IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This is a follow-up for d5ee050ffc, and
reintroduces a requirement dep from systemd-journal-flush.service onto
systemd-journald.service, but a weaker one than originally: a Wants= one
instead of a Requires= one.
Why? Simply because the service issues an IPC call to the journald,
hence it should pull it in. (Note that socket activation doesn't happen
for the Varlink socket it uses, hence we should pull in the service
itself.)
The systemd-oomd.service unit contains
[Install]
WantedBy=multi-user.target
Alias=dbus-org.freedesktop.oom1.service
which means the symlink is supposed to be created dynamically when the
service is enabled.
In the olden days systemd-resolved used dbus and it didn't make sense to start
it before dbus which is started fairly late. But we have mostly ported resolved
over to varlink. The queries from nss-resolve are done using varlink, so name
resolution can work without dbus. resolvectl still uses dbus, so e.g. 'resolvectl
query' will not work, but by starting systemd-resolved earlier we're not making this
any worse.
If systemd-resolved is started after dbus, it registers the name and everything
is fine. If it is started before dbus, it'll watch for the dbus socket and
connect later. So it should be fine to start systemd-resolved earlier. (If dbus
is stopped and restarted, unfortunately systemd-resolved does not reconnect.
This seems to be a small bug: since our daemons know how to watch for
dbus.socket, they could restart the watch if they ever lose the connection. But
this scenario shouldn't happen in normal boot, and restarting dbus is not
supported anyway.)
Moving the start earlier the following advantages:
- name resolution becomes availabe earlier, in particular for synthesized
hostnames even before the network is up.
- basic.target is part of initrd.target, so systemd-resolved will get started
in the initrd if installed. This is required for nfs-root when the server is
specified using a name (https://bugzilla.redhat.com/show_bug.cgi?id=2037311).
Otherwise, systemd-homed-active.service will fail to deactivate all
homes because homectl can no longer talk to homed if dbus stops first.
As a result, /home cannot be umounted.
Doing this on systemd-homed-active.service instead works as well, but
systemd-homed will exit 1 if dbus is already shut down.
It is used by udevd and networkd. Since udevd is enabled statically, let's also
change the preset to "on". networkd is opt-in, so let's pull in the generator
when enabling networkd too.
Fixes#21626. (The bug report talks about /run, but the issue is actually with
/tmp.) People use /tmp for various things that fit in memory, e.g. unpacking
packages, and 400k is not much. Let's raise is a bit.
Programs run by udev triggers may need to execute the bpf() syscall. Even more
so, since on a cgroup v2 system, the only way to set up device access filtering
is to install a BPF program on the cgroup in question and one way of passing
data to such program is through BPF maps, which can only be access using the
bpf() syscall. One such use case was identified in RHBZ#2025264 related to
snap-device-helper, and led to RHBZ#2027627 being filed.
Unfortunately there is no finer grained control over what gets passed in the
syscall, so just enable bpf() and leave fine grained mediation to other
security layers (eg. SELinux).
Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=2027627
Signed-off-by: Maciek Borzecki <maciek.borzecki@gmail.com>
Due to the fact that systemd-journal-flush.service has
"Requires=systemd-journald.service", this service is stopped too when journald
is requested to do so.
However stopping systemd-journal-flush.service implies that journald
relinquishes /var hence implicitly switching back to the volatile storage
mode and removing /run/systemd/journal/flushed.
If journald is started afterwards, it will run in volatile storage mode
regardless of the value of 'Storage=' as it believes now that /var is not yet
ready (because the flushed flag is missing).
Because this flag is mainly an indication for journald that the initialization
of /var/log/journal (during the boot process) has been done,
systemd-journal-flush.service shouldn't be tied to the state of journald itself
but to the state of /var/log/journal, hence to the state of the system.
Parsing objects is risky as data could be malformed or malicious,
so avoid doing that from the main systemd-coredump process and
instead fork another process, and set it to avoid generating
core files itself.
Users may use rules that refer to binaries e.g. in /opt or /usr/local,
and those directories may be separate mount points. We don't need the
binfmt rules in early boot, so let's delay the service so that we can
rely on the full local filesystem being visible.
Fixes#21178.
When using "capture : true" in custom_target()s the mode of the source
file is not preserved when the generated file is not installed and so
needs to be tweaked manually. Switch from output capture to creating the
target file and copy the permissions from the input file.
