1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-04 09:18:36 +03:00
lvm2/lib/metadata/raid_manip.c
Alasdair G Kergon 0300730cc9 pre-release
2015-05-15 23:19:29 +01:00

1982 lines
53 KiB
C

/*
* Copyright (C) 2011-2014 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "lib.h"
#include "archiver.h"
#include "metadata.h"
#include "toolcontext.h"
#include "segtype.h"
#include "display.h"
#include "activate.h"
#include "lv_alloc.h"
#include "lvm-string.h"
static int _lv_is_raid_with_tracking(const struct logical_volume *lv,
struct logical_volume **tracking)
{
uint32_t s;
const struct lv_segment *seg = first_seg(lv);
*tracking = NULL;
if (!(lv->status & RAID))
return 0;
for (s = 0; s < seg->area_count; s++)
if (lv_is_visible(seg_lv(seg, s)) &&
!(seg_lv(seg, s)->status & LVM_WRITE))
*tracking = seg_lv(seg, s);
return *tracking ? 1 : 0;
}
int lv_is_raid_with_tracking(const struct logical_volume *lv)
{
struct logical_volume *tracking;
return _lv_is_raid_with_tracking(lv, &tracking);
}
uint32_t lv_raid_image_count(const struct logical_volume *lv)
{
struct lv_segment *seg = first_seg(lv);
if (!seg_is_raid(seg))
return 1;
return seg->area_count;
}
static int _activate_sublv_preserving_excl(struct logical_volume *top_lv,
struct logical_volume *sub_lv)
{
struct cmd_context *cmd = top_lv->vg->cmd;
/* If top RAID was EX, use EX */
if (lv_is_active_exclusive_locally(top_lv)) {
if (!activate_lv_excl_local(cmd, sub_lv))
return_0;
} else {
if (!activate_lv(cmd, sub_lv))
return_0;
}
return 1;
}
/*
* _raid_in_sync
* @lv
*
* _raid_in_sync works for all types of RAID segtypes, as well
* as 'mirror' segtype. (This is because 'lv_raid_percent' is
* simply a wrapper around 'lv_mirror_percent'.
*
* Returns: 1 if in-sync, 0 otherwise.
*/
static int _raid_in_sync(struct logical_volume *lv)
{
dm_percent_t sync_percent;
if (!lv_raid_percent(lv, &sync_percent)) {
log_error("Unable to determine sync status of %s/%s.",
lv->vg->name, lv->name);
return 0;
}
if (sync_percent == DM_PERCENT_0) {
/*
* FIXME We repeat the status read here to workaround an
* unresolved kernel bug when we see 0 even though the
* the array is 100% in sync.
* https://bugzilla.redhat.com/1210637
*/
if (!lv_raid_percent(lv, &sync_percent)) {
log_error("Unable to determine sync status of %s/%s.",
lv->vg->name, lv->name);
return 0;
}
if (sync_percent == DM_PERCENT_100)
log_warn("WARNING: Sync status for %s is inconsistent.",
display_lvname(lv));
}
return (sync_percent == DM_PERCENT_100) ? 1 : 0;
}
/*
* _raid_remove_top_layer
* @lv
* @removal_list
*
* Remove top layer of RAID LV in order to convert to linear.
* This function makes no on-disk changes. The residual LVs
* returned in 'removal_list' must be freed by the caller.
*
* Returns: 1 on succes, 0 on failure
*/
static int _raid_remove_top_layer(struct logical_volume *lv,
struct dm_list *removal_list)
{
struct lv_list *lvl_array, *lvl;
struct lv_segment *seg = first_seg(lv);
if (!seg_is_mirrored(seg)) {
log_error(INTERNAL_ERROR
"Unable to remove RAID layer from segment type %s",
lvseg_name(seg));
return 0;
}
if (seg->area_count != 1) {
log_error(INTERNAL_ERROR
"Unable to remove RAID layer when there"
" is more than one sub-lv");
return 0;
}
if (!(lvl_array = dm_pool_alloc(lv->vg->vgmem, 2 * sizeof(*lvl))))
return_0;
/* Add last metadata area to removal_list */
lvl_array[0].lv = seg_metalv(seg, 0);
lv_set_visible(seg_metalv(seg, 0));
if (!remove_seg_from_segs_using_this_lv(seg_metalv(seg, 0), seg))
return_0;
seg_metatype(seg, 0) = AREA_UNASSIGNED;
dm_list_add(removal_list, &(lvl_array[0].list));
/* Remove RAID layer and add residual LV to removal_list*/
seg_lv(seg, 0)->status &= ~RAID_IMAGE;
lv_set_visible(seg_lv(seg, 0));
lvl_array[1].lv = seg_lv(seg, 0);
dm_list_add(removal_list, &(lvl_array[1].list));
if (!remove_layer_from_lv(lv, seg_lv(seg, 0)))
return_0;
lv->status &= ~(MIRRORED | RAID);
return 1;
}
/*
* _clear_lv
* @lv
*
* If LV is active:
* clear first block of device
* otherwise:
* activate, clear, deactivate
*
* Returns: 1 on success, 0 on failure
*/
static int _clear_lv(struct logical_volume *lv)
{
int was_active = lv_is_active_locally(lv);
if (test_mode())
return 1;
lv->status |= LV_TEMPORARY;
if (!was_active && !activate_lv_local(lv->vg->cmd, lv)) {
log_error("Failed to activate localy %s for clearing",
lv->name);
return 0;
}
lv->status &= ~LV_TEMPORARY;
log_verbose("Clearing metadata area of %s/%s",
lv->vg->name, lv->name);
/*
* Rather than wiping lv->size, we can simply
* wipe the first sector to remove the superblock of any previous
* RAID devices. It is much quicker.
*/
if (!wipe_lv(lv, (struct wipe_params) { .do_zero = 1, .zero_sectors = 1 })) {
log_error("Failed to zero %s", lv->name);
return 0;
}
if (!was_active && !deactivate_lv(lv->vg->cmd, lv)) {
log_error("Failed to deactivate %s", lv->name);
return 0;
}
return 1;
}
/* Makes on-disk metadata changes */
static int _clear_lvs(struct dm_list *lv_list)
{
struct lv_list *lvl;
struct volume_group *vg = NULL;
if (dm_list_empty(lv_list)) {
log_debug_metadata(INTERNAL_ERROR "Empty list of LVs given for clearing");
return 1;
}
dm_list_iterate_items(lvl, lv_list) {
if (!lv_is_visible(lvl->lv)) {
log_error(INTERNAL_ERROR
"LVs must be set visible before clearing");
return 0;
}
vg = lvl->lv->vg;
}
/*
* FIXME: only vg_[write|commit] if LVs are not already written
* as visible in the LVM metadata (which is never the case yet).
*/
if (!vg || !vg_write(vg) || !vg_commit(vg))
return_0;
dm_list_iterate_items(lvl, lv_list)
if (!_clear_lv(lvl->lv))
return 0;
return 1;
}
/*
* _shift_and_rename_image_components
* @seg: Top-level RAID segment
*
* Shift all higher indexed segment areas down to fill in gaps where
* there are 'AREA_UNASSIGNED' areas and rename data/metadata LVs so
* that their names match their new index. When finished, set
* seg->area_count to new reduced total.
*
* Returns: 1 on success, 0 on failure
*/
static int _shift_and_rename_image_components(struct lv_segment *seg)
{
int len;
char *shift_name;
uint32_t s, missing;
struct cmd_context *cmd = seg->lv->vg->cmd;
/*
* All LVs must be properly named for their index before
* shifting begins. (e.g. Index '0' must contain *_rimage_0 and
* *_rmeta_0. Index 'n' must contain *_rimage_n and *_rmeta_n.)
