IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This is purely for developer convenience: building man pages is slow
so people tend to disable them when not working on documentation. But
sometimes it is useful to build the man page to look something up,
especially when working on an older machine which has outdated
documentation, or to test some change to documentation. The rules to build
man pages are now outside of the ENABLE_MANPAGES conditional, but they
are not used unless manually invoked, and only the inclusion of man
pages in build and install targets is affected by the conditional.
Also, more generated files are removed in clean, which seems to be
good thing, and Makefile.am is simplified.
This new test case tries to resolve a couple of known domains, to verify the validation results. It talks to resolved
via the bus, thus comprehensively testing the whole shebang.
Of course, it requires network connectivity and a DNSSEC capable DNS server, hence this is a manual test.
networkd previously knew an enum "ResolveSupport" for configuring
per-interface LLMNR support, resolved had a similar enum just called
"Support", with the same value and similar pasers.
Unify this, call the enum ResolveSupport, and port both daemons to it.
The current code is not compatible with current dkr protocols anyway,
and dkr has a different focus ("microservices") than nspawn anyway
("whole machine containers"), hence drop support for it, we cannot
reasonably keep this up to date, and it creates the impression we'd
actually care for the microservices usecase.
Fixes:
$ ./configure ... --disable-microhttpd --enable-libcurl
--enable-sysusers
$ make && make install DESTDIR=$(pwd)/INST
$ ls INST/usr/lib/sysusers.d/
basic.conf systemd.conf
There is no a file with `systemd-journald-upload`
This adds an self-standing RB-Tree implementation to src/basic/. This
will be needed for NSEC RR lookups, since we need "close lookups", which
hashmaps (not even ordered-hashmaps) can give us in reasonable time.
Fixes:
$ ./autogen.sh
$ ./configure ... --disable-timesyncd
$ make distcheck
...
make[1]: *** No rule to make target 'src/timesync/timesyncd-gperf.gperf', needed by 'src/timesync/timesyncd-gperf.c'. Stop.
When doing DNSSEC lookups we need to know one or more DS or DNSKEY RRs
as trust anchors to validate lookups. With this change we add a
compiled-in trust anchor database, serving the root DS key as of today,
retrieved from:
https://data.iana.org/root-anchors/root-anchors.xml
The interface is kept generic, so that additional DS or DNSKEY RRs may
be served via the same interface, for example by provisioning them
locally in external files to support "islands" of security.
The trust anchor database becomes the fourth source of RRs we maintain,
besides, the network, the local cache, and the local zone.
This adds most basic operation for doing DNSSEC validation on the
client side. However, it does not actually add the verification logic to
the resolver. Specifically, this patch only includes:
- Verifying DNSKEY RRs against a DS RRs
- Verifying RRSets against a combination of RRSIG and DNSKEY RRs
- Matching up RRSIG RRs and DNSKEY RRs
- Matching up RR keys and RRSIG RRs
- Calculating the DNSSEC key tag from a DNSKEY RR
All currently used DNSSEC combinations of SHA and RSA are implemented. Support
for MD5 hashing and DSA or EC cyphers are not. MD5 and DSA are probably
obsolete, and shouldn't be added. EC should probably be added
eventually, if it actually is deployed on the Internet.
For now, only add_acls_for_user is tested. When run under root, it
actually sets the acls. When run under non-root, it sets the acls for
the user, which does nothing, but at least calls the functions.
The header file defines some helpers for GLIBC NSS and doesn't include
anything else but glibc headers, hence there's little reason to keep it
in shared/.
See: #2008
GLIB has recently started to officially support the gcc cleanup
attribute in its public API, hence let's do the same for our APIs.
With this patch we'll define an xyz_unrefp() call for each public
xyz_unref() call, to make it easy to use inside a
__attribute__((cleanup())) expression. Then, all code is ported over to
make use of this.
The new calls are also documented in the man pages, with examples how to
use them (well, I only added docs where the _unref() call itself already
had docs, and the examples, only cover sd_bus_unrefp() and
sd_event_unrefp()).
This also renames sd_lldp_free() to sd_lldp_unref(), since that's how we
tend to call our destructors these days.
Note that this defines no public macro that wraps gcc's attribute and
makes it easier to use. While I think it's our duty in the library to
make our stuff easy to use, I figure it's not our duty to make gcc's own
features easy to use on its own. Most likely, client code which wants to
make use of this should define its own:
#define _cleanup_(function) __attribute__((cleanup(function)))
Or similar, to make the gcc feature easier to use.
Making this logic public has the benefit that we can remove three header
files whose only purpose was to define these functions internally.
See #2008.
This uses temporary configuration in /run and temporary veth devices, and does
not write anything on disk or change any system configuration; but it assumes
(and checks at the beginning) that networkd is not currently running.
This can be run on a normal installation, in QEMU, nspawn, or LXC.
As this requires root privileges, this is not integrated into "make check".
With this change, we add a new object to resolved, "DnsSearchDomain="
which wraps a search domain. This is then used to introduce a global
search domain list, in addition to the existing per-link search domain
list which is reword to make use of this new object too.
This is preparation for implement proper unicast DNS search domain
support.