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
If the tty arg is set to "-", agetty uses the stdin fd as the tty.
Let's pass the tty this way so that we keep an fd open to the tty
at all times. If all fd's to a tty are closed, the kernel might
reset the tty which we want to avoid.
This adds support for dm integrity targets and an associated
/etc/integritytab file which is required as the dm integrity device
super block doesn't include all of the required metadata to bring up
the device correctly. See integritytab man page for details.
Let's make it slightly more likely that a per-user service manager is
killed than any system service. We use a conservative 100 (from a range
that goes all the way to 1000).
Replaces: #17426
Together with the previous commit this means: system manager and system
services are placed at OOM score adjustment 0 (specifically: they
inherit kernel default of 0). User service manager (both for root and
non-root) are placed at 100. User services for non-root are placed at
200, those for root inherit 100.
Note that processes forked off the user *sessions* (i.e. not forked off
the per-user service manager) remain at 0 (e.g. the shell process
created by a tty or ssh login). This probably should be
addressed too one day (maybe in pam_systemd?), but is not covered here.
Compared to PID1 where systemd-oomd has to be the client to PID1
because PID1 is a more privileged process than systemd-oomd, systemd-oomd
is the more privileged process compared to a user manager so we have
user managers be the client whereas systemd-oomd is now the server.
The same varlink protocol is used between user managers and systemd-oomd
to deliver ManagedOOM property updates. systemd-oomd now sets up a varlink
server that user managers connect to to send ManagedOOM property updates.
We also add extra validation to make sure that non-root senders don't
send updates for cgroups they don't own.
The integration test was extended to repeat the chill/bloat test using
a user manager instead of PID1.
In 2020 mount.cifs started to require a bunch for caps to work. let's
add them to the capability bounding set.
Also, SMB support obviously needs network access, hence open that up.
Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1962920
Normally, these services are killed because we run isolate. But I booted into
emergency mode (because of a futher bug with us timing out improperly on the
luks password prompt), and then continuted to the host system by running
'systemctl start systemd-switch-root.service'. My error, but the results are
confusing and bad: systemd in the host sees 'systemd-tmpfiles-setup.service'
as started successfully, and doesn't restart it, so the setup for /tmp/.X11 is
not done and gdm.service fails. So while we wouldn't encounter this during
normal successful boot, I think it's good to make this more robust.
The dep is added to systemd-tmpfiles-{setup,clean}, because /tmp is not
propagated over switch-root. /dev is, so I didn't touch
systemd-tmpfiles-setup-dev.service.
Boot loaders are software like any other, and hence muse be updated in
regular intervals. Let's add a simple (optional) service that updates
sd-boot automatically from the host if it is found installed but
out-of-date in the ESP.
Note that traditional distros probably should invoke "bootctl update"
directly from the package scripts whenver they update the sd-boot
package. This new service is primarily intended for image-based update
systems, i.e. where the rootfs or /usr are atomically updated in A/B
style and where the current boot loader should be synced into the ESP
from the currently booted image every now and then. It can also act as
safety net if the packaging scripts in classic systems are't doing the
bootctl update stuff themselves.
Since updating boot loaders mit be a tiny bit risky (even though we try
really hard to make them robust, by fsck'ing the ESP and mounting it only on
demand, by doing updates mostly as single file updates and by fsync()ing
heavily) this is an optional feature, i.e. subject to "systemctl
enable". However, since it's the right thing to do I think, it's enabled
by default via the preset logic.
Note that the updating logic is implemented gracefully: i.e. it's a NOP
if the boot loader is already new enough, or was never installed.
"Update about" is not gramatically correct. I also think saying "Record" makes
this easier to understand for people who don't necessarilly know what UTMP is.
In general, it's not very usuful to repeat the unit name as the description.
Especially when the word is a common name and if somebody doesn't understand
the meaning immediately, they are not going to gain anything from the
repeat either, e.g. "halt", "swap".
In the status-unit-format=combined output parentheses are used around
Description, so avoid using parenthesis in the Description itself.
Since d8f9686c0f we use the chattr +i flag
for marking containers in directories as reead-only. But to do so we
need the cap for it, hence grant it.