*/
if (!seg_is_raid(seg))
return_0;
if (seg->area_count > 10) {
/*
* FIXME: Handling more would mean I'd have
* to handle double digits
*/
log_error("Unable handle arrays with more than 10 devices");
return 0;
}
log_very_verbose("Shifting images in %s", seg->lv->name);
for (s = 0, missing = 0; s < seg->area_count; s++) {
if (seg_type(seg, s) == AREA_UNASSIGNED) {
if (seg_metatype(seg, s) != AREA_UNASSIGNED) {
log_error(INTERNAL_ERROR "Metadata segment area"
" #%d should be AREA_UNASSIGNED", s);
return 0;
}
missing++;
continue;
}
if (!missing)
continue;
log_very_verbose("Shifting %s and %s by %u",
seg_metalv(seg, s)->name,
seg_lv(seg, s)->name, missing);
/* Alter rmeta name */
shift_name = dm_pool_strdup(cmd->mem, seg_metalv(seg, s)->name);
if (!shift_name) {
log_error("Memory allocation failed.");
return 0;
}
len = strlen(shift_name) - 1;
shift_name[len] -= missing;
seg_metalv(seg, s)->name = shift_name;
/* Alter rimage name */
shift_name = dm_pool_strdup(cmd->mem, seg_lv(seg, s)->name);
if (!shift_name) {
log_error("Memory allocation failed.");
return 0;
}
len = strlen(shift_name) - 1;
shift_name[len] -= missing;
seg_lv(seg, s)->name = shift_name;
seg->areas[s - missing] = seg->areas[s];
seg->meta_areas[s - missing] = seg->meta_areas[s];
}
seg->area_count -= missing;
return 1;
}
/* Generate raid subvolume name and validate it */
static char *_generate_raid_name(struct logical_volume *lv,
const char *suffix, int count)
{
const char *format = (count >= 0) ? "%s_%s_%u" : "%s_%s";
size_t len = strlen(lv->name) + strlen(suffix) + ((count >= 0) ? 5 : 2);
char *name;
if (!(name = dm_pool_alloc(lv->vg->vgmem, len))) {
log_error("Failed to allocate new name.");
return NULL;
}
if (dm_snprintf(name, len, format, lv->name, suffix, count) < 0)
return_NULL;
if (!validate_name(name)) {
log_error("New logical volume name \"%s\" is not valid.", name);
return NULL;
}
if (find_lv_in_vg(lv->vg, name)) {
log_error("Logical volume %s already exists in volume group %s.",
name, lv->vg->name);
return NULL;
}
return name;
}
/*
* Create an LV of specified type. Set visible after creation.
* This function does not make metadata changes.
*/
static struct logical_volume *_alloc_image_component(struct logical_volume *lv,
const char *alt_base_name,
struct alloc_handle *ah, uint32_t first_area,
uint64_t type)
{
uint64_t status;
char img_name[NAME_LEN];
const char *type_suffix;
struct logical_volume *tmp_lv;
const struct segment_type *segtype;
if (!ah) {
log_error(INTERNAL_ERROR
"Stand-alone %s area allocation not implemented",
(type == RAID_META) ? "metadata" : "data");
return 0;
}
switch (type) {
case RAID_META:
type_suffix = "rmeta";
break;
case RAID_IMAGE:
type_suffix = "rimage";
break;
default:
log_error(INTERNAL_ERROR
"Bad type provided to _alloc_raid_component.");
return 0;
}
if (dm_snprintf(img_name, sizeof(img_name), "%s_%s_%%d",
(alt_base_name) ? : lv->name, type_suffix) < 0)
return_0;
status = LVM_READ | LVM_WRITE | LV_REBUILD | type;
if (!(tmp_lv = lv_create_empty(img_name, NULL, status, ALLOC_INHERIT, lv->vg))) {
log_error("Failed to allocate new raid component, %s.", img_name);
return 0;
}
if (!(segtype = get_segtype_from_string(lv->vg->cmd, "striped")))
return_0;
if (!lv_add_segment(ah, first_area, 1, tmp_lv, segtype, 0, status, 0)) {
log_error("Failed to add segment to LV, %s", img_name);
return 0;
}
lv_set_visible(tmp_lv);
return tmp_lv;
}
static int _alloc_image_components(struct logical_volume *lv,
struct dm_list *pvs, uint32_t count,
struct dm_list *new_meta_lvs,
struct dm_list *new_data_lvs)
{
uint32_t s;
uint32_t region_size;
uint32_t extents;
struct lv_segment *seg = first_seg(lv);
const struct segment_type *segtype;
struct alloc_handle *ah;
struct dm_list *parallel_areas;
struct lv_list *lvl_array;
if (!(lvl_array = dm_pool_alloc(lv->vg->vgmem,
sizeof(*lvl_array) * count * 2)))
return_0;
if (!(parallel_areas = build_parallel_areas_from_lv(lv, 0, 1)))
return_0;
if (seg_is_linear(seg))
region_size = get_default_region_size(lv->vg->cmd);
else
region_size = seg->region_size;
if (seg_is_raid(seg))
segtype = seg->segtype;
else if (!(segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_RAID1)))
return_0;
/*
* The number of extents is based on the RAID type. For RAID1,
* each of the rimages is the same size - 'le_count'. However
* for RAID 4/5/6, the stripes add together (NOT including the parity
* devices) to equal 'le_count'. Thus, when we are allocating
* individual devies, we must specify how large the individual device
* is along with the number we want ('count').
*/
extents = (segtype->parity_devs) ?
(lv->le_count / (seg->area_count - segtype->parity_devs)) :
lv->le_count;
if (!(ah = allocate_extents(lv->vg, NULL, segtype, 0, count, count,
region_size, extents, pvs,
lv->alloc, 0, parallel_areas)))
return_0;
for (s = 0; s < count; ++s) {
/*
* The allocation areas are grouped together. First
* come the rimage allocated areas, then come the metadata
* allocated areas. Thus, the metadata areas are pulled
* from 's + count'.
*/
if (!(lvl_array[s + count].lv =
_alloc_image_component(lv, NULL, ah, s + count, RAID_META))) {
alloc_destroy(ah);
return_0;
}
dm_list_add(new_meta_lvs, &(lvl_array[s + count].list));
if (!(lvl_array[s].lv =
_alloc_image_component(lv, NULL, ah, s, RAID_IMAGE))) {
alloc_destroy(ah);
return_0;
}
dm_list_add(new_data_lvs, &(lvl_array[s].list));
}
alloc_destroy(ah);
return 1;
}
/*
* _alloc_rmeta_for_lv
* @lv
*
* Allocate a RAID metadata device for the given LV (which is or will
* be the associated RAID data device). The new metadata device must
* be allocated from the same PV(s) as the data device.
