IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
MemoryDenyWriteExecution policy could be be bypassed by using pkey_mprotect
instead of mprotect to create an executable writable mapping.
The impact is mitigated by the fact that the man page says "Note that this
feature is fully available on x86-64, and partially on x86", so hopefully
people do not rely on it as a sole security measure.
Found by Karin Hossen and Thomas Imbert from Sogeti ESEC R&D.
https://bugs.launchpad.net/bugs/1725348
This makes each system call in SystemCallFilter= blacklist optionally
takes errno name or number after a colon. The errno takes precedence
over the one given by SystemCallErrorNumber=.
C.f. #7173.
Closes#7169.
This removes the '@credentials' syscall set that was added in commit
v234-468-gcd0ddf6f75.
Most of these syscalls are so simple that we do not want to filter them.
They work on the current calling process, doing only read operations,
they do not have a deep kernel path.
The problem may only be in 'capget' syscall since it can query arbitrary
processes, and used to discover processes, however sending signal 0 to
arbitrary processes can be used to discover if a process exists or not.
It is unfortunate that Linux allows to query processes of different
users. Lets put it now in '@process' syscall set, and later we may add
it to a new '@basic-process' set that allows most basic process
operations.
Usually, it's a good thing that we isolate the kernel session keyring
for the various services and disconnect them from the user keyring.
However, in case of the cryptsetup key caching we actually want that
multiple instances of the cryptsetup service can share the keys in the
root user's user keyring, hence we need to be able to disable this logic
for them.
This adds KeyringMode=inherit|private|shared:
inherit: don't do any keyring magic (this is the default in systemd --user)
private: a private keyring as before (default in systemd --system)
shared: the new setting
If two separate log streams are connected to stdout and stderr, let's
make sure $JOURNAL_STREAM points to the latter, as that's the preferred
log destination, and the environment variable has been created in order
to permit services to automatically upgrade from stderr based logging to
native journal logging.
Also, document this behaviour.
Fixes: #6800
With this setting we can explicitly unset specific variables for
processes of a unit, as last step of assembling the environment block
for them. This is useful to fix#6407.
While we are at it, greatly expand the documentation on how the
environment block for forked off processes is assembled.
"Currently, the following values are defined: xxx: in case <condition>" is
awkward because "xxx" is always defined unconditionally. It is _used_ in case
<condition> is true. Correct this and a bunch of other places where the
sentence structure makes it unclear what is the subject of the sentence.
This reworks the paragraph describing $SERVICE_RESULT into a table, and
adds two missing entries: "success" and "start-limit-hit".
These two entries are then also added to the table explaining the
$EXIT_CODE + $EXIT_STATUS variables.
Fixes: #6597
Add LockPersonality boolean to allow locking down personality(2)
system call so that the execution domain can't be changed.
This may be useful to improve security because odd emulations
may be poorly tested and source of vulnerabilities, while
system services shouldn't need any weird personalities.
This new group lists all UID/GID credential changing syscalls (which are
quite a number these days). This will become particularly useful in a
later commit, which uses this group to optionally permit user credential
changing to daemons in case ambient capabilities are not available.
This introduces {State,Cache,Log,Configuration}Directory= those are
similar to RuntimeDirectory=. They create the directories under
/var/lib, /var/cache/, /var/log, or /etc, respectively, with the mode
specified in {State,Cache,Log,Configuration}DirectoryMode=.
This also fixes#6391.
Also updates the documentation and adds a mention of ppc64 support
which was enabled by #5325.
Tested on Debian mipsel and mips64el. The other 4 mips architectures
should have an identical user <-> kernel ABI to one of the 2 tested
systems.
Let's clarify that RestrictAddressFamilies= and MemoryDenyWriteExecute=
are only fully effective if non-native system call architectures are
disabled, since they otherwise may be used to circumvent the filters, as
the filters aren't equally effective on all ABIs.
Fixes: #5277
Add a bit of code that tries to get the right parameter order in place
for some of the better known architectures, and skips
restrict_namespaces for other archs.
This also bypasses the test on archs where we don't know the right
order.
In this case I didn't bother with testing the case where no filter is
applied, since that is hopefully just an issue for now, as there's
nothing stopping us from supporting more archs, we just need to know
which order is right.
Fixes: #5241
On i386 we block the old mmap() call entirely, since we cannot properly
filter it. Thankfully it hasn't been used by glibc since quite some
time.
Fixes: #5240
This is similar to RootDirectory= but mounts the root file system from a
block device or loopback file instead of another directory.
