IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Follow-up for da13d2ca07. Instead of having
separate definitions of the bitmask flags, just define DEFAULT_COMPRESSION_FOO=0|1
directly.
(It *should* be possible to do this more simply, but the problem is that
anything that is used in #if cannot refer to C constants or enums. This is the
simplest I could come up with that preserves the property that we don't use #ifdef.)
The return value from compress_blob() is changed to propagate the error instead
of always returning -EOPNOTSUPP. The callers don't care about the specific error
value. compress_blob_*() are changed to return the compression method on success, so
that compress_blob() can be simplified. compress_stream_*() and compress_stream() are
changed in the same way for consistency, even though the callers do not currently use
this information (outside of tests).
Follow-up for cd3c6322db
journal-def.h should be self-contained too, as it represents the journal object ABI.
Duplicate the enums, as they also need to be in config.h for it to be self-contained,
and enums are not available to the preprocessor. Use an assert to ensure they don't
diverge.
Compression and decompression are controlled by the same build flag,
so if one wants to use, say, LZ4 to compress, ZSTD has to be disabled,
which means one loses the ability to read zstd-compressed journals.
Add a default-compression meson option, that allows to select any of
the available compression algorithms as the default.
To make sure we don't miss any _exit() calls let's move the
coverage-related tweaks into a separate header file and include it
explicitly on the compiler command line using -include when a coverage
build is requested.
Follow-up to c6552ad381.
In --help output, change "$0" → "kernel-install". We generally don't include
the full path in --help output, and let's not do this here either.
kernel-install is now in build/ directly, not in the subdirectory.
GIT_VERSION is not available as a config.h variable, because it's rendered
into version.h during builds. Let's rework jinja2 rendering to also
parse version.h. No functional change, the new variable is so far unused.
I guess this will make partial rebuilds a bit slower, but it's useful
to be able to use the full version string.
This is very similar to (and directly based on) the test for --help. I think
it's nice to do this: the test is very quick, but it'll catch cases where we
forgot to hook up the option, or forgot to exit after printing --version, and
it'll also increase our test coverage a bit.
This test has overlap with test-install-root, but it tests things at a
different level, so I think it's useful to add. It immediately shows various
bugs which will be fixed in later patches.
Defaults to /bin/bash, no changes in the default configuration
The fallback shell for non-root users is as-specified,
and the interactive shell for nspawn sessions is started as
exec(default-user-shell, "-" + basename(default-user-shell), ...)
before falling through to bash and sh
mostly to make sure that systemd is buildable without some dependencies
but other than that it should make it easier to build it with MSan without
having to compile all the dependencies with MSan.
ERROR:
Cannot use target systemd as a generator because it is built for the
host machine and no exe wrapper is defined or needs_exe_wrapper is
true. You might want to set `native: true` instead to build it for
the build machine.
The script was probably not used for a very long time. It is currently
passed systemd_boot.so as boot loader, which cannot work. The test
entries it creates are all pointing at non-existant efi/linux binaries,
which means they would not even show up in the menu if the created image
were actually booted. There is also nothing that actually tries to run
the image in the first place.
If we end up creating a proper systemd-boot test suite, it would be
better to start from scratch. In the meantime, mkosi already covers
the bare minimum with a simple bootup test.
Currently, running "meson build" followed by "meson test -C build"
will result in many failed tests due to missing dependencies. This
commit adds the missing dependencies to make sure no tests fail.
The whole point of systemd-stdio-bridge is to be executed on "foreign" systems
where the path might be different, so we use $PATH to find the binary everywhere.
to make it easier to fuzz code that uses external libraries like libelf/libdw.
The dependencies are skipped on OSS-Fuzz because they aren't available
at runtime if they aren't linked statically. This restriction can safely
be lifted when the fuzzers are built locally with all the dependencies
installed. As far as I know there is at least one fuzz target in the systemd
repository that can benefit from this: https://github.com/systemd/systemd/issues/11018
Meson would generate the following compile test:
#define crypt_set_metadata_size meson_disable_define_of_crypt_set_metadata_size
#include <limits.h>
#undef crypt_set_metadata_size
#ifdef __cplusplus
extern "C"
#endif
char crypt_set_metadata_size (void);
#if defined __stub_crypt_set_metadata_size || defined __stub___crypt_set_metadata_size
fail fail fail this function is not going to work
#endif
int main(void) {
return crypt_set_metadata_size ();
}
This works fine when the identifier being queried is an actual function. But
crypt_token_max() is an inline function, so getting the address would fail,
leading to a false negative result. Complation would fail because the function
would be defined twice.
With this patch, the check is changed to include the header:
#include <libcryptsetup.h>
#include <limits.h>
#if defined __stub_crypt_set_metadata_size || defined __stub___crypt_set_metadata_size
fail fail fail this function is not going to work
#endif
int main(void) {
void *a = (void*) &crypt_set_metadata_size;
long long b = (long long) a;
return (int) b;
}
which seems to work correctly.
