IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This reverts commit 6bde0b3220.
We should not pull in remote-fs-pre.target unconditionally. It's
supposed to be pulled in by the implementors of it, rather then its
users.
Not that it would matter much, but let's make things a bit more
systematic: early boot services shall order themselves before
sysinit.target, and nothing else.
static nodes (like /dev/loop-control) are created when systemd-udevd
is started and needed to mount loopback devices. Therefore,
local-fs-pre.target should be only started after systemd-udevd is
started.
While most folks will be using the derivative from user-session-units,
I'm updating this one to reflect some of the fixes and things to note
about user sessions:
- cgroup should be set with "%u" - username instead of %I
- set dbus path with %U explicitly too
- hint to folks that wish to use MEM_CG features in user sessions
- allow unit to be enabled for instances with systemctl enable
This reverts commit faeffa73a8.
There isn't really much point in dropping the Conflicts= since shutting
down this service is basically free as it doesn't have anything running.
Also, the patch was incomplete, because shutdown.target was still listed
in Before=.
First, rename root-fs.target to initrd-root-fs.target to clarify its usage.
Mount units with "x-initrd-rootfs.mount" are now ordered before
initrd-root-fs.target. As we sometimes construct /sysroot mounts in
/etc/fstab in the initrd, we want these to be mounted before the
initrd-root-fs.target is active.
initrd.target can be the default target in the initrd.
(normal startup)
:
:
v
basic.target
|
______________________/|
/ |
| sysroot.mount
| |
| v
| initrd-root-fs.target
| |
| v
| initrd-parse-etc.service
(custom initrd services) |
| v
| (sysroot-usr.mount and
| various mounts marked
| with fstab option
| x-initrd.mount)
| |
| v
| initrd-fs.target
| |
\______________________ |
\|
v
initrd.target
|
v
initrd-cleanup.service
isolates to
initrd-switch-root.target
|
v
______________________/|
/ |
| initrd-udevadm-cleanup-db.service
| |
(custom initrd services) |
| |
\______________________ |
\|
v
initrd-switch-root.target
|
v
initrd-switch-root.service
|
v
switch-root
Instead of using local-fs*.target in the initrd, use root-fs.target for
sysroot.mount and initrd-fs.target for /sysroot/usr and friends.
Using local-fs.target would mean to carry over the activated
local-fs.target to the isolated initrd-switch-root.target and thus in
the real root. Having local-fs.target already active after
deserialization causes ordering problems with the real root services and
targets.
We better isolate to targets for initrd-switch-root.target, which are
only available in the initrd.
This pulls in remote-fs-pre.target if remote-fs.target is needed.
Previously remote-fs-pre.target was not active, if no remote fs was
mounted from /etc/fstab. So, every manual remote fs mount was ordered
against the inactive remote-fs-pre.target and umount.target.
Because remote-fs-pre.target was not active, the remote fs was umounted
at umount.target time, which was too late (network already down).
Now remote-fs-pre.target is active, even if no remote fs is mounted.
On shutdown it is deactivated in the correct order and all manual remote
fs mounts also.
This will:
* mount all configured filesystems (typically the rootfs on /sysroot)
* reload the configuration to pick up anything from the mounted fs (typically
/sysroot/etc/fstab)
* mount any newly configured filesystems (typically /usr on /sysroot/usr, if
applicable)
* shut-down and clean-up any daemons running in the initramfs (typically udevd)
* switch-root to /sysroot and start the real init
For an example of what files should be included in an initramfs based on this
see
<https://mailman.archlinux.org/pipermail/arch-projects/2013-February/003628.html>.
Cc: Harald Hoyer <harald.hoyer@gmail.com>
Cc: Dave Reisner <d@falconindy.com>
Sometimes it is useful to look at them, and they don't take
up any significant amount of space. Keeping them also avoids
the message about files being removed at the end of make
run.
We no longer allow early-boot init scripts, however in late boot the
syslog socket and local mounts are established anyway, so let's simplify
our dep graph a bit.
If $syslog doesn't resolve to syslog.target anymore there's no reason to
keep syslog.target around anymore. Let's remove it.
Note that many 3rd party service unit files order themselves after
syslog.target. These will be dangling dependencies now, which should be
unproblematic, however.
Systemd should not introduce any new facilities. Distributions which still
need to support their non-standard/legacy facilities should add them as
patches to their packaging.