This reuses the image dissector code now used by nspawn and
gpt-auto-discovery.
This adds a boolean unit file setting MountAPIVFS=. If set, the three
main API VFS mounts will be mounted for the service. This only has an
effect on RootDirectory=, which it makes a ton times more useful.
(This is basically the /dev + /proc + /sys mounting code posted in the
original #4727, but rebased on current git, and with the automatic logic
replaced by explicit logic controlled by a unit file setting)
This changes the environment for services running as root from:
LANG=C.utf8
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin
INVOCATION_ID=ffbdec203c69499a9b83199333e31555
JOURNAL_STREAM=8:1614518
to
LANG=C.utf8
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin
HOME=/root
LOGNAME=root
USER=root
SHELL=/bin/sh
INVOCATION_ID=15a077963d7b4ca0b82c91dc6519f87c
JOURNAL_STREAM=8:1616718
Making the environment special for the root user complicates things
unnecessarily. This change simplifies both our logic (by making the setting
of the variables unconditional), and should also simplify the logic in
services (particularly scripts).
Fixes#5124.
This adds two new settings BindPaths= and BindReadOnlyPaths=. They allow
defining arbitrary bind mounts specific to particular services. This is
particularly useful for services with RootDirectory= set as this permits making
specific bits of the host directory available to chrooted services.
The two new settings follow the concepts nspawn already possess in --bind= and
--bind-ro=, as well as the .nspawn settings Bind= and BindReadOnly= (and these
latter options should probably be renamed to BindPaths= and BindReadOnlyPaths=
too).
Fixes: #3439
@filesystem groups various file system operations, such as opening files and
directories for read/write and stat()ing them, plus renaming, deleting,
symlinking, hardlinking.
This changes a couple of things in the namespace handling:
It merges the BindMount and TargetMount structures. They are mostly the same,
hence let's just use the same structue, and rely on C's implicit zero
initialization of partially initialized structures for the unneeded fields.
This reworks memory management of each entry a bit. It now contains one "const"
and one "malloc" path. We use the former whenever we can, but use the latter
when we have to, which is the case when we have to chase symlinks or prefix a
root directory. This means in the common case we don't actually need to
allocate any dynamic memory. To make this easy to use we add an accessor
function bind_mount_path() which retrieves the right path string from a
BindMount structure.
While we are at it, also permit "+" as prefix for dirs configured with
ReadOnlyPaths= and friends: if specified the root directory of the unit is
implicited prefixed.
This also drops set_bind_mount() and uses C99 structure initialization instead,
which I think is more readable and clarifies what is being done.
This drops append_protect_kernel_tunables() and
append_protect_kernel_modules() as append_static_mounts() is now simple enough
to be called directly.
Prefixing with the root dir is now done in an explicit step in
prefix_where_needed(). It will prepend the root directory on each entry that
doesn't have it prefixed yet. The latter is determined depending on an extra
bit in the BindMount structure.
This new setting permits restricting whether namespaces may be created and
managed by processes started by a unit. It installs a seccomp filter blocking
certain invocations of unshare(), clone() and setns().
RestrictNamespaces=no is the default, and does not restrict namespaces in any
way. RestrictNamespaces=yes takes away the ability to create or manage any kind
of namspace. "RestrictNamespaces=mnt ipc" restricts the creation of namespaces
so that only mount and IPC namespaces may be created/managed, but no other
kind of namespaces.
This setting should be improve security quite a bit as in particular user
namespacing was a major source of CVEs in the kernel in the past, and is
accessible to unprivileged processes. With this setting the entire attack
surface may be removed for system services that do not make use of namespaces.
If execve() or socket() is filtered the service manager might get into trouble
executing the service binary, or handling any failures when this fails. Mention
this in the documentation.
The other option would be to implicitly whitelist all system calls that are
required for these codepaths. However, that appears less than desirable as this
would mean socket() and many related calls have to be whitelisted
unconditionally. As writing system call filters requires a certain level of
expertise anyway it sounds like the better option to simply document these
issues and suggest that the user disables system call filters in the service
temporarily in order to debug any such failures.
See: #3993.
@resources contains various syscalls that alter resource limits and memory and
scheduling parameters of processes. As such they are good candidates to block
for most services.
@basic-io contains a number of basic syscalls for I/O, similar to the list
seccomp v1 permitted but slightly more complete. It should be useful for
building basic whitelisting for minimal sandboxes
The system call is already part in @default hence implicitly allowed anyway.