Fixes: #19115
I'm working on building initramfs images directly from normal packages, and it
doesn't make sense for those units to be started. Pristine system rpms need to
behave correctly as much as possible also in the initrd, and those units are
enabled by the rpms. There usually isn't enough time for the timer to actually
fire, but starting it gives a line on the console and generally looks confusing
and sloppy. Flushing the journal means that its actually lost, since the real
/var is not available yet.
Another approach would be not enable those units, but right now they are
statically enabled, and changing that would be more work, and doesn't really
seem necessary, since the condition checks are very quick.
Checking for /etc/initrd-release is the standard condition that the initrd
units use, so let's do the same here.
The comment talks about upstream development steps and doesn't make
sense for users. We used special '## ' syntax to strip it out during
build, but it got inadvertently reformatted as a normal comment
in 3982becc92.
We don't need two (and half) templating systems anymore, yay!
I'm keeping the changes minimal, to make the diff manageable. Some enhancements
due to a better templating system might be possible in the future.
For handling of '## ' — see the next commit.
Old meson fails with:
Element not a string: [<Holder: <ExternalProgram 'sh' -> ['/bin/sh']>>, '-c', 'test -n "$DESTDIR" || /bin/journalctl --update-catalog']
I'm doing it as a revert so that it's easy to undo the revert when we require
newer meson. The effect is not so bad, maybe a dozen or so lines about finding
'sh'.
Meson 0.58 has gotten quite bad with emitting a message every time
a quoted command is used:
Program /home/zbyszek/src/systemd-work/tools/meson-make-symlink.sh found: YES (/home/zbyszek/src/systemd-work/tools/meson-make-symlink.sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program sh found: YES (/usr/bin/sh)
Program xsltproc found: YES (/usr/bin/xsltproc)
Configuring custom-entities.ent using configuration
Message: Skipping bootctl.1 because ENABLE_EFI is false
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Message: Skipping journal-remote.conf.5 because HAVE_MICROHTTPD is false
Message: Skipping journal-upload.conf.5 because HAVE_MICROHTTPD is false
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Message: Skipping loader.conf.5 because ENABLE_EFI is false
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
Program ln found: YES (/usr/bin/ln)
...
Let's suffer one message only for each command. Hopefully we can silence
even this when https://github.com/mesonbuild/meson/issues/8642 is
resolved.
This reverts commit 7c20dd4b6e.
Debian has now been updated to patch the issue, so SemaphoreCI should
no longer fail. The fix has also been backported to the affected
stable branches.
Otherwise a coredump started at the inconvinient moment can stop
shutdown.target leaving the system in a halfway-down state:
Pulling in shutdown.target/start from systemd-poweroff.service/start
Added job shutdown.target/start to transaction.
...
Keeping job shutdown.target/start because of systemd-poweroff.service/start
...
[ OK ] Stopped target Remote File Systems.
shutdown.target: starting held back, waiting for: systemd-networkd.socket
sysinit.target: stopping held back, waiting for: remount_tmp.service
systemd-coredump.socket: Incoming traffic
...
systemd-coredump@0-243-0.service: Trying to enqueue job systemd-coredump@0-243-0.service/start/replace
Added job systemd-coredump@0-243-0.service/start to transaction.
Pulling in systemd-journald.socket/start from systemd-coredump@0-243-0.service/start
Added job systemd-journald.socket/start to transaction.
Pulling in system.slice/start from systemd-journald.socket/start
Added job system.slice/start to transaction.
Pulling in -.slice/start from system.slice/start
Added job -.slice/start to transaction.
Pulling in system-systemd\x2dcoredump.slice/start from systemd-coredump@0-243-0.service/start
Added job system-systemd\x2dcoredump.slice/start to transaction.
Pulling in system.slice/start from system-systemd\x2dcoredump.slice/start
Pulling in shutdown.target/stop from system-systemd\x2dcoredump.slice/start
Added job shutdown.target/stop to transaction.
...
Keeping job systemd-poweroff.service/stop because of umount.target/stop
Keeping job shutdown.target/stop because of systemd-coredump@0-243-0.service/start
This changes the fstab-generator to handle mounting of /usr/ a bit
differently than before. Instead of immediately mounting the fs to
/sysroot/usr/ we'll first mount it to /sysusr/usr/ and then add a
separate bind mount that mounts it from /sysusr/usr/ to /sysroot/usr/.
