vg->system_id);
if (cmd->include_active_foreign_vgs)
return 1;
return 0;
}
/*
* A host without a system_id cannot access a VG with a system_id.
*/
if (!cmd->system_id || cmd->unknown_system_id) {
log_error("Cannot access VG %s with system ID %s with unknown local system ID.",
vg->name, vg->system_id);
return 0;
}
/*
* Some commands always produce an error when accessing foreign VG.
*/
if (cmd->error_foreign_vgs) {
log_error("Cannot access VG %s with system ID %s with local system ID %s.",
vg->name, vg->system_id, cmd->system_id);
return 0;
}
/*
* When include_foreign_vgs is 0 and error_foreign_vgs is 0,
* the result is to silently ignore foreign vgs.
*/
return 0;
}
/*
* FIXME: move _vg_bad_status_bits() checks in here.
*/
static int _vg_access_permitted(struct cmd_context *cmd, struct volume_group *vg, uint32_t *failure)
{
if (!is_real_vg(vg->name)) {
/* Disallow use of LVM1 orphans when a host system ID is set. */
if (cmd->system_id && *cmd->system_id && systemid_on_pvs(vg)) {
*failure |= FAILED_SYSTEMID;
return_0;
}
return 1;
}
if (!_access_vg_clustered(cmd, vg)) {
*failure |= FAILED_CLUSTERED;
return 0;
}
if (!_access_vg_lock_type(cmd, vg)) {
*failure |= FAILED_LOCK_TYPE;
return 0;
}
if (!_access_vg_systemid(cmd, vg)) {
*failure |= FAILED_SYSTEMID;
return 0;
}
return 1;
}
/*
* Consolidated locking, reading, and status flag checking.
*
* If the metadata is inconsistent, setting READ_ALLOW_INCONSISTENT in
* misc_flags will return it with FAILED_INCONSISTENT set instead of
* giving you nothing.
*
* Use vg_read_error(vg) to determine the result. Nonzero means there were
* problems reading the volume group.
* Zero value means that the VG is open and appropriate locks are held.
*/
static struct volume_group *_vg_lock_and_read(struct cmd_context *cmd, const char *vg_name,
const char *vgid, uint32_t lock_flags,
uint64_t status_flags, uint32_t misc_flags)
{
struct volume_group *vg = NULL;
int consistent = 1;
int consistent_in;
uint32_t failure = 0;
uint32_t warn_flags = 0;
int already_locked;
if (misc_flags & READ_ALLOW_INCONSISTENT || lock_flags != LCK_VG_WRITE)
consistent = 0;
if (!validate_name(vg_name) && !is_orphan_vg(vg_name)) {
log_error("Volume group name \"%s\" has invalid characters.",
vg_name);
return NULL;
}
already_locked = lvmcache_vgname_is_locked(vg_name);
if (!already_locked &&
!lock_vol(cmd, vg_name, lock_flags, NULL)) {
log_error("Can't get lock for %s", vg_name);
return _vg_make_handle(cmd, vg, FAILED_LOCKING);
}
if (is_orphan_vg(vg_name))
status_flags &= ~LVM_WRITE;
consistent_in = consistent;
warn_flags = WARN_PV_READ;
if (consistent || (misc_flags & READ_WARN_INCONSISTENT))
warn_flags |= WARN_INCONSISTENT;
/* If consistent == 1, we get NULL here if correction fails. */
if (!(vg = vg_read_internal(cmd, vg_name, vgid, warn_flags, &consistent))) {
if (consistent_in && !consistent) {
failure |= FAILED_INCONSISTENT;
goto bad;
}
log_error("Volume group \"%s\" not found", vg_name);
failure |= FAILED_NOTFOUND;
goto bad;
}
if (!_vg_access_permitted(cmd, vg, &failure))
goto bad;
/* consistent == 0 when VG is not found, but failed == FAILED_NOTFOUND */
if (!consistent && !failure) {
release_vg(vg);
if (!(vg = _recover_vg(cmd, vg_name, vgid))) {
log_error("Recovery of volume group \"%s\" failed.",
vg_name);
failure |= FAILED_RECOVERY;
goto bad_no_unlock;
}
}
/*
* Check that the tool can handle tricky cases -- missing PVs and
* unknown segment types.