Also, if it is actually blocked then systemd couldn't execute the service in
question anymore, since the application of seccomp is immediately followed by
it.
This commit adds a `fd` option to `StandardInput=`,
`StandardOutput=` and `StandardError=` properties in order to
connect standard streams to externally named descriptors provided
by some socket units.
This option looks for a file descriptor named as the corresponding
stream. Custom names can be specified, separated by a colon.
If multiple name-matches exist, the first matching fd will be used.
Let's avoid the overly abbreviated "cgroups" terminology. Let's instead write:
"Linux Control Groups (cgroups)" is the long form wherever the term is
introduced in prose. Use "control groups" in the short form wherever the term
is used within brief explanations.
Follow-up to: #4381
Lets go further and make /lib/modules/ inaccessible for services that do
not have business with modules, this is a minor improvment but it may
help on setups with custom modules and they are limited... in regard of
kernel auto-load feature.
This change introduce NameSpaceInfo struct which we may embed later
inside ExecContext but for now lets just reduce the argument number to
setup_namespace() and merge ProtectKernelModules feature.
This is useful to turn off explicit module load and unload operations on modular
kernels. This option removes CAP_SYS_MODULE from the capability bounding set for
the unit, and installs a system call filter to block module system calls.
This option will not prevent the kernel from loading modules using the module
auto-load feature which is a system wide operation.
This adds a new invocation ID concept to the service manager. The invocation ID
identifies each runtime cycle of a unit uniquely. A new randomized 128bit ID is
generated each time a unit moves from and inactive to an activating or active
state.
The primary usecase for this concept is to connect the runtime data PID 1
maintains about a service with the offline data the journal stores about it.
Previously we'd use the unit name plus start/stop times, which however is
highly racy since the journal will generally process log data after the service
already ended.
The "invocation ID" kinda matches the "boot ID" concept of the Linux kernel,
except that it applies to an individual unit instead of the whole system.
The invocation ID is passed to the activated processes as environment variable.
It is additionally stored as extended attribute on the cgroup of the unit. The
latter is used by journald to automatically retrieve it for each log logged
message and attach it to the log entry. The environment variable is very easily
accessible, even for unprivileged services. OTOH the extended attribute is only
accessible to privileged processes (this is because cgroupfs only supports the
"trusted." xattr namespace, not "user."). The environment variable may be
altered by services, the extended attribute may not be, hence is the better
choice for the journal.
Note that reading the invocation ID off the extended attribute from journald is
racy, similar to the way reading the unit name for a logging process is.
This patch adds APIs to read the invocation ID to sd-id128:
sd_id128_get_invocation() may be used in a similar fashion to
sd_id128_get_boot().
PID1's own logging is updated to always include the invocation ID when it logs
information about a unit.
A new bus call GetUnitByInvocationID() is added that allows retrieving a bus
path to a unit by its invocation ID. The bus path is built using the invocation
ID, thus providing a path for referring to a unit that is valid only for the
current runtime cycleof it.
Outlook for the future: should the kernel eventually allow passing of cgroup
information along AF_UNIX/SOCK_DGRAM messages via a unique cgroup id, then we
can alter the invocation ID to be generated as hash from that rather than
entirely randomly. This way we can derive the invocation race-freely from the
messages.
Make ALSA entries, latency interface, mtrr, apm/acpi, suspend interface,
filesystems configuration and IRQ tuning readonly.
Most of these interfaces now days should be in /sys but they are still
available through /proc, so just protect them. This patch does not touch
/proc/net/...
Let's merge a couple of columns, to make the table a bit shorter. This
effectively just drops whitespace, not contents, but makes the currently
humungous table much much more compact.
This reworks the documentation for ReadOnlyPaths=, ReadWritePaths=,
InaccessiblePaths=. It no longer claims that we'd follow symlinks relative to
the host file system. (Which wasn't true actually, as we didn't follow symlinks
at all in the most recent releases, and we know do follow them, but relative to
RootDirectory=).
This also replaces all references to the fact that all fs namespacing options
can be undone with enough privileges and disable propagation by a single one in
the documentation of ReadOnlyPaths= and friends, and then directs the read to
this in all other places.
Moreover a hint is added to the documentation of SystemCallFilter=, suggesting
usage of ~@mount in case any of the fs namespacing related options are used.
Let's drop the reference to the cap_from_name() function in the documentation
for the capabilities setting, as it is hardly helpful. Our readers are not
necessarily C hackers knowing the semantics of cap_from_name(). Moreover, the
strings we accept are just the plain capability names as listed in
capabilities(7) hence there's really no point in confusing the user with
anything else.
