IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Explicitly export the root type-system to the type-system callers. This
avoids treating NULL as root, which for one really looks backwards (NULL
is usually a leaf, not root), and secondly prevents us from properly
debugging calling into non-nested types.
Also rename the root to "type_system_root". Once we support more than
rtnl, well will have to revisit that, anyway.
Empty type-systems are just fine. Avoid the nasty hack in
union-type-systems that treat empty type-systems as invalid. Instead check
for the actual types-array and make sure it's non-NULL (which is even true
for empty type-systems, due to "empty_types" array).
In sd-netlink-message, we always guarantee that the currently selected
type-system is non-NULL. Otherwise, we would be unable to parse any types
in the current container level. Hence, this assertion must be true:
message->container_type_system[m->n_containers] != NULL
During message_new() we currently do not verify that this assertion is
true. Instead, we blindly access nl_type->type_system and use it (which
might be NULL for basic types and unions). Fix this, by explicitly
checking that the root-level type is nested.
Note that this is *not* a strict requirement of netlink, but it's a strict
requirement for all message types we currently support. Furthermore, all
the callers of message_new() already verify that only supported types are
passed, therefore, this is a pure cosmetic check. However, it might be
needed on the future, so make sure we don't trap into this once we change
the type-system.
The NETLINK_TYPE_META pseudo-type is actually equivalent to an empty
nested type. Drop it and define an empty type-system instead.
This also has the nice side-effect that m->container_type_system[0] is
never NULL (which has really nasty side-effects if you try to read
attributes).
Right now we store the maximum type-ID of a type-system. This prevents us
from creating empty type-systems. Store the "count" instead, which should
be treated as max+1.
Note that type_system_union_protocol_get_type_system() currently has a
nasty hack to treat empty type-systems as invalid. This might need some
modification later on as well.
size_t is usually 64bit and int 32bit on a 64bit machine. This probably
does not matter for netlink message sizes, but nevertheless, avoid
hard-coding it anywhere.
Same as NLType, move NLTypeSystem into netlink-types.c and hide it from
the outside. Provide an accessor function for the 'max' field that is used
to allocate suitable array sizes.
Note that this will probably be removed later on, anyway. Once we support
bigger type-systems, it just seems impractical to allocate such big arrays
for each container entry. An RBTree would probably do just fine.
If we extend NLType to support arrays and further extended types, we
really want to avoid hard-coding the type-layout outside of
netlink-types.c. We already avoid accessing nl_type->type_system outside
of netlink-types.c, extend this to also avoid accessing any other fields.
Provide accessor functions for nl_type->type and nl_type->size and then
move NLType away from the type-system header.
With this in place, follow-up patches can safely turn "type_system" and
"type_system_union" into a real "union { }", and then add another type for
arrays.
Make sure we never access type->type_system or type->type_system_union
directly. This is an implementation detail of the type-system and we
should always use the accessors. Right now, they only exist for 2-level
accesses (type-system to type-system). This patch introduces the 1-level
accessors (type to type-system) and makes use of it.
This patch makes sure the proper assertions are in place, so we never
accidentally access sub-type-systems for non-nested/union types.
Note that this places hard-asserts on the accessors. This should be fine,
as we expect callers to only access sub type-systems if they *know*
they're dealing with nested types.
The NLA_ names are used to name real datatypes we extract out of netlink
messages. The kernel has an internal enum with the same names
(NLA_foobar), which is *NOT* binary compatible to our types. Furthermore,
we support a different set of types than the kernel (as we try to treat
some kernel peculiarities as our own types to simplify the API).
Rename NLA_ to NETLINK_TYPE_ to make clear that this is our own set of
types.
It is not udev's task to apply any of these setting that way, or
from udev rules files. Things need to be sortet out in the kernel,
or explicit whitelist can possibly be added to the hardware database.
Until that is sorted out, and general agreement, udev is not
willing to maintain any such lists or power management settings
in general.
"Thanks for digging this out! I thought my Kinesis keyboard got broken
and ordered a new one, only to find out that the new one doesn't work
as well. I'm not sure whether we should start collecting a blacklist
of keyboards which don't work with USB autosuspend, or rather a
whitelist? Or revert this wholesale?"
https://github.com/systemd/systemd/issues/340
Commit v218-247-g11c6f69 broke the output of the utility. "%1$" PRIu64
"x" expands to "%1$lux", essentially "%lux", which shows the problem.
u and x cannot be combined, u wins as the type character, and x gets
emitted verbatim to stdout.
References: https://bugzilla.redhat.com/show_bug.cgi?id=1227503
Given that some symbols are exposed by multiple libraries (due to the
compatibility libraries), let's ensure "make check-api-docs" only shows
each symbol once by filtering out duplicates.
_loginctl: respects the verbose style. which allows a user to get
the pre d5df0d950f behavior of not showing a description for sessions
and users, by default they aren't shown.
zstyle ':completion:*' verbose true
or
zstyle ':completion:*:loginctl*:*' verbose true # or similar
Will show the descriptions.
zstyle ':completion:*' verbose true
and
zstyle ':completion:*:loginctl*:*' verbose false # or similar
Won't show descriptions for loginctl only
_systemd: complete pids for systemd-notify's --pid option.
display a message of the expected argument for other options.
_systemd-inhibit: complete block & delay for --mode
display a message of the expected argument for --who/--why
Similar to SmackProcessLabel=, if this configuration is set, systemd
executes processes with given SMACK label. If unit has
SmackProcessLabel=, this config is overwritten.
But, do NOT be confused with SMACK64EXEC of execute file. This default
execute process label(and also label which is set by
SmackProcessLabel=) is set fork-ed process SMACK subject label and
used to access the execute file.
If the execution file has also SMACK64EXEC, finally executed process
has SMACK64EXEC subject.
While if the execution file has no SMACK64EXEC, the executed process
has label of this config(or label which is set by
SmackProcessLabel=). Because if execution file has no SMACK64EXEC then
excuted process inherits label from caller process(in this case, the
caller is systemd).
Smack is also able to have modification rules of existing rules. In
this case, the rule has additional argument to modify previous
rule. /sys/fs/smackfs/load2 node can only take three arguments:
subject object access. So if modification rules are written to
/sys/fs/smackfs/load2, EINVAL error is happen. Those modification
rules have to be written to /sys/fs/smackfs/change-rule.
To distinguish access with operation of cipso2, split write_rules()
for each operation. And, in write access rules, parse the rule and if
the rule has four argument then write into
/sys/fs/smackfs/change-rule.
https://lwn.net/Articles/532340/
fwrite() or fputs() are fancy functions to write byte stream such like
regular file. But special files on linux such like proc, sysfs are not
stream of bytes. Those special files on linux have to be written with
specific size.
By this reason, in some of many case, fputs() was failed to write
buffer to smack load2 node.
The write operation for the smack nodes should be performed with
write().
filenames will be completed for --image/-i/--bind/--bind-ro/--tmpfs
network interfaces for --network-(interface|macvlan|ipvlan|bridge)
users for --user/-u, yes & no for --register, x86 * x86-64 for
--personality
display a message of the expected argument for --machine/-M/--uuid
--slice/-S/--port/-p/--selinux-*/-Z/-L/--setenv
Allow completing commands(and their options) of the host system for COMMAND