*/
if (!cmd->handles_missing_pvs && vg_missing_pv_count(vg) &&
lock_flags == LCK_VG_WRITE) {
log_error("Cannot change VG %s while PVs are missing.", vg->name);
log_error("Consider vgreduce --removemissing.");
failure |= FAILED_INCONSISTENT; /* FIXME new failure code here? */
goto bad;
}
if (!cmd->handles_unknown_segments && vg_has_unknown_segments(vg) &&
lock_flags == LCK_VG_WRITE) {
log_error("Cannot change VG %s with unknown segments in it!",
vg->name);
failure |= FAILED_INCONSISTENT; /* FIXME new failure code here? */
goto bad;
}
failure |= _vg_bad_status_bits(vg, status_flags);
if (failure)
goto_bad;
return _vg_make_handle(cmd, vg, failure);
bad:
if (!already_locked)
unlock_vg(cmd, vg_name);
bad_no_unlock:
return _vg_make_handle(cmd, vg, failure);
}
/*
* vg_read: High-level volume group metadata read function.
*
* vg_read_error() must be used on any handle returned to check for errors.
*
* - metadata inconsistent and automatic correction failed: FAILED_INCONSISTENT
* - VG is read-only: FAILED_READ_ONLY
* - VG is EXPORTED, unless flags has READ_ALLOW_EXPORTED: FAILED_EXPORTED
* - VG is not RESIZEABLE: FAILED_RESIZEABLE
* - locking failed: FAILED_LOCKING
*
* On failures, all locks are released, unless one of the following applies:
* - vgname_is_locked(lock_name) is true
* FIXME: remove the above 2 conditions if possible and make an error always
* release the lock.
*
* Volume groups are opened read-only unless flags contains READ_FOR_UPDATE.
*
* Checking for VG existence:
*
* FIXME: We want vg_read to attempt automatic recovery after acquiring a
* temporary write lock: if that fails, we bail out as usual, with failed &
* FAILED_INCONSISTENT. If it works, we are good to go. Code that's been in
* toollib just set lock_flags to LCK_VG_WRITE and called vg_read_internal with
* *consistent = 1.
*/
struct volume_group *vg_read(struct cmd_context *cmd, const char *vg_name,
const char *vgid, uint32_t flags)
{
uint64_t status = UINT64_C(0);
uint32_t lock_flags = LCK_VG_READ;
if (flags & READ_FOR_UPDATE) {
status |= EXPORTED_VG | LVM_WRITE;
lock_flags = LCK_VG_WRITE;
}
if (flags & READ_ALLOW_EXPORTED)
status &= ~EXPORTED_VG;
return _vg_lock_and_read(cmd, vg_name, vgid, lock_flags, status, flags);
}
/*
* A high-level volume group metadata reading function. Open a volume group for
* later update (this means the user code can change the metadata and later
* request the new metadata to be written and committed).
*/
struct volume_group *vg_read_for_update(struct cmd_context *cmd, const char *vg_name,
const char *vgid, uint32_t flags)
{
return vg_read(cmd, vg_name, vgid, flags | READ_FOR_UPDATE);
}
/*
* Test the validity of a VG handle returned by vg_read() or vg_read_for_update().
*/
uint32_t vg_read_error(struct volume_group *vg_handle)
{
if (!vg_handle)
return FAILED_ALLOCATION;
return vg_handle->read_status;
}
/*
* Lock a vgname and/or check for existence.
* Takes a WRITE lock on the vgname before scanning.
* If scanning fails or vgname found, release the lock.
* NOTE: If you find the return codes confusing, you might think of this
* function as similar to an open() call with O_CREAT and O_EXCL flags
* (open returns fail with -EEXIST if file already exists).