Let's make sure that services that use DynamicUser=1 cannot leave files in the
file system should the system accidentally have a world-writable directory
somewhere.
This effectively ensures that directories need to be whitelisted rather than
blacklisted for access when DynamicUser=1 is set.
Let's tighten our sandbox a bit more: with this change ProtectSystem= gains a
new setting "strict". If set, the entire directory tree of the system is
mounted read-only, but the API file systems /proc, /dev, /sys are excluded
(they may be managed with PrivateDevices= and ProtectKernelTunables=). Also,
/home and /root are excluded as those are left for ProtectHome= to manage.
In this mode, all "real" file systems (i.e. non-API file systems) are mounted
read-only, and specific directories may only be excluded via
ReadWriteDirectories=, thus implementing an effective whitelist instead of
blacklist of writable directories.
While we are at, also add /efi to the list of paths always affected by
ProtectSystem=. This is a follow-up for
b52a109ad3 which added /efi as alternative for
/boot. Our namespacing logic should respect that too.
This adds the boolean RemoveIPC= setting to service, socket, mount and swap
units (i.e. all unit types that may invoke processes). if turned on, and the
unit's user/group is not root, all IPC objects of the user/group are removed
when the service is shut down. The life-cycle of the IPC objects is hence bound
to the unit life-cycle.
This is particularly relevant for units with dynamic users, as it is essential
that no objects owned by the dynamic users survive the service exiting. In
fact, this patch adds code to imply RemoveIPC= if DynamicUser= is set.
In order to communicate the UID/GID of an executed process back to PID 1 this
adds a new "user lookup" socket pair, that is inherited into the forked
processes, and closed before the exec(). This is needed since we cannot do NSS
from PID 1 due to deadlock risks, However need to know the used UID/GID in
order to clean up IPC owned by it if the unit shuts down.
This should simplify monitoring tools for services, by passing the most basic
information about service result/exit information via environment variables,
thus making it unnecessary to retrieve them explicitly via the bus.
This setting adds minimal user namespacing support to a service. When set the invoked
processes will run in their own user namespace. Only a trivial mapping will be
set up: the root user/group is mapped to root, and the user/group of the
service will be mapped to itself, everything else is mapped to nobody.
If this setting is used the service runs with no capabilities on the host, but
configurable capabilities within the service.
This setting is particularly useful in conjunction with RootDirectory= as the
need to synchronize /etc/passwd and /etc/group between the host and the service
OS tree is reduced, as only three UID/GIDs need to match: root, nobody and the
user of the service itself. But even outside the RootDirectory= case this
setting is useful to substantially reduce the attack surface of a service.
Example command to test this:
systemd-run -p PrivateUsers=1 -p User=foobar -t /bin/sh
This runs a shell as user "foobar". When typing "ps" only processes owned by
"root", by "foobar", and by "nobody" should be visible.
As suggested by @mbiebl we already use the "!" special char in unit file
assignments for negation, hence we should not use it in a different context for
privileged execution. Let's use "+" instead.
This adds a new boolean setting DynamicUser= to service files. If set, a new
user will be allocated dynamically when the unit is started, and released when
it is stopped. The user ID is allocated from the range 61184..65519. The user
will not be added to /etc/passwd (but an NSS module to be added later should
make it show up in getent passwd).
For now, care should be taken that the service writes no files to disk, since
this might result in files owned by UIDs that might get assigned dynamically to
a different service later on. Later patches will tighten sandboxing in order to
ensure that this cannot happen, except for a few selected directories.
A simple way to test this is:
systemd-run -p DynamicUser=1 /bin/sleep 99999
This patch renames Read{Write,Only}Directories= and InaccessibleDirectories=
to Read{Write,Only}Paths= and InaccessiblePaths=, previous names are kept
as aliases but they are not advertised in the documentation.
Renamed variables:
`read_write_dirs` --> `read_write_paths`
`read_only_dirs` --> `read_only_paths`
`inaccessible_dirs` --> `inaccessible_paths`
Despite the name, `Read{Write,Only}Directories=` already allows for
regular file paths to be masked. This commit adds the same behavior
to `InaccessibleDirectories=` and makes it explicit in the doc.
This patch introduces `/run/systemd/inaccessible/{reg,dir,chr,blk,fifo,sock}`
{dile,device}nodes and mounts on the appropriate one the paths specified
in `InacessibleDirectories=`.