*/
static int _alloc_rmeta_for_lv(struct logical_volume *data_lv,
struct logical_volume **meta_lv)
{
struct dm_list allocatable_pvs;
struct alloc_handle *ah;
struct lv_segment *seg = first_seg(data_lv);
char *p, base_name[NAME_LEN];
dm_list_init(&allocatable_pvs);
if (!seg_is_linear(seg)) {
log_error(INTERNAL_ERROR "Unable to allocate RAID metadata "
"area for non-linear LV, %s", data_lv->name);
return 0;
}
(void) dm_strncpy(base_name, data_lv->name, sizeof(base_name));
if ((p = strstr(base_name, "_mimage_")))
*p = '\0';
if (!get_pv_list_for_lv(data_lv->vg->cmd->mem,
data_lv, &allocatable_pvs)) {
log_error("Failed to build list of PVs for %s/%s",
data_lv->vg->name, data_lv->name);
return 0;
}
if (!(ah = allocate_extents(data_lv->vg, NULL, seg->segtype, 0, 1, 0,
seg->region_size,
1 /*RAID_METADATA_AREA_LEN*/,
&allocatable_pvs, data_lv->alloc, 0, NULL)))
return_0;
if (!(*meta_lv = _alloc_image_component(data_lv, base_name, ah, 0, RAID_META))) {
alloc_destroy(ah);
return_0;
}
alloc_destroy(ah);
return 1;
}
static int _raid_add_images(struct logical_volume *lv,
uint32_t new_count, struct dm_list *pvs)
{
int rebuild_flag_cleared = 0;
uint32_t s;
uint32_t old_count = lv_raid_image_count(lv);
uint32_t count = new_count - old_count;
uint64_t status_mask = -1;
struct lv_segment *seg = first_seg(lv);
struct dm_list meta_lvs, data_lvs;
struct lv_list *lvl;
struct lv_segment_area *new_areas;
if (lv->status & LV_NOTSYNCED) {
log_error("Can't add image to out-of-sync RAID LV:"
" use 'lvchange --resync' first.");
return 0;
}
if (!_raid_in_sync(lv)) {
log_error("Can't add image to RAID LV that"
" is still initializing.");
return 0;
}
if (!archive(lv->vg))
return_0;
dm_list_init(&meta_lvs); /* For image addition */
dm_list_init(&data_lvs); /* For image addition */
/*
* If the segtype is linear, then we must allocate a metadata
* LV to accompany it.
*/
if (seg_is_linear(seg)) {
/* A complete resync will be done, no need to mark each sub-lv */
status_mask = ~(LV_REBUILD);
if (!(lvl = dm_pool_alloc(lv->vg->vgmem, sizeof(*lvl)))) {
log_error("Memory allocation failed");
return 0;
}
if (!_alloc_rmeta_for_lv(lv, &lvl->lv))
return_0;
dm_list_add(&meta_lvs, &lvl->list);
} else if (!seg_is_raid(seg)) {
log_error("Unable to add RAID images to %s of segment type %s",
lv->name, lvseg_name(seg));
return 0;
}
if (!_alloc_image_components(lv, pvs, count, &meta_lvs, &data_lvs))
return_0;
/*
* If linear, we must correct data LV names. They are off-by-one
* because the linear volume hasn't taken its proper name of "_rimage_0"
* yet. This action must be done before '_clear_lvs' because it
* commits the LVM metadata before clearing the LVs.
*/
if (seg_is_linear(seg)) {
struct dm_list *l;
struct lv_list *lvl_tmp;
dm_list_iterate(l, &data_lvs) {
if (l == dm_list_last(&data_lvs)) {
lvl = dm_list_item(l, struct lv_list);
if (!(lvl->lv->name = _generate_raid_name(lv, "rimage", count)))
return_0;
continue;
}
lvl = dm_list_item(l, struct lv_list);
lvl_tmp = dm_list_item(l->n, struct lv_list);
lvl->lv->name = lvl_tmp->lv->name;
}
}
/* Metadata LVs must be cleared before being added to the array */
if (!_clear_lvs(&meta_lvs))
goto fail;
if (seg_is_linear(seg)) {
first_seg(lv)->status |= RAID_IMAGE;
if (!insert_layer_for_lv(lv->vg->cmd, lv,
RAID | LVM_READ | LVM_WRITE,
"_rimage_0"))
return_0;
lv->status |= RAID;
seg = first_seg(lv);
seg_lv(seg, 0)->status |= RAID_IMAGE | LVM_READ | LVM_WRITE;
seg->region_size = get_default_region_size(lv->vg->cmd);
/* MD's bitmap is limited to tracking 2^21 regions */
while (seg->region_size < (lv->size / (1 << 21))) {
seg->region_size *= 2;
log_very_verbose("Setting RAID1 region_size to %uS",
seg->region_size);
}
if (!(seg->segtype = get_segtype_from_string(lv->vg->cmd, SEG_TYPE_NAME_RAID1)))
return_0;
}
/*
FIXME: It would be proper to activate the new LVs here, instead of having
them activated by the suspend. However, this causes residual device nodes
to be left for these sub-lvs.
dm_list_iterate_items(lvl, &meta_lvs)
if (!do_correct_activate(lv, lvl->lv))
return_0;
dm_list_iterate_items(lvl, &data_lvs)
if (!do_correct_activate(lv, lvl->lv))
return_0;
*/
/* Expand areas array */
if (!(new_areas = dm_pool_zalloc(lv->vg->cmd->mem,
new_count * sizeof(*new_areas)))) {
log_error("Allocation of new areas failed.");
goto fail;
}
memcpy(new_areas, seg->areas, seg->area_count * sizeof(*seg->areas));
seg->areas = new_areas;
/* Expand meta_areas array */
if (!(new_areas = dm_pool_zalloc(lv->vg->cmd->mem,
new_count * sizeof(*new_areas)))) {
log_error("Allocation of new meta areas failed.");
goto fail;
}
if (seg->meta_areas)
memcpy(new_areas, seg->meta_areas,
seg->area_count * sizeof(*seg->meta_areas));
seg->meta_areas = new_areas;
seg->area_count = new_count;
/* Add extra meta area when converting from linear */
s = (old_count == 1) ? 0 : old_count;
/* Set segment areas for metadata sub_lvs */
dm_list_iterate_items(lvl, &meta_lvs) {
log_debug_metadata("Adding %s to %s",
lvl->lv->name, lv->name);
lvl->lv->status &= status_mask;
first_seg(lvl->lv)->status &= status_mask;
if (!set_lv_segment_area_lv(seg, s, lvl->lv, 0,
lvl->lv->status)) {
log_error("Failed to add %s to %s",
lvl->lv->name, lv->name);
goto fail;
}
s++;
}
s = old_count;
/* Set segment areas for data sub_lvs */
dm_list_iterate_items(lvl, &data_lvs) {
log_debug_metadata("Adding %s to %s",
lvl->lv->name, lv->name);
lvl->lv->status &= status_mask;
first_seg(lvl->lv)->status &= status_mask;
if (!set_lv_segment_area_lv(seg, s, lvl->lv, 0,
lvl->lv->status)) {
log_error("Failed to add %s to %s",
lvl->lv->name, lv->name);
goto fail;
}
s++;
}
/*
* FIXME: Failure handling during these points is harder.
*/
dm_list_iterate_items(lvl, &meta_lvs)
lv_set_hidden(lvl->lv);
dm_list_iterate_items(lvl, &data_lvs)
lv_set_hidden(lvl->lv);
if (!lv_update_and_reload_origin(lv))
return_0;
/*
* Now that the 'REBUILD' has made its way to the kernel, we must
* remove the flag so that the individual devices are not rebuilt
* upon every activation.
*/
seg = first_seg(lv);
for (s = 0; s < seg->area_count; s++) {
if ((seg_lv(seg, s)->status & LV_REBUILD) ||
(seg_metalv(seg, s)->status & LV_REBUILD)) {
seg_metalv(seg, s)->status &= ~LV_REBUILD;
seg_lv(seg, s)->status &= ~LV_REBUILD;
rebuild_flag_cleared = 1;
}
}
if (rebuild_flag_cleared) {
if (!vg_write(lv->vg) || !vg_commit(lv->vg)) {
log_error("Failed to clear REBUILD flag for %s/%s components",
lv->vg->name, lv->name);
return 0;
}
backup(lv->vg);
}
return 1;
fail:
/* Cleanly remove newly-allocated LVs that failed insertion attempt */
dm_list_iterate_items(lvl, &meta_lvs)
if (!lv_remove(lvl->lv))
return_0;
dm_list_iterate_items(lvl, &data_lvs)
if (!lv_remove(lvl->lv))
return_0;
return 0;
}
/*
* _extract_image_components
* @seg
* @idx: The index in the areas array to remove
* @extracted_rmeta: The displaced metadata LV
* @extracted_rimage: The displaced data LV
*
* This function extracts the image components - setting the respective
* 'extracted' pointers. It appends '_extracted' to the LVs' names, so that
* there are not future conflicts. It does /not/ commit the results.
