1
0
mirror of https://github.com/OpenNebula/one.git synced 2025-01-22 22:03:39 +03:00
one/include/Template.h

709 lines
21 KiB
C++

/* -------------------------------------------------------------------------- */
/* Copyright 2002-2023, OpenNebula Project, OpenNebula Systems */
/* */
/* Licensed under the Apache License, Version 2.0 (the "License"); you may */
/* not use this file except in compliance with the License. You may obtain */
/* a copy of the License at */
/* */
/* http://www.apache.org/licenses/LICENSE-2.0 */
/* */
/* Unless required by applicable law or agreed to in writing, software */
/* distributed under the License is distributed on an "AS IS" BASIS, */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
/* See the License for the specific language governing permissions and */
/* limitations under the License. */
/* -------------------------------------------------------------------------- */
#ifndef TEMPLATE_H_
#define TEMPLATE_H_
#include <map>
#include <set>
#include <vector>
#include <string>
#include <functional>
#include <memory>
#include <libxml/tree.h>
#include <libxml/parser.h>
#include "Attribute.h"
/**
* Base class for file templates. A template is a file (or a string for the
* matter of fact) containing a set of attribute definitions of the form:
* NAME = VALUE
* where NAME is a string representing the name of the attribute, and VALUE can
* be a single string or a vector value (array of string pairs). The file can
* contain several attributes with the same name.
*/
class Template
{
public:
explicit Template(bool _replace_mode = false,
const char _separator = '=',
const char * _xml_root = "TEMPLATE"):
replace_mode(_replace_mode),
separator(_separator),
xml_root(_xml_root){}
Template(const Template& t)
: replace_mode(t.replace_mode)
, separator(t.separator)
, xml_root(t.xml_root)
{
for (auto it = t.attributes.begin() ; it != t.attributes.end() ; it++)
{
attributes.insert(make_pair(it->first,(it->second)->clone()));
}
}
Template(Template&& t) noexcept
: attributes(std::move(t.attributes))
, replace_mode(t.replace_mode)
, separator(t.separator)
, xml_root(std::move(t.xml_root))
{
}
Template& operator=(const Template& t)
{
if (this != &t)
{
replace_mode = t.replace_mode;
separator = t.separator;
xml_root = t.xml_root;
clear();
for (auto att : t.attributes)
{
attributes.insert(make_pair(att.first,(att.second)->clone()));
}
}
return *this;
}
Template& operator=(Template&& t) noexcept
{
if (this != &t)
{
replace_mode = t.replace_mode;
separator = t.separator;
xml_root = std::move(t.xml_root);
clear();
attributes = std::move(t.attributes);
}
return *this;
}
/**
* The class destructor frees all the attributes conforming the template
*/
virtual ~Template();
/* ---------------------------------------------------------------------- */
/* Functions to create a Template parsing a file, stream in txt or XML */
/* ---------------------------------------------------------------------- */
/**
* Parse a string representing the template, each attribute is inserted
* in the template class.
* @param parse_str string with template attributes
* @param error_msg error string, must be freed by the calling function.
* This string is null if no error occurred.
* @return 0 on success.
*/
int parse(const std::string &parse_str, char **error_msg);
/**
* Parse a template file.
* @param filename of the template file
* @param error_msg error string, must be freed by the calling function.
* This string is null if no error occurred.
* @return 0 on success.
*/
int parse(const char * filename, char **error_msg);
/**
* Parse a string representing the template, automatically detecting if
* it is the default syntax, or an XML template. Each attribute is inserted
* in the template class.
* @param parse_str string with template attributes, or XML template
* @param error_msg error string, must be freed by the calling function.
* This string is null if no error occurred.
* @return 0 on success.
*/
int parse_str_or_xml(const std::string &parse_str, std::string& error_msg);
/**
* Rebuilds the template from a xml formatted string
* @param xml_str The xml-formatted string
*
* @return 0 on success, -1 otherwise
*/
int from_xml(const std::string &xml_str);
/**
* Rebuilds the object from an xml node
* @param node The xml node pointer
*
* @return 0 on success, -1 otherwise
*/
int from_xml_node(const xmlNodePtr node);
/**
* Writes the Template into a output stream in txt format
*/
friend std::ostream& operator<<(std::ostream& os, const Template& t);
/* ---------------------------------------------------------------------- */
/* Functions to render a Template in a str, or xml */
/* ---------------------------------------------------------------------- */
/**
* Marshall a template. This function generates a single string with the
* template attributes ("VAR=VAL<delim>...").