Based on Luca's patch from https://github.com/systemd/systemd/pull/3327
This permits services to detect whether their stdout/stderr is connected to the
journal, and if so talk to the journal directly, thus permitting carrying of
metadata.
As requested by the gtk folks: #2473
This adds three new seccomp syscall groups: @keyring for kernel keyring access,
@cpu-emulation for CPU emulation features, for exampe vm86() for dosemu and
suchlike, and @debug for ptrace() and related calls.
Also, the @clock group is updated with more syscalls that alter the system
clock. capset() is added to @privileged, and pciconfig_iobase() is added to
@raw-io.
Finally, @obsolete is a cleaned up. A number of syscalls that never existed on
Linux and have no number assigned on any architecture are removed, as they only
exist in the man pages and other operating sytems, but not in code at all.
create_module() is moved from @module to @obsolete, as it is an obsolete system
call. mem_getpolicy() is removed from the @obsolete list, as it is not
obsolete, but simply a NUMA API.
This patch implements the new magic character '!'. By putting '!' in front
of a command, systemd executes it with full privileges ignoring paramters
such as User, Group, SupplementaryGroups, CapabilityBoundingSet,
AmbientCapabilities, SecureBits, SystemCallFilter, SELinuxContext,
AppArmorProfile, SmackProcessLabel, and RestrictAddressFamilies.
Fixes partially https://github.com/systemd/systemd/issues/3414
Related to https://github.com/coreos/rkt/issues/2482
Testing:
1. Create a user 'bob'
2. Create the unit file /etc/systemd/system/exec-perm.service
(You can use the example below)
3. sudo systemctl start ext-perm.service
4. Verify that the commands starting with '!' were not executed as bob,
4.1 Looking to the output of ls -l /tmp/exec-perm
4.2 Each file contains the result of the id command.
`````````````````````````````````````````````````````````````````
[Unit]
Description=ext-perm
[Service]
Type=oneshot
TimeoutStartSec=0
User=bob
ExecStartPre=!/usr/bin/sh -c "/usr/bin/rm /tmp/exec-perm*" ;
/usr/bin/sh -c "/usr/bin/id > /tmp/exec-perm-start-pre"
ExecStart=/usr/bin/sh -c "/usr/bin/id > /tmp/exec-perm-start" ;
!/usr/bin/sh -c "/usr/bin/id > /tmp/exec-perm-star-2"
ExecStartPost=/usr/bin/sh -c "/usr/bin/id > /tmp/exec-perm-start-post"
ExecReload=/usr/bin/sh -c "/usr/bin/id > /tmp/exec-perm-reload"
ExecStop=!/usr/bin/sh -c "/usr/bin/id > /tmp/exec-perm-stop"
ExecStopPost=/usr/bin/sh -c "/usr/bin/id > /tmp/exec-perm-stop-post"
[Install]
WantedBy=multi-user.target]
`````````````````````````````````````````````````````````````````
New exec boolean MemoryDenyWriteExecute, when set, installs
a seccomp filter to reject mmap(2) with PAGE_WRITE|PAGE_EXEC
and mprotect(2) with PAGE_EXEC.
Definitions of ReadWriteDirectories=, ReadOnlyDirectories=, InaccessibleDirectories=,
WorkingDirectory=, and RootDirecory= were not clear. This patch specifies when
they are relative to the host's root directory and when they are relative to the service's
root directory.
Fixes#3248
Private /dev will not be managed by udev or others, so we can make it
noexec and readonly after we have made all device nodes. As /dev/shm
needs to be writable, we can't use bind_remount_recursive().
The manpage of seccomp specify that using seccomp with
SECCOMP_SET_MODE_FILTER will return EACCES if the caller do not have
CAP_SYS_ADMIN set, or if the no_new_privileges bit is not set. Hence,
without NoNewPrivilege set, it is impossible to use a SystemCall*
directive with a User directive set in system mode.
Now, NoNewPrivileges is set if we are in user mode, or if we are in
system mode and we don't have CAP_SYS_ADMIN, and SystemCall*
directives are used.
The setting is hardly useful (since its effect is generally reduced to zero due
to file system caps), and with the advent of ambient caps an actually useful
replacement exists, hence let's get rid of this.
I am pretty sure this was unused and our man page already recommended against
its use, hence this should be a safe thing to remove.
The new parser supports:
<value> - specify both limits to the same value
<soft:hard> - specify both limits
the size or time specific suffixes are supported, for example
LimitRTTIME=1sec
LimitAS=4G:16G
The patch introduces parse_rlimit_range() and rlim type (size, sec,
usec, etc.) specific parsers. No code is duplicated now.