* (IOW, erroring-out requires no unwinding of operations.)
*
* This function does /not/ attempt to:
* 1) shift the 'areas' or 'meta_areas' arrays.
* The '[meta_]areas' are left as AREA_UNASSIGNED.
* 2) Adjust the seg->area_count
* 3) Name the extracted LVs appropriately (appends '_extracted' to names)
* These actions must be performed by the caller.
*
* Returns: 1 on success, 0 on failure
*/
static int _extract_image_components(struct lv_segment *seg, uint32_t idx,
struct logical_volume **extracted_rmeta,
struct logical_volume **extracted_rimage)
{
struct logical_volume *data_lv = seg_lv(seg, idx);
struct logical_volume *meta_lv = seg_metalv(seg, idx);
log_very_verbose("Extracting image components %s and %s from %s",
data_lv->name, meta_lv->name, seg->lv->name);
data_lv->status &= ~RAID_IMAGE;
meta_lv->status &= ~RAID_META;
lv_set_visible(data_lv);
lv_set_visible(meta_lv);
/* release removes data and meta areas */
if (!remove_seg_from_segs_using_this_lv(data_lv, seg) ||
!remove_seg_from_segs_using_this_lv(meta_lv, seg))
return_0;
seg_type(seg, idx) = AREA_UNASSIGNED;
seg_metatype(seg, idx) = AREA_UNASSIGNED;
if (!(data_lv->name = _generate_raid_name(data_lv, "_extracted", -1)))
return_0;
if (!(meta_lv->name = _generate_raid_name(meta_lv, "_extracted", -1)))
return_0;
*extracted_rmeta = meta_lv;
*extracted_rimage = data_lv;
return 1;
}
/*
* _raid_extract_images
* @lv
* @new_count: The absolute count of images (e.g. '2' for a 2-way mirror)
* @target_pvs: The list of PVs that are candidates for removal
* @shift: If set, use _shift_and_rename_image_components().
* Otherwise, leave the [meta_]areas as AREA_UNASSIGNED and
* seg->area_count unchanged.
* @extracted_[meta|data]_lvs: The LVs removed from the array. If 'shift'
* is set, then there will likely be name conflicts.
*
* This function extracts _both_ portions of the indexed image. It
* does /not/ commit the results. (IOW, erroring-out requires no unwinding
* of operations.)
*
* Returns: 1 on success, 0 on failure
*/
static int _raid_extract_images(struct logical_volume *lv, uint32_t new_count,
struct dm_list *target_pvs, int shift,
struct dm_list *extracted_meta_lvs,
struct dm_list *extracted_data_lvs)
{
int ss, s, extract, lvl_idx = 0;
struct lv_list *lvl_array;
struct lv_segment *seg = first_seg(lv);
struct logical_volume *rmeta_lv, *rimage_lv;
struct segment_type *error_segtype;
extract = seg->area_count - new_count;
log_verbose("Extracting %u %s from %s/%s", extract,
(extract > 1) ? "images" : "image",
lv->vg->name, lv->name);
if (dm_list_size(target_pvs) < extract) {
log_error("Unable to remove %d images: Only %d device%s given.",
extract, dm_list_size(target_pvs),
(dm_list_size(target_pvs) == 1) ? "" : "s");
return 0;
}
if (!(lvl_array = dm_pool_alloc(lv->vg->vgmem,
sizeof(*lvl_array) * extract * 2)))
return_0;
if (!(error_segtype = get_segtype_from_string(lv->vg->cmd, "error")))
return_0;
/*
* We make two passes over the devices.
* - The first pass we look for error LVs
* - The second pass we look for PVs that match target_pvs
*/
for (ss = (seg->area_count * 2) - 1; (ss >= 0) && extract; ss--) {
s = ss % seg->area_count;
if (ss / seg->area_count) {
/* Conditions for first pass */
if ((first_seg(seg_lv(seg, s))->segtype != error_segtype) &&
(first_seg(seg_metalv(seg, s))->segtype != error_segtype))
continue;
if (!dm_list_empty(target_pvs) &&
(target_pvs != &lv->vg->pvs)) {
/*
* User has supplied a list of PVs, but we
* cannot honor that list because error LVs
* must come first.
*/
log_error("%s has components with error targets"
" that must be removed first: %s.",
display_lvname(lv),
display_lvname(seg_lv(seg, s)));
log_error("Try removing the PV list and rerun"
" the command.");
return 0;
}
log_debug("LVs with error segments to be removed: %s %s",
display_lvname(seg_metalv(seg, s)),
display_lvname(seg_lv(seg, s)));
} else {
/* Conditions for second pass */
if (!target_pvs || !lv_is_on_pvs(seg_lv(seg, s), target_pvs) ||
!lv_is_on_pvs(seg_metalv(seg, s), target_pvs))
continue;
if (!_raid_in_sync(lv) &&
(!seg_is_mirrored(seg) || (s == 0))) {
log_error("Unable to extract %sRAID image"
" while RAID array is not in-sync",
seg_is_mirrored(seg) ? "primary " : "");
return 0;
}
}
if (!_extract_image_components(seg, s, &rmeta_lv, &rimage_lv)) {
log_error("Failed to extract %s from %s",
seg_lv(seg, s)->name, lv->name);
return 0;
}
if (shift && !_shift_and_rename_image_components(seg)) {
log_error("Failed to shift and rename image components");
return 0;
}
lvl_array[lvl_idx].lv = rmeta_lv;
lvl_array[lvl_idx + 1].lv = rimage_lv;
dm_list_add(extracted_meta_lvs, &(lvl_array[lvl_idx++].list));
dm_list_add(extracted_data_lvs, &(lvl_array[lvl_idx++].list));
extract--;
}
if (extract) {
log_error("Unable to extract enough images to satisfy request");
return 0;
}
return 1;
}
static int _raid_remove_images(struct logical_volume *lv,
uint32_t new_count, struct dm_list *pvs)
{
struct dm_list removal_list;
struct lv_list *lvl;
if (!archive(lv->vg))
return_0;
dm_list_init(&removal_list);
if (!_raid_extract_images(lv, new_count, pvs, 1,
&removal_list, &removal_list)) {
log_error("Failed to extract images from %s/%s",
lv->vg->name, lv->name);
return 0;
}
/* Convert to linear? */
if (new_count == 1) {
if (!_raid_remove_top_layer(lv, &removal_list)) {
log_error("Failed to remove RAID layer"
" after linear conversion");
return 0;
}
lv->status &= ~(LV_NOTSYNCED | LV_WRITEMOSTLY);
first_seg(lv)->writebehind = 0;
}
if (!vg_write(lv->vg)) {
log_error("Failed to write changes to %s in %s",
lv->name, lv->vg->name);
return 0;
}
if (!suspend_lv(lv->vg->cmd, lv)) {
log_error("Failed to suspend %s/%s before committing changes",
lv->vg->name, lv->name);
vg_revert(lv->vg);
return 0;
}
if (!vg_commit(lv->vg)) {
log_error("Failed to commit changes to %s in %s",
lv->name, lv->vg->name);
return 0;
}
/*
* We activate the extracted sub-LVs first so they are renamed
* and won't conflict with the remaining (possibly shifted)
* sub-LVs.