This way we can access /usr independently of the root fs, without for
waiting to be mounted via the /sysusr/ hierarchy. This is useful for
invoking systemd-repart while a root fs doesn't exist yet and for
creating it, with partition data read from the /usr/ hierarchy.
This introduces a new generic target initrd-usr-fs.target that may be
used to generically order services against /sysusr/ to become available.
systemd-networkd.socket can re-start systemd-networkd.service in
shutdown and by doing this even stop shutdown.target leaving the
system in halfway-down state.
Fixes#4955.
Single-param LoadCredential= in units causes systemd v247/v248 to
assert when parsing. Disable it for now, until the fix is merged
in the stable trees, released and available (eg: in Debian
for the CI)
See: https://github.com/systemd/systemd/issues/19178
With 8f20232fcb systemd-localed supports
generating locales when required. This fails if the locale directory is
read-only, so make it writable.
Closes#19138
Let's make use of our own credentials infrastructure in our tools: let's
hook up systemd-sysusers with the credentials logic, so that the root
password can be provisioned this way. This is really useful when working
with stateless systems, in particular nspawn's "--volatile=yes" switch,
as this works now:
# systemd-nspawn -i foo.raw --volatile=yes --set-credential=passwd.plaintext-password:foo
For the first time we have a nice, non-interactive way to provision the
root password for a fully stateless system from the container manager.
Yay!
We have a chicken and egg problem: validation of DNSSEC signatures
doesn't work without a correct clock, but to set the correct clock we
need to contact NTP servers which requires resolving a hostname, which
would normally require DNSSEC validation.
Let's break the cycle by excluding NTP hostname resolution from
validation for now.
Of course, this leaves NTP traffic unprotected. To cover that we need
NTPSEC support, which we can add later.
Fixes: #5873#15607
Even though many of those scripts are very simple, it is easier to include
the header than to try to say whether each of those files is trivial enough
not to require one.
We'll leave this as opt-in (i.e. a unit that must be enabled
explicitly), since this is supposed to be a debug/developer feature
primarily, and thus no be around in regular production systems.
This adds the support for veritytab.
The veritytab file contains at most five fields, the first four are
mandatory, the last one is optional:
- The first field contains the name of the resulting verity volume; its
block device is set up /dev/mapper/</filename>.
- The second field contains a path to the underlying block data device,
or a specification of a block device via UUID= followed by the UUID.
- The third field contains a path to the underlying block hash device,
or a specification of a block device via UUID= followed by the UUID.
- The fourth field is the roothash in hexadecimal.
- The fifth field, if present, is a comma-delimited list of options.
The following options are recognized only: ignore-corruption,
restart-on-corruption, panic-on-corruption, ignore-zero-blocks,
check-at-most-once and root-hash-signature. The others options will
be implemented later.
Also, this adds support for the new kernel verity command line boolean
option "veritytab" which enables the read for veritytab, and the new
environment variable SYSTEMD_VERITYTAB which sets the path to the file
veritytab to read.
Instead of invoking meson-add-wants.sh once for each wants that has
to be added, we pass all wants to a single invocation of
meson-add-wants.sh and in meson-add-wants.sh, loop over the
arguments.
This saves about 300ms on the install step.
Before:
```
‣ Running build script...