* @param str_tempalte string that hold the template
* @param delim to separate attributes
*/
void marshall(std::string &str, const char delim = '\n');
/**
* Writes the template in a simple xml string:
* <template>
* <single>value</single>
* <vector>
* <attr>value</attr>
* ...
* </vector>
* ...
* </template>
* The name of the root element is set when the Template object is created
* @param xml string that hold the xml template representation
* @return a reference to the generated string
*/
std::string& to_xml(std::string& xml) const;
std::string& to_xml(std::string& xml, const std::string& extra) const;
std::string& to_json(std::string& xml) const;
std::string& to_token(std::string& xml) const;
/**
* Writes the template in a plain text string
* @param str string that hold the template representation
* @return a reference to the generated string
*/
virtual std::string& to_str(std::string& str) const;
/* ---------------------------------------------------------------------- */
/* Functions to add, remove and change attributes from a Template */
/* ---------------------------------------------------------------------- */
/**
* Clears all the attributes from the template
*/
virtual void clear();
/**
* Sets a new attribute, the attribute MUST BE ALLOCATED IN THE HEAP, and
* will be freed when the template destructor is called.
* @param attr pointer to the attribute
*/
virtual void set(Attribute * attr);
virtual void set(std::vector<SingleAttribute *>& values)
{
_set<SingleAttribute>(values);
}
virtual void set(std::vector<VectorAttribute *>& values)
{
_set<VectorAttribute>(values);
}
/**
* Adds a new attribute to the template (replacing it if already defined)
* @param name of the new attribute
* @param value of the new attribute
* @return 0 on success
*/
template<typename T>
int replace(const std::string& name, const T& value)
{
std::ostringstream oss;
oss << value;
return replace(name, oss.str());
}
int replace(const std::string& name, const std::string& value);
int replace(const std::string& name, const bool& value);
/**
* Adds a new single attribute to the template. It will replace an existing
* one if replace_mode was set to true
* @param name of the attribute
* @param value of the attribute
*/
template<typename T>
void add(const std::string& name, const T& value)
{
std::ostringstream oss;
oss << value;
set(new SingleAttribute(name, oss.str()));
}
void add(const std::string& name, const std::string& value)
{
set(new SingleAttribute(name, value));
}
void add(const std::string& name, bool value)
{
if ( value )
{
set(new SingleAttribute(name, "YES"));
}
else
{
set(new SingleAttribute(name, "NO"));
}
}
/**
* Removes an attribute from the template. The attributes are returned. The
* attributes MUST be freed by the calling funtion
* @param name of the attribute
* @param values a vector containing a pointer to the attributes
* @return the number of attributes removed
*/
template<typename T>
int remove(const std::string& name, std::vector<T *>& values)
{
int j = 0;
auto index = attributes.equal_range(name);
for ( auto i = index.first; i != index.second; i++,j++ )
{
values.push_back(static_cast<T *>(i->second));
}
attributes.erase(index.first, index.second);
return j;
}
template<typename T>
int remove(const std::string& name, std::vector<std::unique_ptr<T>>& values)
{
int j = 0;
auto index = attributes.equal_range(name);
for ( auto i = index.first; i != index.second; i++,j++ )
{
std::unique_ptr<T> va(static_cast<T *>(i->second));
values.push_back(std::move(va));
}
attributes.erase(index.first, index.second);
return j;
}
/**
* Removes an attribute from the template, but it DOES NOT free the
* attribute.
* @param att Attribute to remove. It will be deleted
* @return pointer to the removed attribute or 0 if non attribute was
* removed
*/
virtual Attribute * remove(Attribute * att);
/**
* Removes an attribute from the template, and frees the attributes.