*/
dm_list_iterate_items(lvl, &removal_list) {
if (!activate_lv_excl_local(lv->vg->cmd, lvl->lv)) {
log_error("Failed to resume extracted LVs");
return 0;
}
}
if (!resume_lv(lv->vg->cmd, lv)) {
log_error("Failed to resume %s/%s after committing changes",
lv->vg->name, lv->name);
return 0;
}
/*
* Eliminate the extracted LVs
*/
sync_local_dev_names(lv->vg->cmd);
if (!dm_list_empty(&removal_list)) {
dm_list_iterate_items(lvl, &removal_list) {
if (!deactivate_lv(lv->vg->cmd, lvl->lv))
return_0;
if (!lv_remove(lvl->lv))
return_0;
}
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
return_0;
}
backup(lv->vg);
return 1;
}
/*
* lv_raid_change_image_count
* @lv
* @new_count: The absolute count of images (e.g. '2' for a 2-way mirror)
* @pvs: The list of PVs that are candidates for removal (or empty list)
*
* RAID arrays have 'images' which are composed of two parts, they are:
* - 'rimage': The data/parity holding portion
* - 'rmeta' : The metadata holding portion (i.e. superblock/bitmap area)
* This function adds or removes _both_ portions of the image and commits
* the results.
*
* Returns: 1 on success, 0 on failure
*/
int lv_raid_change_image_count(struct logical_volume *lv,
uint32_t new_count, struct dm_list *pvs)
{
uint32_t old_count = lv_raid_image_count(lv);
if (old_count == new_count) {
log_warn("%s/%s already has image count of %d.",
lv->vg->name, lv->name, new_count);
return 1;
}
/*
* LV must be either in-active or exclusively active
*/
if (lv_is_active(lv_lock_holder(lv)) && vg_is_clustered(lv->vg) &&
!lv_is_active_exclusive_locally(lv_lock_holder(lv))) {
log_error("%s/%s must be active exclusive locally to"
" perform this operation.", lv->vg->name, lv->name);
return 0;
}
if (old_count > new_count)
return _raid_remove_images(lv, new_count, pvs);
return _raid_add_images(lv, new_count, pvs);
}
int lv_raid_split(struct logical_volume *lv, const char *split_name,
uint32_t new_count, struct dm_list *splittable_pvs)
{
struct lv_list *lvl;
struct dm_list removal_list, data_list;
struct cmd_context *cmd = lv->vg->cmd;
uint32_t old_count = lv_raid_image_count(lv);
struct logical_volume *tracking;
struct dm_list tracking_pvs;
dm_list_init(&removal_list);
dm_list_init(&data_list);
if ((old_count - new_count) != 1) {
log_error("Unable to split more than one image from %s/%s",
lv->vg->name, lv->name);
return 0;
}
if (!seg_is_mirrored(first_seg(lv)) ||
!strcmp(first_seg(lv)->segtype->name, SEG_TYPE_NAME_RAID10)) {
log_error("Unable to split logical volume of segment type, %s",
lvseg_name(first_seg(lv)));
return 0;
}
if (find_lv_in_vg(lv->vg, split_name)) {
log_error("Logical Volume \"%s\" already exists in %s",
split_name, lv->vg->name);
return 0;
}
if (!_raid_in_sync(lv)) {
log_error("Unable to split %s/%s while it is not in-sync.",
lv->vg->name, lv->name);
return 0;
}
/*
* We only allow a split while there is tracking if it is to
* complete the split of the tracking sub-LV
*/
if (_lv_is_raid_with_tracking(lv, &tracking)) {
if (!lv_is_on_pvs(tracking, splittable_pvs)) {
log_error("Unable to split additional image from %s "
"while tracking changes for %s",
lv->name, tracking->name);
return 0;
}
/* Ensure we only split the tracking image */
dm_list_init(&tracking_pvs);
splittable_pvs = &tracking_pvs;
if (!get_pv_list_for_lv(tracking->vg->cmd->mem,
tracking, splittable_pvs))
return_0;
}
if (!_raid_extract_images(lv, new_count, splittable_pvs, 1,
&removal_list, &data_list)) {
log_error("Failed to extract images from %s/%s",
lv->vg->name, lv->name);
return 0;
}
/* Convert to linear? */
if ((new_count == 1) && !_raid_remove_top_layer(lv, &removal_list)) {
log_error("Failed to remove RAID layer after linear conversion");
return 0;
}
/* Get first item */
dm_list_iterate_items(lvl, &data_list)
break;
lvl->lv->name = split_name;
if (!vg_write(lv->vg)) {
log_error("Failed to write changes to %s in %s",
lv->name, lv->vg->name);
return 0;
}
if (!suspend_lv(cmd, lv_lock_holder(lv))) {
log_error("Failed to suspend %s/%s before committing changes",
lv->vg->name, lv->name);
vg_revert(lv->vg);
return 0;
}
if (!vg_commit(lv->vg)) {
log_error("Failed to commit changes to %s in %s",
lv->name, lv->vg->name);
return 0;
}
/*
* First activate the newly split LV and LVs on the removal list.
* This is necessary so that there are no name collisions due to
* the original RAID LV having possibly had sub-LVs that have been
* shifted and renamed.
*/
if (!activate_lv_excl_local(cmd, lvl->lv))
return_0;
dm_list_iterate_items(lvl, &removal_list)
if (!activate_lv_excl_local(cmd, lvl->lv))
return_0;
if (!resume_lv(cmd, lv_lock_holder(lv))) {
log_error("Failed to resume %s/%s after committing changes",
lv->vg->name, lv->name);
return 0;
}
/*
* Since newly split LV is typically already active - we need to call
* suspend() and resume() to also rename it.
*
* TODO: activate should recognize it and avoid these 2 calls
*/
/*
* Eliminate the residual LVs
*/
dm_list_iterate_items(lvl, &removal_list) {
if (!deactivate_lv(cmd, lvl->lv))
return_0;
if (!lv_remove(lvl->lv))
return_0;
}
if (!vg_write(lv->vg) || !vg_commit(lv->vg))
return_0;
backup(lv->vg);
return 1;
}
/*
* lv_raid_split_and_track
* @lv
* @splittable_pvs
*
* Only allows a single image to be split while tracking. The image
* never actually leaves the mirror. It is simply made visible. This
* action triggers two things: 1) users are able to access the (data) image
* and 2) lower layers replace images marked with a visible flag with
* error targets.