[1/418] Generating version.h with a custom command
Installing /root/build/po/be.gmo to /root/dest/usr/share/locale/be/LC_MESSAGES/systemd.mo
Installing /root/build/po/be@latin.gmo to /root/dest/usr/share/locale/be@latin/LC_MESSAGES/systemd.mo
Installing /root/build/po/bg.gmo to /root/dest/usr/share/locale/bg/LC_MESSAGES/systemd.mo
Installing /root/build/po/ca.gmo to /root/dest/usr/share/locale/ca/LC_MESSAGES/systemd.mo
Installing /root/build/po/cs.gmo to /root/dest/usr/share/locale/cs/LC_MESSAGES/systemd.mo
Installing /root/build/po/da.gmo to /root/dest/usr/share/locale/da/LC_MESSAGES/systemd.mo
Installing /root/build/po/de.gmo to /root/dest/usr/share/locale/de/LC_MESSAGES/systemd.mo
Installing /root/build/po/el.gmo to /root/dest/usr/share/locale/el/LC_MESSAGES/systemd.mo
Installing /root/build/po/es.gmo to /root/dest/usr/share/locale/es/LC_MESSAGES/systemd.mo
Installing /root/build/po/fr.gmo to /root/dest/usr/share/locale/fr/LC_MESSAGES/systemd.mo
Installing /root/build/po/gl.gmo to /root/dest/usr/share/locale/gl/LC_MESSAGES/systemd.mo
Installing /root/build/po/hr.gmo to /root/dest/usr/share/locale/hr/LC_MESSAGES/systemd.mo
Installing /root/build/po/hu.gmo to /root/dest/usr/share/locale/hu/LC_MESSAGES/systemd.mo
Installing /root/build/po/id.gmo to /root/dest/usr/share/locale/id/LC_MESSAGES/systemd.mo
Installing /root/build/po/it.gmo to /root/dest/usr/share/locale/it/LC_MESSAGES/systemd.mo
Installing /root/build/po/ja.gmo to /root/dest/usr/share/locale/ja/LC_MESSAGES/systemd.mo
Installing /root/build/po/ko.gmo to /root/dest/usr/share/locale/ko/LC_MESSAGES/systemd.mo
Installing /root/build/po/lt.gmo to /root/dest/usr/share/locale/lt/LC_MESSAGES/systemd.mo
Installing /root/build/po/pl.gmo to /root/dest/usr/share/locale/pl/LC_MESSAGES/systemd.mo
Installing /root/build/po/pt_BR.gmo to /root/dest/usr/share/locale/pt_BR/LC_MESSAGES/systemd.mo
Installing /root/build/po/ro.gmo to /root/dest/usr/share/locale/ro/LC_MESSAGES/systemd.mo
Installing /root/build/po/ru.gmo to /root/dest/usr/share/locale/ru/LC_MESSAGES/systemd.mo
Installing /root/build/po/sk.gmo to /root/dest/usr/share/locale/sk/LC_MESSAGES/systemd.mo
Installing /root/build/po/sr.gmo to /root/dest/usr/share/locale/sr/LC_MESSAGES/systemd.mo
Installing /root/build/po/sv.gmo to /root/dest/usr/share/locale/sv/LC_MESSAGES/systemd.mo
Installing /root/build/po/tr.gmo to /root/dest/usr/share/locale/tr/LC_MESSAGES/systemd.mo
Installing /root/build/po/uk.gmo to /root/dest/usr/share/locale/uk/LC_MESSAGES/systemd.mo
Installing /root/build/po/zh_CN.gmo to /root/dest/usr/share/locale/zh_CN/LC_MESSAGES/systemd.mo
Installing /root/build/po/zh_TW.gmo to /root/dest/usr/share/locale/zh_TW/LC_MESSAGES/systemd.mo
Installing /root/build/po/pa.gmo to /root/dest/usr/share/locale/pa/LC_MESSAGES/systemd.mo
real 0m1.465s
user 0m1.025s
sys 0m0.426s
```
After:
```
‣ Running build script...
[1/418] Generating version.h with a custom command
Installing /root/build/po/be.gmo to /root/dest/usr/share/locale/be/LC_MESSAGES/systemd.mo
Installing /root/build/po/be@latin.gmo to /root/dest/usr/share/locale/be@latin/LC_MESSAGES/systemd.mo
Installing /root/build/po/bg.gmo to /root/dest/usr/share/locale/bg/LC_MESSAGES/systemd.mo
Installing /root/build/po/ca.gmo to /root/dest/usr/share/locale/ca/LC_MESSAGES/systemd.mo
Installing /root/build/po/cs.gmo to /root/dest/usr/share/locale/cs/LC_MESSAGES/systemd.mo
Installing /root/build/po/da.gmo to /root/dest/usr/share/locale/da/LC_MESSAGES/systemd.mo
Installing /root/build/po/de.gmo to /root/dest/usr/share/locale/de/LC_MESSAGES/systemd.mo
Installing /root/build/po/el.gmo to /root/dest/usr/share/locale/el/LC_MESSAGES/systemd.mo
Installing /root/build/po/es.gmo to /root/dest/usr/share/locale/es/LC_MESSAGES/systemd.mo
Installing /root/build/po/fr.gmo to /root/dest/usr/share/locale/fr/LC_MESSAGES/systemd.mo