The following facilities are no longer recognized:
$x-display-manager
$mail-transfer-agent
$mail-transport-agent
$mail-transfer-agent
$smtp
$null
This target is no longer available:
mail-transfer-agent.target
This also drops automatic selection of the rc local scripts
based on the local distro. Distributions now should specify the paths
of the rc-local and halt-local scripts on the configure command line.
This was premarily intended to support the LSB facility $httpd which is
only known by Fedora, and a bad idea since it lacks any real-life
usecase.
Similar, drop support for some other old Fedora-specific facilities.
Also, document the rules for introduction of new facilities, to clarify
the situation for the future.
Do not suggest to the user that commands can be issued before
logging in.
sulogin prints it own message, which mentions ^D, so there's no need
to repeat it here.
This minimal HTTP server can serve journal data via HTTP. Its primary
purpose is synchronization of journal data across the network. It serves
journal data in three formats:
text/plain: the text format known from /var/log/messages
application/json: the journal entries formatted as JSON
application/vnd.fdo.journal: the binary export format of the journal
The HTTP server also serves a small HTML5 app that makes use of the JSON
serialization to present the journal data to the user.
Examples:
This downloads the journal in text format:
# systemctl start systemd-journal-gatewayd.service
# wget http://localhost:19531/entries
Same for JSON:
# curl -H"Accept: application/json" http://localhost:19531/entries
Access via web browser:
$ firefox http://localhost:19531/
It is no longer possible to manually enable systemd-udev-settle.service,
so its only use is by legacy services explicitly pulling it in. It makes
sense for these services to also explicitly order themselves after
udev-settle.service, which makes After=basic.target redundant.
This should reduce the negative effect on boot-time of having to enable
legacy services such as lvm.service.
It's time to get rid of prefdm. Distributions which still want to use
this should maintain this downstream, but it's probably better to just
provide proper units for the various display managers, like Fedora is
doing this, for example:
https://fedoraproject.org/wiki/Features/DisplayManagerRework
For 'modules-load=' and 'rd.modules-load=' to be effective,
systemd-modules-load.service must be started. It is currently
conditional on the existence of config files. Add the presence of the
cmdline parameters to the triggering conditions.
all other dependencies are in 3rd person. Change BindTo= accordingly to
BindsTo=.
Of course, the dependency is widely used, hence we parse the old name
too for compatibility.
The old automatism that the flushing of the journal from /run to /var
was triggered by the appearance of /var/log/journal is broken if that
directory is mounted from another host and hence always available to be
useful as mount point. To avoid probelsm with this, introduce a new unit
that is explicitly orderer after all mounte files systems and triggers
the flushing.
The MeeGo distribution is still a supported distribution, but
will probably not see an updated version of systemd anymore.
Most of the development is focussing on Tizen now, and the
generic support for building --with-distro=other is more than
adequate enough.
This patch removes the support as a custom configuration build
target in systemd. People who are still building this for
the MeeGo distribution should build as "other" distro.
This naming convention is more inline with other systemd daemon
unit names (systemd-logind.service, systemd-localed.service etc)
The companion .socket units have also been renamed, however the
-trigger and -settle units keep their current name as these are
not directly related to daemon process itself.
The previous systemd-timedated-ntp.target was suffering by the problem
that NTP implementations enabled via the machanism could not be disabled
the obvious way on the "systemctl disable" command line. Replace
systemd-timedated-ntp.target by a list of implementations we try in
turn. The list is encoded in $pkgdatadir/ntp-units.
This replaces the symlink based dependency by an explicit one in the
unit file so that we avoid the dangling symlink when no display manager
is installed.
The rule is that units that encapsulate our own code are prefixed with
"systemd-". Since the fsck units invoke our own code, hence add the
missing prefix. Since a long long time the fsck units didn't invoke the
naked fsck binaries anymore, and it is unlikely that this well ever
change. On the opposite: the code in systemd-fsck will probably get more
complex over time to handle fsck progress to plymouth forwarding.
Same for quotacheck (but not quotaon!)
Since the binary name is now hidden away in /usr/lib/ the primary user
handle for the udev service is the unit name, hence change the man page
to be available under the unit name, and make the binary name an alias
for it.
since the binaries share much of the same code and we better load only
one binary instead of two from disk at early boot let's merge the three
readahead binaries into one. This also allows us to drop a lot of
duplicated code.