*
* Returns: 1 on success, 0 on error
*/
int lv_raid_split_and_track(struct logical_volume *lv,
struct dm_list *splittable_pvs)
{
int s;
struct lv_segment *seg = first_seg(lv);
if (!seg_is_mirrored(seg)) {
log_error("Unable to split images from non-mirrored RAID");
return 0;
}
if (!_raid_in_sync(lv)) {
log_error("Unable to split image from %s/%s while not in-sync",
lv->vg->name, lv->name);
return 0;
}
/* Cannot track two split images at once */
if (lv_is_raid_with_tracking(lv)) {
log_error("Cannot track more than one split image at a time");
return 0;
}
for (s = seg->area_count - 1; s >= 0; --s) {
if (!lv_is_on_pvs(seg_lv(seg, s), splittable_pvs))
continue;
lv_set_visible(seg_lv(seg, s));
seg_lv(seg, s)->status &= ~LVM_WRITE;
break;
}
if (s >= (int) seg->area_count) {
log_error("Unable to find image to satisfy request");
return 0;
}
if (!lv_update_and_reload(lv))
return_0;
log_print_unless_silent("%s split from %s for read-only purposes.",
seg_lv(seg, s)->name, lv->name);
/* Activate the split (and tracking) LV */
if (!_activate_sublv_preserving_excl(lv, seg_lv(seg, s)))
return_0;
log_print_unless_silent("Use 'lvconvert --merge %s/%s' to merge back into %s",
lv->vg->name, seg_lv(seg, s)->name, lv->name);
return 1;
}
int lv_raid_merge(struct logical_volume *image_lv)
{
uint32_t s;
char *p, *lv_name;
struct lv_list *lvl;
struct logical_volume *lv;
struct logical_volume *meta_lv = NULL;
struct lv_segment *seg;
struct volume_group *vg = image_lv->vg;
if (image_lv->status & LVM_WRITE) {
log_error("%s is not read-only - refusing to merge.",
display_lvname(image_lv));
return 0;
}
if (!(lv_name = dm_pool_strdup(vg->vgmem, image_lv->name)))
return_0;
if (!(p = strstr(lv_name, "_rimage_"))) {
log_error("Unable to merge non-mirror image %s.",
display_lvname(image_lv));
return 0;
}
*p = '\0'; /* lv_name is now that of top-level RAID */
if (!(lvl = find_lv_in_vg(vg, lv_name))) {
log_error("Unable to find containing RAID array for %s.",
display_lvname(image_lv));
return 0;
}
lv = lvl->lv;
seg = first_seg(lv);
for (s = 0; s < seg->area_count; ++s)
if (seg_lv(seg, s) == image_lv)
meta_lv = seg_metalv(seg, s);
if (!meta_lv) {
log_error("Failed to find meta for %s in RAID array %s.",
display_lvname(image_lv),
display_lvname(lv));
return 0;
}
if (!deactivate_lv(vg->cmd, meta_lv)) {
log_error("Failed to deactivate %s before merging.",
display_lvname(meta_lv));
return 0;
}
if (!deactivate_lv(vg->cmd, image_lv)) {
log_error("Failed to deactivate %s before merging.",
display_lvname(image_lv));
return 0;
}
lv_set_hidden(image_lv);
image_lv->status |= (lv->status & LVM_WRITE);
image_lv->status |= RAID_IMAGE;
if (!lv_update_and_reload(lv))
return_0;
log_print_unless_silent("%s/%s successfully merged back into %s/%s",
vg->name, image_lv->name, vg->name, lv->name);
return 1;
}
static int _convert_mirror_to_raid1(struct logical_volume *lv,
const struct segment_type *new_segtype)
{
uint32_t s;
struct lv_segment *seg = first_seg(lv);
struct lv_list lvl_array[seg->area_count], *lvl;
struct dm_list meta_lvs;
struct lv_segment_area *meta_areas;
char *new_name;
dm_list_init(&meta_lvs);
if (!_raid_in_sync(lv)) {
log_error("Unable to convert %s/%s while it is not in-sync",
lv->vg->name, lv->name);
return 0;
}
if (!(meta_areas = dm_pool_zalloc(lv->vg->vgmem,
lv_mirror_count(lv) * sizeof(*meta_areas)))) {
log_error("Failed to allocate meta areas memory.");
return 0;
}
if (!archive(lv->vg))
return_0;
for (s = 0; s < seg->area_count; s++) {
log_debug_metadata("Allocating new metadata LV for %s",
seg_lv(seg, s)->name);
if (!_alloc_rmeta_for_lv(seg_lv(seg, s), &(lvl_array[s].lv))) {
log_error("Failed to allocate metadata LV for %s in %s",
seg_lv(seg, s)->name, lv->name);
return 0;
}
dm_list_add(&meta_lvs, &(lvl_array[s].list));
}
log_debug_metadata("Clearing newly allocated metadata LVs");
if (!_clear_lvs(&meta_lvs)) {
log_error("Failed to initialize metadata LVs");
return 0;
}
if (seg->log_lv) {
log_debug_metadata("Removing mirror log, %s", seg->log_lv->name);
if (!remove_mirror_log(lv->vg->cmd, lv, NULL, 0)) {
log_error("Failed to remove mirror log");
return 0;
}
}
seg->meta_areas = meta_areas;
s = 0;
dm_list_iterate_items(lvl, &meta_lvs) {
log_debug_metadata("Adding %s to %s", lvl->lv->name, lv->name);
/* Images are known to be in-sync */
lvl->lv->status &= ~LV_REBUILD;
first_seg(lvl->lv)->status &= ~LV_REBUILD;
lv_set_hidden(lvl->lv);
if (!set_lv_segment_area_lv(seg, s, lvl->lv, 0,
lvl->lv->status)) {
log_error("Failed to add %s to %s",
lvl->lv->name, lv->name);
return 0;
}
s++;
}
for (s = 0; s < seg->area_count; ++s) {
if (!(new_name = _generate_raid_name(lv, "rimage", s)))
return_0;
log_debug_metadata("Renaming %s to %s", seg_lv(seg, s)->name, new_name);
seg_lv(seg, s)->name = new_name;
seg_lv(seg, s)->status &= ~MIRROR_IMAGE;
seg_lv(seg, s)->status |= RAID_IMAGE;
}
init_mirror_in_sync(1);
log_debug_metadata("Setting new segtype for %s", lv->name);
seg->segtype = new_segtype;
lv->status &= ~MIRROR;
lv->status &= ~MIRRORED;
lv->status |= RAID;
seg->status |= RAID;
if (!lv_update_and_reload(lv))
return_0;
return 1;
}
/*
* lv_raid_reshape
* @lv
* @new_segtype
*
* Convert an LV from one RAID type (or 'mirror' segtype) to another.
*
* Returns: 1 on success, 0 on failure
*/
int lv_raid_reshape(struct logical_volume *lv,
const struct segment_type *new_segtype)
{
struct lv_segment *seg = first_seg(lv);
if (!new_segtype) {
log_error(INTERNAL_ERROR "New segtype not specified");
return 0;
}
if (vg_is_clustered(lv->vg) && !lv_is_active_exclusive_locally(lv)) {
log_error("%s/%s must be active exclusive locally to"
" perform this operation.", lv->vg->name, lv->name);
return 0;
}
if (!strcmp(seg->segtype->name, "mirror") &&
(!strcmp(new_segtype->name, SEG_TYPE_NAME_RAID1)))
return _convert_mirror_to_raid1(lv, new_segtype);
log_error("Converting the segment type for %s/%s from %s to %s"
" is not yet supported.", lv->vg->name, lv->name,
lvseg_name(seg), new_segtype->name);
return 0;
}
static int _remove_partial_multi_segment_image(struct logical_volume *lv,
struct dm_list *remove_pvs)
{
uint32_t s, extents_needed;
struct lv_segment *rm_seg, *raid_seg = first_seg(lv);
struct logical_volume *rm_image = NULL;
struct physical_volume *pv;
if (!(lv->status & PARTIAL_LV))
return_0;
for (s = 0; s < raid_seg->area_count; s++) {
extents_needed = 0;
if ((seg_lv(raid_seg, s)->status & PARTIAL_LV) &&
lv_is_on_pvs(seg_lv(raid_seg, s), remove_pvs) &&
(dm_list_size(&(seg_lv(raid_seg, s)->segments)) > 1)) {
rm_image = seg_lv(raid_seg, s);
/* First, how many damaged extents are there */
if (seg_metalv(raid_seg, s)->status & PARTIAL_LV)
extents_needed += seg_metalv(raid_seg, s)->le_count;
dm_list_iterate_items(rm_seg, &rm_image->segments) {
/*
* segment areas are for stripe, mirror, raid,
* etc. We only need to check the first area
* if we are dealing with RAID image LVs.