Installing /root/build/po/gl.gmo to /root/dest/usr/share/locale/gl/LC_MESSAGES/systemd.mo
Installing /root/build/po/hr.gmo to /root/dest/usr/share/locale/hr/LC_MESSAGES/systemd.mo
Installing /root/build/po/hu.gmo to /root/dest/usr/share/locale/hu/LC_MESSAGES/systemd.mo
Installing /root/build/po/id.gmo to /root/dest/usr/share/locale/id/LC_MESSAGES/systemd.mo
Installing /root/build/po/it.gmo to /root/dest/usr/share/locale/it/LC_MESSAGES/systemd.mo
Installing /root/build/po/ja.gmo to /root/dest/usr/share/locale/ja/LC_MESSAGES/systemd.mo
Installing /root/build/po/ko.gmo to /root/dest/usr/share/locale/ko/LC_MESSAGES/systemd.mo
Installing /root/build/po/lt.gmo to /root/dest/usr/share/locale/lt/LC_MESSAGES/systemd.mo
Installing /root/build/po/pl.gmo to /root/dest/usr/share/locale/pl/LC_MESSAGES/systemd.mo
Installing /root/build/po/pt_BR.gmo to /root/dest/usr/share/locale/pt_BR/LC_MESSAGES/systemd.mo
Installing /root/build/po/ro.gmo to /root/dest/usr/share/locale/ro/LC_MESSAGES/systemd.mo
Installing /root/build/po/ru.gmo to /root/dest/usr/share/locale/ru/LC_MESSAGES/systemd.mo
Installing /root/build/po/sk.gmo to /root/dest/usr/share/locale/sk/LC_MESSAGES/systemd.mo
Installing /root/build/po/sr.gmo to /root/dest/usr/share/locale/sr/LC_MESSAGES/systemd.mo
Installing /root/build/po/sv.gmo to /root/dest/usr/share/locale/sv/LC_MESSAGES/systemd.mo
Installing /root/build/po/tr.gmo to /root/dest/usr/share/locale/tr/LC_MESSAGES/systemd.mo
Installing /root/build/po/uk.gmo to /root/dest/usr/share/locale/uk/LC_MESSAGES/systemd.mo
Installing /root/build/po/zh_CN.gmo to /root/dest/usr/share/locale/zh_CN/LC_MESSAGES/systemd.mo
Installing /root/build/po/zh_TW.gmo to /root/dest/usr/share/locale/zh_TW/LC_MESSAGES/systemd.mo
Installing /root/build/po/pa.gmo to /root/dest/usr/share/locale/pa/LC_MESSAGES/systemd.mo
real 0m1.162s
user 0m0.803s
sys 0m0.338s
```
systemd-timesyncd.service only applies the much weaker monotonic clock
from file logic, i.e should pull in and order itself before
time-set.target. The strong time-sync.target unit is pulled in by
systemd-time-wait-sync.service.
In hostnamed this is exposed as a dbus property, and in the logs in both
places.
This is of interest to network management software and such: if the fallback
hostname is used, it's not as useful as the real configured thing. Right now
various programs try to guess the source of hostname by looking at the string.
E.g. "localhost" is assumed to be not the real hostname, but "fedora" is. Any
such attempts are bound to fail, because we cannot distinguish "fedora" (a
fallback value set by a distro), from "fedora" (received from reverse dns),
from "fedora" read from /etc/hostname.
/run/systemd/fallback-hostname is written with the fallback hostname when
either pid1 or hostnamed sets the kernel hostname to the fallback value. Why
remember the fallback value and not the transient hostname in /run/hostname
instead?
We have three hostname types: "static", "transient", fallback".
– Distinguishing "static" is easy: the hostname that is set matches what
is in /etc/hostname.
– Distingiushing "transient" and "fallback" is not easy. And the
"transient" hostname may be set outside of pid1+hostnamed. In particular,
it may be set by container manager, some non-systemd tool in the initramfs,
or even by a direct call. All those mechanisms count as "transient". Trying
to get those cases to write /run/hostname is futile. It is much easier to
isolate the "fallback" case which is mostly under our control.
And since the file is only used as a flag to mark the hostname as fallback,
it can be hidden inside of our /run/systemd directory.
For https://bugzilla.redhat.com/show_bug.cgi?id=1892235.
MESON_INSTALL_QUIET is set when --quiet is passed to meson install.