*
* Returns:
* FAILED_LOCKING - Cannot lock name
* FAILED_EXIST - VG name already exists - cannot reserve
* SUCCESS - VG name does not exist in system and WRITE lock held
*/
uint32_t vg_lock_newname(struct cmd_context *cmd, const char *vgname)
{
if (!lock_vol(cmd, vgname, LCK_VG_WRITE, NULL)) {
return FAILED_LOCKING;
}
/* Find the vgname in the cache */
/* If it's not there we must do full scan to be completely sure */
if (!lvmcache_fmt_from_vgname(cmd, vgname, NULL, 1)) {
lvmcache_label_scan(cmd, 0);
if (!lvmcache_fmt_from_vgname(cmd, vgname, NULL, 1)) {
/* Independent MDAs aren't supported under low memory */
if (!cmd->independent_metadata_areas && critical_section()) {
/*
* FIXME: Disallow calling this function if
* critical_section() is true.
*/
unlock_vg(cmd, vgname);
return FAILED_LOCKING;
}
lvmcache_label_scan(cmd, 2);
if (!lvmcache_fmt_from_vgname(cmd, vgname, NULL, 0)) {
/* vgname not found after scanning */
return SUCCESS;
}
}
}
/* Found vgname so cannot reserve. */
unlock_vg(cmd, vgname);
return FAILED_EXIST;
}
struct format_instance *alloc_fid(const struct format_type *fmt,
const struct format_instance_ctx *fic)
{
struct dm_pool *mem;
struct format_instance *fid;
if (!(mem = dm_pool_create("format_instance", 1024)))
return_NULL;
if (!(fid = dm_pool_zalloc(mem, sizeof(*fid)))) {
log_error("Couldn't allocate format_instance object.");
goto bad;
}
fid->ref_count = 1;
fid->mem = mem;
fid->type = fic->type;
fid->fmt = fmt;
dm_list_init(&fid->metadata_areas_in_use);
dm_list_init(&fid->metadata_areas_ignored);
return fid;
bad:
dm_pool_destroy(mem);
return NULL;
}
void pv_set_fid(struct physical_volume *pv,
struct format_instance *fid)
{
if (fid == pv->fid)
return;
if (fid)
fid->ref_count++;
if (pv->fid)
pv->fid->fmt->ops->destroy_instance(pv->fid);
pv->fid = fid;
}
void vg_set_fid(struct volume_group *vg,
struct format_instance *fid)
{
struct pv_list *pvl;
if (fid == vg->fid)
return;
if (fid)
fid->ref_count++;
dm_list_iterate_items(pvl, &vg->pvs)
pv_set_fid(pvl->pv, fid);
dm_list_iterate_items(pvl, &vg->removed_pvs)
pv_set_fid(pvl->pv, fid);
if (vg->fid)
vg->fid->fmt->ops->destroy_instance(vg->fid);
vg->fid = fid;
}
static int _convert_key_to_string(const char *key, size_t key_len,
unsigned sub_key, char *buf, size_t buf_len)
{
memcpy(buf, key, key_len);
buf += key_len;
buf_len -= key_len;
if ((dm_snprintf(buf, buf_len, "_%u", sub_key) == -1))
return_0;
return 1;
}
int fid_add_mda(struct format_instance *fid, struct metadata_area *mda,
const char *key, size_t key_len, const unsigned sub_key)
{
static char full_key[PATH_MAX];
dm_list_add(mda_is_ignored(mda) ? &fid->metadata_areas_ignored :
&fid->metadata_areas_in_use, &mda->list);
/* Return if the mda is not supposed to be indexed. */
if (!key)
return 1;
if (!fid->metadata_areas_index)
return_0;
/* Add metadata area to index. */
if (!_convert_key_to_string(key, key_len, sub_key,
full_key, sizeof(full_key)))
return_0;
if (!dm_hash_insert(fid->metadata_areas_index,
full_key, mda)) {
log_error("Failed to hash mda.");
return 0;
}
return 1;
}
int fid_add_mdas(struct format_instance *fid, struct dm_list *mdas,
const char *key, size_t key_len)
{
struct metadata_area *mda, *mda_new;
unsigned mda_index = 0;
dm_list_iterate_items(mda, mdas) {
mda_new = mda_copy(fid->mem, mda);
if (!mda_new)
return_0;
fid_remove_mda(fid, NULL, key, key_len, mda_index);
fid_add_mda(fid, mda_new, key, key_len, mda_index);
mda_index++;
}
return 1;
}
struct metadata_area *fid_get_mda_indexed(struct format_instance *fid,
const char *key, size_t key_len,
const unsigned sub_key)
{
static char full_key[PATH_MAX];
struct metadata_area *mda = NULL;
if (!fid->metadata_areas_index)
return_NULL;
if (!_convert_key_to_string(key, key_len, sub_key,
full_key, sizeof(full_key)))
return_NULL;
mda = (struct metadata_area *) dm_hash_lookup(fid->metadata_areas_index,
full_key);
return mda;
}
int fid_remove_mda(struct format_instance *fid, struct metadata_area *mda,
const char *key, size_t key_len, const unsigned sub_key)
{
static char full_key[PATH_MAX];
struct metadata_area *mda_indexed = NULL;
/* At least one of mda or key must be specified. */
if (!mda && !key)
return 1;
if (key) {
/*
* If both mda and key specified, check given mda
* with what we find using the index and return
* immediately if these two do not match.