*/
if (seg_type(rm_seg, 0) != AREA_PV)
continue;
pv = seg_pv(rm_seg, 0);
if (pv->status & MISSING_PV)
extents_needed += rm_seg->len;
}
log_debug("%u extents needed to repair %s",
extents_needed, rm_image->name);
/* Second, do the other PVs have the space */
dm_list_iterate_items(rm_seg, &rm_image->segments) {
if (seg_type(rm_seg, 0) != AREA_PV)
continue;
pv = seg_pv(rm_seg, 0);
if (pv->status & MISSING_PV)
continue;
if ((pv->pe_count - pv->pe_alloc_count) >
extents_needed) {
log_debug("%s has enough space for %s",
pv_dev_name(pv),
rm_image->name);
goto has_enough_space;
}
log_debug("Not enough space on %s for %s",
pv_dev_name(pv), rm_image->name);
}
}
}
/*
* This is likely to be the normal case - single
* segment images.
*/
return_0;
has_enough_space:
/*
* Now we have a multi-segment, partial image that has enough
* space on just one of its PVs for the entire image to be
* replaced. So, we replace the image's space with an error
* target so that the allocator can find that space (along with
* the remaining free space) in order to allocate the image
* anew.
*/
if (!replace_lv_with_error_segment(rm_image))
return_0;
return 1;
}
static int _avoid_pvs_of_lv(struct logical_volume *lv, void *data)
{
struct dm_list *allocate_pvs = (struct dm_list *) data;
struct pv_list *pvl;
dm_list_iterate_items(pvl, allocate_pvs)
if (!(lv->status & PARTIAL_LV) &&
lv_is_on_pv(lv, pvl->pv))
pvl->pv->status |= PV_ALLOCATION_PROHIBITED;
return 1;
}
/*
* Prevent any PVs holding other image components of @lv from being used for allocation
* by setting the internal PV_ALLOCATION_PROHIBITED flag to use it to avoid generating
* pv maps for those PVs.
*/
static int _avoid_pvs_with_other_images_of_lv(struct logical_volume *lv, struct dm_list *allocate_pvs)
{
return for_each_sub_lv(lv, _avoid_pvs_of_lv, allocate_pvs);
}
/*
* lv_raid_replace
* @lv
* @remove_pvs
* @allocate_pvs
*
* Replace the specified PVs.
*/
int lv_raid_replace(struct logical_volume *lv,
struct dm_list *remove_pvs,
struct dm_list *allocate_pvs)
{
int partial_segment_removed = 0;
uint32_t s, sd, match_count = 0;
struct dm_list old_lvs;
struct dm_list new_meta_lvs, new_data_lvs;
struct lv_segment *raid_seg = first_seg(lv);
struct lv_list *lvl;
char *tmp_names[raid_seg->area_count * 2];
dm_list_init(&old_lvs);
dm_list_init(&new_meta_lvs);
dm_list_init(&new_data_lvs);
if (lv->status & PARTIAL_LV)
lv->vg->cmd->partial_activation = 1;
if (!lv_is_active_exclusive_locally(lv_lock_holder(lv))) {
log_error("%s/%s must be active %sto perform this operation.",
lv->vg->name, lv->name,
vg_is_clustered(lv->vg) ? "exclusive locally " : "");
return 0;
}
if (!mirror_in_sync() && !_raid_in_sync(lv)) {
log_error("Unable to replace devices in %s/%s while it is"
" not in-sync.", lv->vg->name, lv->name);
return 0;
}
if (!archive(lv->vg))
return_0;
/*
* How many sub-LVs are being removed?
*/
for (s = 0; s < raid_seg->area_count; s++) {
if ((seg_type(raid_seg, s) == AREA_UNASSIGNED) ||
(seg_metatype(raid_seg, s) == AREA_UNASSIGNED)) {
log_error("Unable to replace RAID images while the "
"array has unassigned areas");
return 0;
}
if (lv_is_virtual(seg_lv(raid_seg, s)) ||
lv_is_virtual(seg_metalv(raid_seg, s)) ||
lv_is_on_pvs(seg_lv(raid_seg, s), remove_pvs) ||
lv_is_on_pvs(seg_metalv(raid_seg, s), remove_pvs))
match_count++;
}
if (!match_count) {
log_verbose("%s/%s does not contain devices specified"
" for replacement", lv->vg->name, lv->name);
return 1;
} else if (match_count == raid_seg->area_count) {
log_error("Unable to remove all PVs from %s/%s at once.",
lv->vg->name, lv->name);
return 0;
} else if (raid_seg->segtype->parity_devs &&
(match_count > raid_seg->segtype->parity_devs)) {
log_error("Unable to replace more than %u PVs from (%s) %s/%s",
raid_seg->segtype->parity_devs,
lvseg_name(raid_seg),
lv->vg->name, lv->name);
return 0;
} else if (!strcmp(raid_seg->segtype->name, SEG_TYPE_NAME_RAID10)) {
uint32_t i, rebuilds_per_group = 0;
/* FIXME: We only support 2-way mirrors in RAID10 currently */
uint32_t copies = 2;
for (i = 0; i < raid_seg->area_count * copies; i++) {
s = i % raid_seg->area_count;
if (!(i % copies))
rebuilds_per_group = 0;
if (lv_is_on_pvs(seg_lv(raid_seg, s), remove_pvs) ||
lv_is_on_pvs(seg_metalv(raid_seg, s), remove_pvs) ||
lv_is_virtual(seg_lv(raid_seg, s)) ||
lv_is_virtual(seg_metalv(raid_seg, s)))
rebuilds_per_group++;
if (rebuilds_per_group >= copies) {
log_error("Unable to replace all the devices "
"in a RAID10 mirror group.");
return 0;
}
}
}
/* Prevent any PVs holding image components from being used for allocation */
if (!_avoid_pvs_with_other_images_of_lv(lv, allocate_pvs)) {
log_error("Failed to prevent PVs holding image components "
"from being used for allocation.");
return 0;
}
/*
* Allocate the new image components first
* - This makes it easy to avoid all currently used devs
* - We can immediately tell if there is enough space
*
* - We need to change the LV names when we insert them.
*/
try_again:
if (!_alloc_image_components(lv, allocate_pvs, match_count,
&new_meta_lvs, &new_data_lvs)) {
if (!(lv->status & PARTIAL_LV)) {
log_error("LV %s in not partial.", display_lvname(lv));
return 0;
}
/* This is a repair, so try to do better than all-or-nothing */
match_count--;
if (match_count > 0) {
log_error("Failed to replace %u devices."
" Attempting to replace %u instead.",
match_count, match_count+1);
/*
* Since we are replacing some but not all of the bad
* devices, we must set partial_activation
*/
lv->vg->cmd->partial_activation = 1;
goto try_again;
} else if (!match_count && !partial_segment_removed) {
/*
* We are down to the last straw. We can only hope
* that a failed PV is just one of several PVs in
* the image; and if we extract the image, there may
* be enough room on the image's other PVs for a
* reallocation of the image.
*/
if (!_remove_partial_multi_segment_image(lv, remove_pvs))
return_0;
match_count = 1;
partial_segment_removed = 1;
lv->vg->cmd->partial_activation = 1;
goto try_again;
}
log_error("Failed to allocate replacement images for %s/%s",
lv->vg->name, lv->name);
return 0;
}
/*
* Remove the old images
* - If we did this before the allocate, we wouldn't have to rename
* the allocated images, but it'd be much harder to avoid the right
* PVs during allocation.
*
* - If this is a repair and we were forced to call
* _remove_partial_multi_segment_image, then the remove_pvs list
* is no longer relevant - _raid_extract_images is forced to replace
* the image with the error target. Thus, the full set of PVs is
* supplied - knowing that only the image with the error target
* will be affected.
*/
if (!_raid_extract_images(lv, raid_seg->area_count - match_count,
partial_segment_removed ?