This should simplify overriding the program locations as the binary
names should now not change if cross compiling.
It's likely any attempts at autodetecting these in cross environments will
be brittle at best so lets just disable it.
We have /usr/lib/systemd/libsystemd-{shared,core}-nnn.so. With this
path the 'nnn' part can be changed to something different. The idea
is that during a package build this will be set to the package version.
This way during in-place upgrades with the same major version both
the new and old libraries can cooexit. This should fix the issue
when systemd programs are called during package upgrades and fail
to exec because the expect different symbols in the library they
are linked to.
This should fix https://bugzilla.redhat.com/show_bug.cgi?id=1906010.
The scheme is very similar to libsystemd-shared.so: instead of building a
static library, we build a shared library from the same objects and link the
two users to it. Both systemd and systemd-analyze consist mostly of the fairly
big code in libcore, so we save a bit on the installation:
(-0g, no strip)
-rwxr-xr-x 5238864 Dec 14 12:52 /var/tmp/inst1/usr/lib/systemd/systemd
-rwxr-xr-x 5399600 Dec 14 12:52 /var/tmp/inst1/usr/bin/systemd-analyze
-rwxr-xr-x 244912 Dec 14 13:17 /var/tmp/inst2/usr/lib/systemd/systemd
-rwxr-xr-x 461224 Dec 14 13:17 /var/tmp/inst2/usr/bin/systemd-analyze
-rwxr-xr-x 5271568 Dec 14 13:17 /var/tmp/inst2/usr/lib/systemd/libsystemd-core-250.so
(-0g, strip)
-rwxr-xr-x 2522080 Dec 14 13:19 /var/tmp/inst1/usr/lib/systemd/systemd
-rwxr-xr-x 2604160 Dec 14 13:19 /var/tmp/inst1/usr/bin/systemd-analyze
-rwxr-xr-x 113304 Dec 14 13:19 /var/tmp/inst2/usr/lib/systemd/systemd
-rwxr-xr-x 207656 Dec 14 13:19 /var/tmp/inst2/usr/bin/systemd-analyze
-rwxr-xr-x 2648520 Dec 14 13:19 /var/tmp/inst2/usr/lib/systemd/libsystemd-core-250.so
So for systemd itself we grow a bit (2522080 → 2648520+113304=2761824), but
overall we save. The most is saved on all the test files that link to libcore,
if they are installed, because there's 15 of them:
$ du -s /var/tmp/inst?
220096 /var/tmp/inst1
122960 /var/tmp/inst2
I also considered making systemd-analyze a symlink to /usr/lib/systemd/systemd
and turning systemd into a multicall binary. We did something like this with
udevd and udevadm. But that solution doesn't fit well in this case.
systemd-analyze has a bunch of functionality that is not used in systemd,
so the systemd binary would need to grow quite a bit. And we're likely to
add new types of verification or introspection features in analyze, and this
baggage would only grow. In addition, there are the test binaries which also
benefit from this.
This patch changes busctl capture to generate pcapng format
instead of the legacy pcap format files. It includes basic
meta-data in the file and still uses microsecond time
resolution. In future, more things can be added such as
high resolution timestams, statistics, etc.
PCAP Next Generation capture file format is what tshark uses
and is in process of being standardized in IETF. It is also
readable with libpcap.
$ capinfos /tmp/new.pcapng
File name: /tmp/new.pcapng
File type: Wireshark/... - pcapng
File encapsulation: D-Bus
File timestamp precision: microseconds (6)
Packet size limit: file hdr: (not set)
Packet size limit: inferred: 4096 bytes
Number of packets: 22
File size: 21kB
Data size: 20kB
Capture duration: 0.005694 seconds
First packet time: 2021-12-11 11:57:42.788374
Last packet time: 2021-12-11 11:57:42.794068
Data byte rate: 3,671kBps
Data bit rate: 29Mbps
Average packet size: 950.27 bytes
Average packet rate: 3,863 packets/s
SHA256: b85ed8b094af60c64aa6d9db4a91404e841736d36b9e662d707db9e4096148f1
RIPEMD160: 81f9bac7ec0ec5cd1d55ede136a5c90413894e3a
SHA1: 8400822ef724b934d6000f5b7604b9e6e91be011
Strict time order: True
Capture oper-sys: Linux 5.14.0-0.bpo.2-amd64
Capture application: systemd 250 (250-rc2-33-gdc79ae2+)
Number of interfaces in file: 1
Interface #0 info:
Encapsulation = D-Bus (146 - dbus)
Capture length = 4096
Time precision = microseconds (6)
Time ticks per second = 1000000
Number of stat entries = 0
Number of packets = 22