*/
if (!(mda_indexed = fid_get_mda_indexed(fid, key, key_len, sub_key)) ||
(mda && mda != mda_indexed))
return 1;
mda = mda_indexed;
if (!_convert_key_to_string(key, key_len, sub_key,
full_key, sizeof(full_key)))
return_0;
dm_hash_remove(fid->metadata_areas_index, full_key);
}
dm_list_del(&mda->list);
return 1;
}
/*
* Copy constructor for a metadata_area.
*/
struct metadata_area *mda_copy(struct dm_pool *mem,
struct metadata_area *mda)
{
struct metadata_area *mda_new;
if (!(mda_new = dm_pool_alloc(mem, sizeof(*mda_new)))) {
log_error("metadata_area allocation failed");
return NULL;
}
memcpy(mda_new, mda, sizeof(*mda));
if (mda->ops->mda_metadata_locn_copy && mda->metadata_locn) {
mda_new->metadata_locn =
mda->ops->mda_metadata_locn_copy(mem, mda->metadata_locn);
if (!mda_new->metadata_locn) {
dm_pool_free(mem, mda_new);
return NULL;
}
}
dm_list_init(&mda_new->list);
return mda_new;
}
/*
* This function provides a way to answer the question on a format specific
* basis - does the format specfic context of these two metadata areas
* match?
*
* A metatdata_area is defined to be independent of the underlying context.
* This has the benefit that we can use the same abstraction to read disks
* (see _metadata_text_raw_ops) or files (see _metadata_text_file_ops).
* However, one downside is there is no format-independent way to determine
* whether a given metadata_area is attached to a specific device - in fact,
* it may not be attached to a device at all.
*
* Thus, LVM is structured such that an mda is not a member of struct
* physical_volume. The location of the mda depends on whether
* the PV is in a volume group. A PV not in a VG has an mda on the
* 'info->mda' list in lvmcache, while a PV in a VG has an mda on
* the vg->fid->metadata_areas_in_use list. For further details, see _vg_read(),
* and the sequence of creating the format_instance with fid->metadata_areas_in_use
* list, as well as the construction of the VG, with list of PVs (comes
* after the construction of the fid and list of mdas).