* @param name of the attribute
* @return the number of attributes removed
*/
virtual int erase(const std::string& name);
/* ---------------------------------------------------------------------- */
/* Functions get attributes from a template */
/* ---------------------------------------------------------------------- */
/**
* Gets the all the attributes of the given name and stores a reference
* to them in a vector. If the selected attribute does not match the
* requested type it will not be included
* @param name the attribute name.
* @param values vector with the values
*
* @return the number of elements in the vector
*/
inline virtual int get(const std::string& n,
std::vector<const VectorAttribute*>& v) const
{
return __get<VectorAttribute>(n, v);
}
inline virtual int get(const std::string& n, std::vector<VectorAttribute*>& v)
{
return __get<VectorAttribute>(n, v);
}
inline virtual int get(const std::string& n,
std::vector<const SingleAttribute*>& s) const
{
return __get<SingleAttribute>(n, s);
}
inline virtual int get(const std::string& n, std::vector<SingleAttribute*>& s)
{
return __get<SingleAttribute>(n, s);
}
/**
* Gets the first Attribute of the specified type with the given name.
* Const and non-const versions of this method is provided
* @param name the attribute name.
* @return true first attribute or 0 if not found or wrong type
*/
inline const VectorAttribute * get(const std::string& name) const
{
return __get<VectorAttribute>(name);
}
inline VectorAttribute * get(const std::string& name)
{
return __get<VectorAttribute>(name);
}
/**
* Gets the value of a SingleAttribute with the given name and converts
* it to the target value format
* @param name the attribute name.
* @param value the attribute value
*
* @return true if a SingleAttribute was found and it stores a valid
* value, false otherwise.
*/
template<typename T>
bool get(const std::string& name, T& value) const
{
const SingleAttribute * s = __get<SingleAttribute>(name);
value = 0;
if ( s == 0 )
{
return false;
}
std::istringstream iss(s->value());
iss >> value;
if (iss.fail() || !iss.eof())
{
return false;
}
return true;
}
virtual bool get(const std::string& name, bool& value) const;
virtual bool get(const std::string& name, std::string& value) const;
/**
* Trims the trailing spaces in the attribute
* @param name of the attribute
* @return True if the attribute was found and trimmed
*/
virtual bool trim(const std::string& name);
/**
* Trims the trailing spaces in the NAME attribute
* @return True if the attribute was found and trimmed
*/
inline virtual bool trim_name()
{
return trim("NAME");
};
/**
* Merges another Template, adding the new attributes and
* replacing the existing ones
* @param from_tmpl the template to be merged
*/
void merge(const Template * from_tmpl);
/**
* Check if the template can be safely merge with a base template. If a
* restricted attribute is found it is check that it has the same value in
* base.
* @param rs_attr the first restricted attribute found with a different
* value in base
* @param base template used to check restricted values.
*
* @return true if a restricted attribute with a different value is found
* in the template
*
* The version of this method without base template just look for any
* restricted attribute.
*/
virtual bool check_restricted(std::string& rs_attr, const Template* base, bool append)
{
return false;
}
virtual bool check_restricted(std::string& rs_attr)
{
return false;
}
/**
* Encrypt all secret attributes
*/
virtual void encrypt(const std::string& one_key){};
/**
* Decrypt all secret attributes
*/
virtual void decrypt(const std::string& one_key){};
/**
* @return true if template is empty
*/
bool empty() const
{
return attributes.empty();
}
/**
* Generic iterator over Template attributes
*/
void each_attribute(std::function<void(const Attribute * a)>&& f) const
{
for(const auto& it: attributes)
{
f(it.second);
}
}
protected:
/**
* The template attributes
*/
std::multimap<std::string,Attribute *> attributes;
/**
* Builds a SingleAttribute from the given node
* @param node The xml element to build the attribute from.
*
* @return the attribute, or 0 if the node doesn't contain a single att.
*/
Attribute* single_xml_att(const xmlNode * node);
/**
* Builds a VectorAttribute from the given node
* @param node The xml element to build the attribute from.
*
* @return the attribute, or 0 if the node doesn't contain a vector att.
*/
Attribute* vector_xml_att(const xmlNode * node);
/**
* Parses a list of restricted attributes in the form ATTRIBUTE_NAME or
* ATTRIBUTE_NAME/SUBATTRIBUTE.