The patch also sync docs for DefaultLimitXXX= and LimitXXX=.
References: https://github.com/systemd/systemd/issues/1769
For all units ensure there's an "Automatic Dependencies" section in the
man page, and explain which dependencies are automatically added in all
cases, and which ones are added on top if DefaultDependencies=yes is
set.
This is also done for systemd.exec(5), systemd.resource-control(5) and
systemd.unit(5) as these pages describe common behaviour of various unit
types.
This directive allows passing environment variables from the system
manager to spawned services. Variables in the system manager can be set
inside a container by passing `--set-env=...` options to systemd-spawn.
Tested with an on-disk test.service unit. Tested using multiple variable
names on a single line, with an empty setting to clear the current list
of variables, with non-existing variables.
Tested using `systemd-run -p PassEnvironment=VARNAME` to confirm it
works with transient units.
Confirmed that `systemctl show` will display the PassEnvironment
settings.
Checked that man pages are generated correctly.
No regressions in `make check`.
Let's make sure "LimitCPU=30min" can be parsed properly, following the
usual logic how we parse time values. Similar for LimitRTTIME=.
While we are at it, extend a bit on the man page section about resource
limits.
Fixes: #1772
Let's make things more user-friendly and support for example
LimitAS=16G
rather than force users to always use LimitAS=16106127360.
The change is relevant for options:
[Default]Limit{FSIZE,DATA,STACK,CORE,RSS,AS,MEMLOCK,MSGQUEUE}
The patch introduces config_parse_bytes_limit(), it's the same as
config_parse_limit() but uses parse_size() tu support the suffixes.
Addresses: https://github.com/systemd/systemd/issues/1772
Document support for commas as a separator and possibility of specifying
ranges of CPU indices.
Tested by regenerating the manpages locally and reading them on man.
If set to ~ the working directory is set to the home directory of the
user configured in User=.
This change also exposes the existing switch for the working directory
that allowed making missing working directories non-fatal.
This also changes "machinectl shell" to make use of this to ensure that
the invoked shell is by default in the user's home directory.
Fixes#1268.
When generating utmp/wtmp entries, optionally add both LOGIN_PROCESS and
INIT_PROCESS entries or even all three of LOGIN_PROCESS, INIT_PROCESS
and USER_PROCESS entries, instead of just a single INIT_PROCESS entry.
With this change systemd may be used to not only invoke a getty directly
in a SysV-compliant way but alternatively also a login(1) implementation
or even forego getty and login entirely, and invoke arbitrary shells in
a way that they appear in who(1) or w(1).
This is preparation for a later commit that adds a "machinectl shell"
operation to invoke a shell in a container, in a way that is compatible
with who(1) and w(1).
This did not really work out as we had hoped. Trying to do this upstream
introduced several problems that probably makes it better suited as a
downstream patch after all. At any rate, it is not releaseable in the
current state, so we at least need to revert this before the release.
* by adjusting the path to binaries, but not do the same thing to the
search path we end up with inconsistent man-pages. Adjusting the search
path too would be quite messy, and it is not at all obvious that this is
worth the effort, but at any rate it would have to be done before we
could ship this.
* this means that distributed man-pages does not make sense as they depend
on config options, and for better or worse we are still distributing
man pages, so that is something that definitely needs sorting out before
we could ship with this patch.
* we have long held that split-usr is only minimally supported in order
to boot, and something we hope will eventually go away. So before we start
adding even more magic/effort in order to make this work nicely, we should
probably question if it makes sense at all.
In particular, use /lib/systemd instead of /usr/lib/systemd in distributions
like Debian which still have not adopted a /usr merge setup.
Use XML entities from man/custom-entities.ent to replace configured paths while
doing XSLT processing of the original XML files. There was precedent of some
files (such as systemd.generator.xml) which were already using this approach.
This addresses most of the (manual) fixes from this patch:
http://anonscm.debian.org/cgit/pkg-systemd/systemd.git/tree/debian/patches/Fix-paths-in-man-pages.patch?h=experimental-220
The idea of using generic XML entities was presented here:
http://lists.freedesktop.org/archives/systemd-devel/2015-May/032240.html
This patch solves almost all the issues, with the exception of:
- Path to /bin/mount and /bin/umount.
- Generic statements about preference of /lib over /etc.
These will be handled separately by follow up patches.
Tested:
- With default configure settings, ran "make install" to two separate
directories and compared the output to confirm they matched exactly.