Make sure we check the variable in our custom install scripts and
don't output anything if it is set.
Commit 42cc2855ba incorrectly removed the condition on sysfs in both
sys-fs-fuse-connections.mount and sys-kernel-config.mount. However there are
still needed in case modprobe of one of these modules is intentionally skipped
(due to lack of privs for example).
This patch restores the 2 conditions which should be safe for the common case,
since all conditions are only checked after all deps ordered before are
complete.
Follow-up for 42cc2855ba.
udev requests to start the fs mount units when their respective module is
loaded. For that it monitors uevents of type "ADD" for the relevant fs modules.
However the uevent is sent by the kernel too early, ie before the init() of the
module is called hence before directories in /sys/fs/ are created.
This patch workarounds adds "Requires/After=modprobe@<fs-module>.service" to
the mount unit, which means that modprobe(8) will be called once the fs module
is announced to be loaded. This sounds pointless, but given that modprobe only
returns after the initialization of the module is complete, it should
workaround the issue.
As a side effect, the module will be automatically loaded if the mount unit is
started manually.
Fixes#17586.
This reverts commit 9cbf1e58f9.
The presence of /sys/module/%I directory can't be used to assert that the load
of a given module is complete and therefore the call to modprobe(8) can be
skipped. Indeed this directory is created before the init() function of the
module is called.
Users of modprobe@.service needs to be sure that once this service returns the
module is fully operational.
This is useful for development where overwriting files out side
the configured prefix will affect the host as well as stateless
systems such as NixOS that don't let packages install to /etc but handle
configuration on their own.
Alternative to https://github.com/systemd/systemd/pull/17501
tested with:
$ mkdir inst build && cd build
$ meson \
-Dcreate-log-dirs=false \
-Dsysvrcnd-path=$(realpath ../inst)/etc/rc.d \
-Dsysvinit-path=$(realpath ../inst)/etc/init.d \
-Drootprefix=$(realpath ../inst) \
-Dinstall-sysconfdir=false \
--prefix=$(realpath ../inst) ..
$ ninja install
To make things simple and robust when debugging journald, we'll leave
the SO_TIMESTAMP invocations in the C code in place, even if they are
now typically redundant, given that the sockets are already passed into
the process with SO_TIMESTAMP turned on now.
[zjs: Replaces #17149.
I took half of the patch in
https://github.com/systemd/systemd/pull/17149#issuecomment-698399194,
hence I'm keeping Jonathan's authorship.
The original reasoning for 6c5496c492 was that we
enable remote-cryptsetup.target via presets, and since presets are not used for
the initrd, we need a different target. But since parts of the unit and target
tree are shared between the initramfs and the main system, we can't just create
a separate target for the initramfs. All the targets that depend on this one
would need to be split also. That condition is true for initrd-fs.target, but
not for sysinit.target.
So let's instead just uncoditionally pull in remote-cryptsetup.target in the
initramfs. It should normally be empty, so there should be no impact on boots
that don't have units in the target.
Jonathan's patch used initrd-root-fs.target, this version instead uses
initrd-root-device.target. initrd-root-device.target is ordered before
sysroot.mount, which means that the decrypted devices will be available earlier
too.]
This reverts commit 6c5496c492.
sysinit.target is shared between the initrd and the host system. Pulling in
initrd-cryptsetup.target into sysinit.target causes the following warning at
boot:
Oct 27 10:42:30 workstation-uefi systemd[1]: initrd-cryptsetup.target: Starting requested but asserts failed.
Oct 27 10:42:30 workstation-uefi systemd[1]: Assertion failed for initrd-cryptsetup.target.
For encrypted block devices that we need to unlock from the initramfs,
we currently rely on dracut shipping `cryptsetup.target`. This works,
but doesn't cover the case where the encrypted block device requires
networking (i.e. the `remote-cryptsetup.target` version). That target
however is traditionally dynamically enabled.
Instead, let's rework things here by adding a `initrd-cryptsetup.target`
specifically for initramfs encrypted block device setup. This plays the
role of both `cryptsetup.target` and `remote-cryptsetup.target` in the
initramfs.
Then, adapt `systemd-cryptsetup-generator` to hook all generated
services to this new unit when running from the initrd. This is
analogous to `systemd-fstab-generator` hooking all mounts to
`initrd-fs.target`, regardless of whether they're network-backed or not.