* @param ras list of restricted attributes
* @param rattr_m result list of attributes indexed by ATTRIBUTE_NAME.
* RAs are stored:
* {
* RESTRICTED_ATTR_NAME => [ RESTRICTED_SUB_ATTRIBUTES ],
* ...
* }
* If the RA is Single the sub attribute list will be empty.
*/
static void parse_restricted(const std::vector<const SingleAttribute *>& ras,
std::map<std::string, std::set<std::string> >& rattr_m);
/**
* Check if the template can be safely merge with a base template. If a
* restricted attribute is found it is check that it has the same value in
* base.
* @param rs_attr the first restricted attribute found with a different
* value in base
* @param base template used to check restricted values.
* @param ras list of restricted attributes.
*
* @return true if a restricted attribute with a different value is found
* in the template
*/
bool check_restricted(std::string& rs_attr, const Template* base,
const std::map<std::string, std::set<std::string> >& ras, bool append);
bool check_restricted(std::string& rs_attr,
const std::map<std::string, std::set<std::string> >& ras);
/**
* Parses a list of encrypted attributes in the form ATTRIBUTE_NAME or
* ATTRIBUTE_NAME/SUBATTRIBUTE.
* @param eas list of encrypted attributes
* @param eattr_m result list of attributes indexed by ATTRIBUTE_NAME.
* EAs are stored:
* {
* ENCRYPTED_ATTR_NAME => [ ENCRYPTED_SUB_ATTRIBUTES ],
* ...
* }
* If the EA is Single the sub attribute list will be empty.
*/
static void parse_encrypted(const std::vector<const SingleAttribute *>& eas,
std::map<std::string, std::set<std::string> >& eattr_m);
/**
* Encrypt all secret attributes
*/
void encrypt(const std::string& one_key,
const std::map<std::string, std::set<std::string> >& eas);
/**
* Decrypt all secret attributes
*/
void decrypt(const std::string& one_key,
const std::map<std::string, std::set<std::string> >& eas);
/**
* Updates the xml root element name
*
* @param _xml_root New name
*/
void set_xml_root(const char * _xml_root)
{
xml_root = _xml_root;
};
private:
bool replace_mode;
/**
* Character to separate key from value when dump onto a string
**/
char separator;
/**
* Name of the Root element for the XML document
*/
std::string xml_root;
/**
* Builds the template attribute from the node
* @param root_element The xml element to build the template from.
*/
void rebuild_attributes(const xmlNode * root_element);
/**
* Gets the all the attributes of the given name and stores a reference
* to them in a vector. If the selected attribute does not match the
* requested type it will not be included
* @param name the attribute name.
* @param values vector with the values
*
* @return the number of elements in the vector
*/
template<typename T>
int __get(const std::string& name, std::vector<const T *>& values) const
{
int j = 0;
auto index = attributes.equal_range(name);
for (auto i = index.first; i != index.second ; i++)
{
const T * vatt = dynamic_cast<const T *>(i->second);
if ( vatt == 0 )
{
continue;
}
values.push_back(vatt);
j++;
}
return j;
}
/* Non-const version of get for all attributes */
template<typename T>
int __get(const std::string& name, std::vector<T *>& values)
{
int j = 0;
auto index = attributes.equal_range(name);
for (auto i = index.first; i != index.second ; i++)
{
T * vatt = dynamic_cast<T *>(i->second);
if ( vatt == 0 )
{
continue;
}
values.push_back(vatt);
j++;
}
return j;
}
/**
* Gets the first Attribute of the specified type with the given name.
* Const and non-const versions of this method is provided
* @param name the attribute name.
* @return true first attribute or 0 if not found or wrong type
*/
template<typename T>
const T * __get(const std::string& s) const
{
std::vector<const T*> atts;
if (__get<T>(s, atts) < 1)
{
return 0;
}
return atts[0];
}
template<typename T>
T * __get(const std::string& s)
{
return const_cast<T *>(
static_cast<const Template&>(*this).__get<T>(s));
}
template<typename T>
void _set(const std::vector<T *>& values)
{
for (auto v : values)
{
set(v);
}
}
};
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
#endif /*TEMPLATE_H_*/