- Used a set of configure flags including $CONFFLAGS from Debian:
http://anonscm.debian.org/cgit/pkg-systemd/systemd.git/tree/debian/rules
Installed the tree and confirmed the paths use /lib/systemd instead of
/usr/lib/systemd and that no other unexpected differences exist.
- Confirmed that `make distcheck` still passes.
In service file, if the file has some of special SMACK label in
ExecStart= and systemd has no permission for the special SMACK label
then permission error will occurred. To resolve this, systemd should
be able to set its SMACK label to something accessible of ExecStart=.
So introduce new SmackProcessLabel. If label is specified with
SmackProcessLabel= then the child systemd will set its label to
that. To successfully execute the ExecStart=, accessible label should
be specified with SmackProcessLabel=.
Additionally, by SMACK policy, if the file in ExecStart= has no
SMACK64EXEC then the executed process will have given label by
SmackProcessLabel=. But if the file has SMACK64EXEC then the
SMACK64EXEC label will be overridden.
[zj: reword man page]
It is annoying when we have dead links on fd.o.
Add project='man-pages|die-net|archlinux' to <citerefentry>-ies.
In generated html, add external links to
http://man7.org/linux/man-pages/man, http://linux.die.net/man/,
https://www.archlinux.org/.
By default, pages in sections 2 and 4 go to man7, since Michael
Kerrisk is the autorative source on kernel related stuff.
The rest of links goes to linux.die.net, because they have the
manpages.
Except for the pacman stuff, since it seems to be only available from
archlinux.org.
Poor gummiboot gets no link, because gummitboot(8) ain't to be found
on the net. According to common wisdom, that would mean that it does
not exist. But I have seen Kay using it, so I know it does, and
deserves to be found. Can somebody be nice and put it up somewhere?
Instead of blindly creating another bind mount for read-only mounts,
check if there's already one we can use, and if so, use it. Also,
recursively mark all submounts read-only too. Also, ignore autofs mounts
when remounting read-only unless they are already triggered.
This would otherwise unconditionally trigger any /boot autofs mount,
which we probably should avoid.
ProtectSystem= will now only cover /usr and (optionally) /etc, both of
which cannot be autofs anyway.
ProtectHome will continue to cover /run/user and /home. The former
cannot be autofs either. /home could be, however is frequently enough
used (unlikey /boot) so that it isn't too problematic to simply trigger
it unconditionally via ProtectHome=.
Also, rename ProtectedHome= to ProtectHome=, to simplify things a bit.
With this in place we now have two neat options ProtectSystem= and
ProtectHome= for protecting the OS itself (and optionally its
configuration), and for protecting the user's data.
ReadOnlySystem= uses fs namespaces to mount /usr and /boot read-only for
a service.
ProtectedHome= uses fs namespaces to mount /home and /run/user
inaccessible or read-only for a service.
This patch also enables these settings for all our long-running services.
Together they should be good building block for a minimal service
sandbox, removing the ability for services to modify the operating
system or access the user's private data.
tcpwrap is legacy code, that is barely maintained upstream. It's APIs
are awful, and the feature set it exposes (such as DNS and IDENT
access control) questionnable. We should not support this natively in
systemd.
Hence, let's remove the code. If people want to continue making use of
this, they can do so by plugging in "tcpd" for the processes they start.
With that scheme things are as well or badly supported as they were from
traditional inetd, hence no functionality is really lost.
This new unit settings allows restricting which address families are
available to processes. This is an effective way to minimize the attack
surface of services, by turning off entire network stacks for them.
This is based on seccomp, and does not work on x86-32, since seccomp
cannot filter socketcall() syscalls on that platform.
This permit to switch to a specific apparmor profile when starting a daemon. This
will result in a non operation if apparmor is disabled.
It also add a new build requirement on libapparmor for using this feature.
Issues fixed:
* missing words required by grammar
* duplicated or extraneous words
* inappropriate forms (e.g. singular/plural), and declinations
* orthographic misspellings
Actually 'STDOUT' is something that doesn't appear anywhere: in the
stdlib we have 'stdin', and there's only the constant STDOUT_FILENO,
so there's no reason to use capitals. When refering to code,
STDOUT/STDOUT/STDERR are replaced with stdin/stdout/stderr, and in
other places they are replaced with normal phrases like standard
output, etc.
* standardize capitalization of STDIN, STDOUT, and STDERR
* reword some sentences for clarity
* reflow some very long lines to be shorter than ~80 characters
* add some missing <literal>, <constant>, <varname>, <option>, and <filename> tags
- Allow configuration of an errno error to return from blacklisted
syscalls, instead of immediately terminating a process.