&lv->vg->pvs : remove_pvs, 0,
&old_lvs, &old_lvs)) {
log_error("Failed to remove the specified images from %s/%s",
lv->vg->name, lv->name);
return 0;
}
/*
* Now that they are extracted and visible, make the system aware
* of their new names.
*/
dm_list_iterate_items(lvl, &old_lvs)
if (!activate_lv_excl_local(lv->vg->cmd, lvl->lv))
return_0;
/*
* Skip metadata operation normally done to clear the metadata sub-LVs.
*
* The LV_REBUILD flag is set on the new sub-LVs,
* so they will be rebuilt and we don't need to clear the metadata dev.
*/
for (s = 0; s < raid_seg->area_count; s++) {
sd = s + raid_seg->area_count;
if ((seg_type(raid_seg, s) == AREA_UNASSIGNED) &&
(seg_metatype(raid_seg, s) == AREA_UNASSIGNED)) {
/* Adjust the new metadata LV name */
lvl = dm_list_item(dm_list_first(&new_meta_lvs),
struct lv_list);
dm_list_del(&lvl->list);
if (!(tmp_names[s] = _generate_raid_name(lv, "rmeta", s)))
return_0;
if (!set_lv_segment_area_lv(raid_seg, s, lvl->lv, 0,
lvl->lv->status)) {
log_error("Failed to add %s to %s",
lvl->lv->name, lv->name);
return 0;
}
lv_set_hidden(lvl->lv);
/* Adjust the new data LV name */
lvl = dm_list_item(dm_list_first(&new_data_lvs),
struct lv_list);
dm_list_del(&lvl->list);
if (!(tmp_names[sd] = _generate_raid_name(lv, "rimage", s)))
return_0;
if (!set_lv_segment_area_lv(raid_seg, s, lvl->lv, 0,
lvl->lv->status)) {
log_error("Failed to add %s to %s",
lvl->lv->name, lv->name);
return 0;
}
lv_set_hidden(lvl->lv);
} else
tmp_names[s] = tmp_names[sd] = NULL;
}
if (!lv_update_and_reload_origin(lv))
return_0;
dm_list_iterate_items(lvl, &old_lvs) {
if (!deactivate_lv(lv->vg->cmd, lvl->lv))
return_0;
if (!lv_remove(lvl->lv))
return_0;
}
/* Update new sub-LVs to correct name and clear REBUILD flag */
for (s = 0; s < raid_seg->area_count; s++) {
sd = s + raid_seg->area_count;
if (tmp_names[s] && tmp_names[sd]) {
seg_metalv(raid_seg, s)->name = tmp_names[s];
seg_lv(raid_seg, s)->name = tmp_names[sd];
seg_metalv(raid_seg, s)->status &= ~LV_REBUILD;
seg_lv(raid_seg, s)->status &= ~LV_REBUILD;
}
}
if (!lv_update_and_reload_origin(lv))
return_0;
return 1;
}
int lv_raid_remove_missing(struct logical_volume *lv)
{
uint32_t s;
struct lv_segment *seg = first_seg(lv);
if (!(lv->status & PARTIAL_LV)) {
log_error(INTERNAL_ERROR "%s/%s is not a partial LV",
lv->vg->name, lv->name);
return 0;
}
if (!archive(lv->vg))
return_0;
log_debug("Attempting to remove missing devices from %s LV, %s",
lvseg_name(seg), lv->name);
/*
* FIXME: Make sure # of compromised components will not affect RAID
*/
for (s = 0; s < seg->area_count; s++) {
if (!(seg_lv(seg, s)->status & PARTIAL_LV) &&
!(seg_metalv(seg, s)->status & PARTIAL_LV))
continue;
log_debug("Replacing %s and %s segments with error target",
seg_lv(seg, s)->name, seg_metalv(seg, s)->name);
if (!replace_lv_with_error_segment(seg_lv(seg, s))) {
log_error("Failed to replace %s's extents with error target.",
display_lvname(seg_lv(seg, s)));
return 0;
}
if (!replace_lv_with_error_segment(seg_metalv(seg, s))) {
log_error("Failed to replace %s's extents with error target.",
display_lvname(seg_metalv(seg, s)));
return 0;
}
}
if (!lv_update_and_reload(lv))
return_0;
return 1;
}
/* Return 1 if a partial raid LV can be activated redundantly */
static int _partial_raid_lv_is_redundant(const struct logical_volume *lv)
{
struct lv_segment *raid_seg = first_seg(lv);
uint32_t copies;
uint32_t i, s, rebuilds_per_group = 0;
uint32_t failed_components = 0;
if (!strcmp(raid_seg->segtype->name, SEG_TYPE_NAME_RAID10)) {
/* FIXME: We only support 2-way mirrors in RAID10 currently */
copies = 2;
for (i = 0; i < raid_seg->area_count * copies; i++) {
s = i % raid_seg->area_count;
if (!(i % copies))
rebuilds_per_group = 0;
if ((seg_lv(raid_seg, s)->status & PARTIAL_LV) ||
(seg_metalv(raid_seg, s)->status & PARTIAL_LV) ||
lv_is_virtual(seg_lv(raid_seg, s)) ||
lv_is_virtual(seg_metalv(raid_seg, s)))
rebuilds_per_group++;
if (rebuilds_per_group >= copies) {
log_verbose("An entire mirror group has failed in %s.",
display_lvname(lv));
return 0; /* Insufficient redundancy to activate */
}
}
return 1; /* Redundant */
}
for (s = 0; s < raid_seg->area_count; s++) {
if ((seg_lv(raid_seg, s)->status & PARTIAL_LV) ||
(seg_metalv(raid_seg, s)->status & PARTIAL_LV) ||
lv_is_virtual(seg_lv(raid_seg, s)) ||
lv_is_virtual(seg_metalv(raid_seg, s)))
failed_components++;
}
if (failed_components == raid_seg->area_count) {
log_verbose("All components of raid LV %s have failed.",
display_lvname(lv));
return 0; /* Insufficient redundancy to activate */
} else if (raid_seg->segtype->parity_devs &&
(failed_components > raid_seg->segtype->parity_devs)) {
log_verbose("More than %u components from %s %s have failed.",
raid_seg->segtype->parity_devs,
lvseg_name(raid_seg),
display_lvname(lv));
return 0; /* Insufficient redundancy to activate */
}
return 1;
}
/* Sets *data to 1 if the LV cannot be activated without data loss */
static int _lv_may_be_activated_in_degraded_mode(struct logical_volume *lv, void *data)
{
int *not_capable = (int *)data;
uint32_t s;
struct lv_segment *seg;
if (*not_capable)
return 1; /* No further checks needed */
if (!(lv->status & PARTIAL_LV))
return 1;
if (lv_is_raid(lv)) {
*not_capable = !_partial_raid_lv_is_redundant(lv);
return 1;
}
/* Ignore RAID sub-LVs. */
if (lv_is_raid_type(lv))
return 1;
dm_list_iterate_items(seg, &lv->segments)
for (s = 0; s < seg->area_count; s++)
if (seg_type(seg, s) != AREA_LV) {
log_verbose("%s contains a segment incapable of degraded activation",
display_lvname(lv));
*not_capable = 1;
}
return 1;
}
int partial_raid_lv_supports_degraded_activation(const struct logical_volume *clv)
{
int not_capable = 0;
struct logical_volume * lv = (struct logical_volume *)clv; /* drop const */
if (!_lv_may_be_activated_in_degraded_mode(lv, &not_capable) || not_capable)
return_0;
if (!for_each_sub_lv(lv, _lv_may_be_activated_in_degraded_mode, &not_capable)) {
log_error(INTERNAL_ERROR "for_each_sub_lv failure.");
return 0;
}
return !not_capable;
}