*/
unsigned mda_locns_match(struct metadata_area *mda1, struct metadata_area *mda2)
{
if (!mda1->ops->mda_locns_match || !mda2->ops->mda_locns_match ||
mda1->ops->mda_locns_match != mda2->ops->mda_locns_match)
return 0;
return mda1->ops->mda_locns_match(mda1, mda2);
}
struct device *mda_get_device(struct metadata_area *mda)
{
if (!mda->ops->mda_get_device)
return NULL;
return mda->ops->mda_get_device(mda);
}
unsigned mda_is_ignored(struct metadata_area *mda)
{
return (mda->status & MDA_IGNORED);
}
void mda_set_ignored(struct metadata_area *mda, unsigned mda_ignored)
{
void *locn = mda->metadata_locn;
unsigned old_mda_ignored = mda_is_ignored(mda);
if (mda_ignored && !old_mda_ignored)
mda->status |= MDA_IGNORED;
else if (!mda_ignored && old_mda_ignored)
mda->status &= ~MDA_IGNORED;
else
return; /* No change */
log_debug_metadata("%s ignored flag for mda %s at offset %" PRIu64 ".",
mda_ignored ? "Setting" : "Clearing",
mda->ops->mda_metadata_locn_name ? mda->ops->mda_metadata_locn_name(locn) : "",
mda->ops->mda_metadata_locn_offset ? mda->ops->mda_metadata_locn_offset(locn) : UINT64_C(0));
}
int mdas_empty_or_ignored(struct dm_list *mdas)
{
struct metadata_area *mda;
if (dm_list_empty(mdas))
return 1;
dm_list_iterate_items(mda, mdas) {
if (mda_is_ignored(mda))
return 1;
}
return 0;
}
int pv_change_metadataignore(struct physical_volume *pv, uint32_t mda_ignored)
{
const char *pv_name = pv_dev_name(pv);
if (mda_ignored && !pv_mda_used_count(pv)) {
log_error("Metadata areas on physical volume \"%s\" already "
"ignored.", pv_name);
return 0;
}
if (!mda_ignored && (pv_mda_used_count(pv) == pv_mda_count(pv))) {
log_error("Metadata areas on physical volume \"%s\" already "
"marked as in-use.", pv_name);
return 0;
}
if (!pv_mda_count(pv)) {
log_error("Physical volume \"%s\" has no metadata "
"areas.", pv_name);
return 0;
}
log_verbose("Marking metadata areas on physical volume \"%s\" "
"as %s.", pv_name, mda_ignored ? "ignored" : "in-use");
if (!pv_mda_set_ignored(pv, mda_ignored))
return_0;
/*
* Update vg_mda_copies based on the mdas in this PV.
* This is most likely what the user would expect - if they
* specify a specific PV to be ignored/un-ignored, they will
* most likely not want LVM to turn around and change the
* ignore / un-ignore value when it writes the VG to disk.
* This does not guarantee this PV's ignore bits will be
* preserved in future operations.
*/
if (!is_orphan(pv) &&
vg_mda_copies(pv->vg) != VGMETADATACOPIES_UNMANAGED) {
log_warn("WARNING: Changing preferred number of copies of VG %s "
"metadata from %"PRIu32" to %"PRIu32, pv_vg_name(pv),
vg_mda_copies(pv->vg), vg_mda_used_count(pv->vg));
vg_set_mda_copies(pv->vg, vg_mda_used_count(pv->vg));
}
return 1;
}
char *tags_format_and_copy(struct dm_pool *mem, const struct dm_list *tagsl)
{
struct dm_str_list *sl;
if (!dm_pool_begin_object(mem, 256)) {
log_error("dm_pool_begin_object failed");
return NULL;
}
dm_list_iterate_items(sl, tagsl) {
if (!dm_pool_grow_object(mem, sl->str, strlen(sl->str)) ||
(sl->list.n != tagsl && !dm_pool_grow_object(mem, ",", 1))) {
log_error("dm_pool_grow_object failed");
return NULL;
}
}
if (!dm_pool_grow_object(mem, "\0", 1)) {
log_error("dm_pool_grow_object failed");
return NULL;
}
return dm_pool_end_object(mem);
}
const struct logical_volume *lv_ondisk(const struct logical_volume *lv)
{
struct volume_group *vg;
struct lv_list *lvl;
if (!lv)
return NULL;
if (!lv->vg->vg_ondisk)
return lv;
vg = lv->vg->vg_ondisk;
if (!(lvl = find_lv_in_vg_by_lvid(vg, &lv->lvid))) {
log_error(INTERNAL_ERROR "LV %s (UUID %s) not found in ondisk metadata.",
display_lvname(lv), lv->lvid.s);
return NULL;
}
return lvl->lv;
}