- Fix parsing logic when libseccomp support is turned off
- Only keep the actual syscall set in the ExecContext, and generate the
string version only on demand.
Let's always call the security labels the same way:
SMACK: "Smack Label"
SELINUX: "SELinux Security Context"
And the low-level encapsulation is called "seclabel". Now let's hope we
stick to this vocabulary in future, too, and don't mix "label"s and
"security contexts" and so on wildly.
This permit to let system administrators decide of the domain of a service.
This can be used with templated units to have each service in a différent
domain ( for example, a per customer database, using MLS or anything ),
or can be used to force a non selinux enabled system (jvm, erlang, etc)
to start in a different domain for each service.
Similar to PrivateNetwork=, PrivateTmp= introduce PrivateDevices= that
sets up a private /dev with only the API pseudo-devices like /dev/null,
/dev/zero, /dev/random, but not any physical devices in them.
This is a recurring submission and includes corrections to:
- missing words, preposition choice.
- change of /lib to /usr/lib, because that is what most distros are
using as the system-wide location for systemd/udev files.
This is a recurring submission and includes corrections to various
issue spotted. I guess I can just skip over reporting ubiquitous comma
placement fixes…
Since cgroups are mostly now an implementation detail of systemd lets
deemphasize it a bit in the man pages. This renames systemd.cgroup(5) to
systemd.resource-control(5) and uses the term "resource control" rather
than "cgroup" where appropriate.
This leaves the word "cgroup" in at a couple of places though, like for
example systemd-cgtop and systemd-cgls where cgroup stuff is at the core
of what is happening.
This is a recurring submission and includes corrections to various
issue spotted. I guess I can just skip over reporting ubiquitous
comma placement fixes…
Highligts in this particular commit:
- the "unsigned" type qualifier is completed to form a full type
"unsigned int"
- alphabetic -> lexicographic (that way we automatically define how
numbers get sorted)
This includes regularly-submitted corrections to comma setting and
orthographical mishaps that appeared in man/ in recent commits.
In this particular commit:
- the usual comma fixes
- expand contractions (this is prose)
Use proper grammar, word usage, adjective hyphenation, commas,
capitalization, spelling, etc.
To improve readability, some run-on sentences or sentence fragments were
revised.
[zj: remove the space from 'file name', 'host name', and 'time zone'.]
This complements existing functionality of setting variables
through 'systemctl set-environment', the kernel command line,
and through normal environment variables for systemd in session
mode.
This change is based on existing usage in systemd and online.
'File-system' may make sense in adjectival form, but man pages
seem to prefer 'file system' even in those situations.
Everything which is an absolute filename marked with <filename></filename>
lands in the index, unless noindex= attribute is present. Should make
it easier for people to find stuff when they are looking at a file on
disk.
Various formatting errors in manpages are fixed, kernel-install(1) is
restored to formatting sanity.
Previously, it would set all caps, but it should drop them all, anything
else makes little sense.
Also, document that this works as it does, and what to do in order to
assign all caps to the bounding set.
https://bugzilla.redhat.com/show_bug.cgi?id=914705
All Execs within the service, will get mounted the same
/tmp and /var/tmp directories, if service is configured with
PrivateTmp=yes. Temporary directories are cleaned up by service
itself in addition to systemd-tmpfiles. Directory which is mounted
as inaccessible is created at runtime in /run/systemd.
New sections are added: PAM options, crypttab options, commandline
options, miscellaneous. The last category will be used for all
untagged <varname> elements.
Commandline options sections is meant to be a developer tool: when
adding an option it is sometimes useful to be able to check if
similarly named options exist elsewhere.
Hi all,
while working on another bug, I discovered the "strange" way systemd is
parsing Environment= in .service and thought it was worth documenting
(because I don't expect people to find this syntax by themselves unless
they read the parsing code ;)
Be more verbose about using space in Environment field and not
using value of other variables
Fixes https://bugzilla.redhat.com/show_bug.cgi?id=840260
[zj: expand and reformat the example a bit]
Variable definitions can be written on more than one line - if each ends
with a backslash, then is concatenated with a previous one. Only
backslash and unix end of line (\n) are treated as a continuation.
Fixes: https://bugs.freedesktop.org/show_bug.cgi?id=58083
[zj: squashed two patches together; cleaned up grammar; removed
comment about ignoring trailing backslash -- it is not ignored.]
Document continuation support in systemd.exec