IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
It depends on man/custom-entities.ent which is (and needs to be) a built file,
so we need to always build man/systemd.directives.xml as well.
We also need to drop this from update-man-list so that it doesn't get disted
from Makefile-man.am.
Fixes distcheck failure.
https://github.com/systemd/systemd/issues/215
./configure --enable/disable-kdbus can be used to set the default
behavior regarding kdbus.
If no kdbus kernel support is available, dbus-dameon will be used.
With --enable-kdbus, the kernel command line option "kdbus=0" can
be used to disable kdbus.
With --disable-kdbus, the kernel command line option "kdbus=1" is
required to enable kdbus support.
This adds man-pages for most of the libudev symbols we export. Similar
symbols are grouped together in a single man-page, with respective links
added. All man-pages contain the full skeleton including NAME, SYNOPSIS,
RETURN VALUE and SEE ALSO. However, most of them still lack the
DESCRIPTION part. This should be copied from the gtkdoc descriptions in
src/libudev/libudev*.[ch]. Any help is welcome! (the whole skeleton is
already done, so it's really just about the prose-part of the man-pages to
be written).
Missing from the man-pages are the following parts:
- udev_set_log_fn()
- udev_[gs]et_log_priority()
- udev_[gs]et_userdata()
- udev_list_entry_foreach()
- udev_device_get_seqnum()
- udev_device_get_usec_since_initialized()
- udev_util_encode_string()
These are considered legacy, afaik. If not, please feel free to add them
now!
Furthermore, udev-hwdb and udev-queue are not documented at all (for the
same reasons).
For a longer discussion see this:
http://lists.freedesktop.org/archives/systemd-devel/2015-April/030175.html
This introduces /run/systemd/fsck.progress as a simply
AF_UNIX/SOCK_STREAM socket. If it exists and is connectable we'll
connect fsck's -c switch with it. If external programs want to get
progress data they should hence listen on this socket and will get
all they need via that socket. To get information about the connecting
fsck client they should use SO_PEERCRED.
Unless /run/systemd/fsck.progress is around and connectable this change
reverts back to v219 behaviour where we'd forward fsck output to
/dev/console on our own.
Not that all functionality has been ported over to logind, the old
implementation can be removed. There goes one of the oldest parts of
the systemd code base.
With this change it is possible to send file descriptors to PID 1, via
sd_pid_notify_with_fds() which PID 1 will store individually for each
service, and pass via the usual fd passing logic on next invocation.
This is useful for enable daemon reload schemes where daemons serialize
their state to /run, push their fds into PID 1 and terminate, restoring
their state on next start from the data in /run and passed in from PID
1.
The fds are kept by PID 1 as long as no POLLHUP or POLLERR is seen on
them, and the service they belong to are either not dead or failed, or
have a job queued.
This pulls out the hwdb managment from udevadm into an independent tool.
The old code is left in place for backwards compatibility, and easy of
testing, but all documentation is dropped to encourage use of the new
tool instead.
Several manpages contain duplicate text describing a standard set of .d
configuration directories, with the usual sorting, precedence,
overrides, and so on. Factor this common text out using XInclude before
proliferating it even further.
In principle SysV stuff is only for compatibility, but we are stuck
with it for the forseeable future, so documentation might as well
be provided.
https://bugs.debian.org/771172
Example from Tom Gundersen is included using xi:include.
The copyright notice stands out a bit. Maybe it should be removed,
and the code placed in public domain.
hibernate-resume-generator understands resume= kernel command line parameter
and instantiates the systemd-resume@.service accordingly if it is passed.
This enables resume from hibernation using device specified on the kernel
command line, and it may be specified either as "/dev/disk/by-foo/bar"
or "FOO=bar", not only "/dev/sdXY" which is understood by the in-kernel
implementation.
So now resume= is brought on par with root= in terms of possible ways to
specify a device.
This can be used to initiate a resume from hibernation by path to a swap
device containing the hibernation image.
The respective templated unit is also added. It is instantiated using
path to the desired resume device.
We generally have separate man pages for all configuration files.
In this case udev.conf was already described in systemd-udevd.service(8),
but it was hard to find. Docbook makes it hard to add a .so link from
a different section, so describe udev.conf in its own page.
As Zbigniew pointed out a new ConditionFirstBoot= appears like the nicer
way to hook in systemd-firstboot.service on first boots (those with /etc
unpopulated), so let's do this, and get rid of the generator again.
This new tool is based on "sd-path", a new (so far unexported) API for
libsystemd, that can hopefully grow into a workable API covering /opt
and more one day.
To make sure we don't delay boot on systems where (some) network links are managed by someone else
we don't block if something else has successfully brought up a link.
We will still block until all links we are aware of that are managed by networkd have been
configured, but if no such links exist, and someone else have configured a link sufficiently
that it has a carrier, it may be that the link is ready so we should no longer block.
Note that in all likelyhood the link is not ready (no addresses/routes configured),
so whatever network managment daemon configured it should provide a similar wait-online
service to block network-online.target until it is ready.
The aim is to block as long as we know networking is not fully configured, but no longer. This
will allow systemd-networkd-wait-online.service to be enabled on any system, even if we don't
know whether networkd is the main/only network manager.
Even in the case networking is fully configured by networkd, the default behavior may not be
sufficient: if two links need to be configured, but the first is fully configured before the
second one appears we will assume the network is up. To work around that, we allow specifying
specific devices to wait for before considering the network up.
This unit is enabled by default, just like systemd-networkd, but will only be pulled in if
anyone pulls in network-online.target.
The whole tool is made dependent on µhttpd availability. It should be
easy to make the µhttpd parts conditional, but since transfer over
HTTP seems to be the primary use case, currently this is not done.
Current implementation uses nested epoll loops: sd-event is used for
the external event loop, and µhttpd uses epoll in its own
loop. Unfortunately µhttpd does not expose enough information to add
the descriptors it uses to the external event loop. This means that
starvation of other events is possible, if one of the inner µhttpd
loops is constantly busy. This means that µhttpd servers should not
be mixed with other sources.
The TLS authentication parts haven't been really tested properly, and
should not be take too seriously.
The new calls work similarly, but enforce a that a common, fixed bus
path prefix is used.
This follows discussions with Simon McVittie on IRC that it should be a
good idea to make sure that people don't use the escaping applied here
too wildly as anything other than the last label of a bus path.
Also, introduce a new environment variable named $WATCHDOG_PID which
cotnains the PID of the process that is supposed to send the keep-alive
events. This is similar how $LISTEN_FDS and $LISTEN_PID work together,
and protects against confusing processes further down the process tree
due to inherited environment.