IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
On Fri, Mar 13, 2015 at 8:25 PM, Michael Marineau <michael.marineau@coreos.com> wrote:
> Currently systemd-timesyncd.service includes
> ConditionVirtualization=no, disabling it in both containers and
> virtual machines. Each VM platform tends to deal with or ignore the
> time problem in their own special ways, KVM/QEMU has the kernel time
> source kvm-clock, Xen has had different schemes over the years, VMware
> expects a userspace daemon sync the clock, and other platforms are
> content to drift with the wind as far as I can tell.
>
> I don't know of a robust way to know if a platform needs a little
> extra help from userspace to keep the clock sane or not but it seems
> generally safer to try than to risk drifting. Does anyone know of a
> reason to leave timesyncd off by default? Otherwise switching to
> ConditionVirtualization=!container should be reasonable.
When manipulating container and VM images we need efficient and atomic
directory snapshots and file copies, as well as disk quota. btrfs
provides this, legacy file systems do not. Hence, implicitly create a
loopback file system in /var/lib/machines.raw and mount it to
/var/lib/machines, if that directory is not on btrfs anyway.
This is done implicitly and transparently the first time the user
invokes "machinectl import-xyz".
This allows us to take benefit of btrfs features for container
management without actually having the rest of the system use btrfs.
The loopback is sized 500M initially. Patches to grow it dynamically are
to follow.
We will be woken up on rtnl or dbus activity, so let's just quit if some time has passed and that is the only thing that can happen.
Note that we will always stay around if we expect network activity (e.g. DHCP is enabled), as we are not restarted on that.
Only the very basics, more to come.
For now:
$ busctl tree org.freedesktop.network1
└─/org/freedesktop/network1
└─/org/freedesktop/network1/link
├─/org/freedesktop/network1/link/1
├─/org/freedesktop/network1/link/2
├─/org/freedesktop/network1/link/3
├─/org/freedesktop/network1/link/4
├─/org/freedesktop/network1/link/5
├─/org/freedesktop/network1/link/6
├─/org/freedesktop/network1/link/7
├─/org/freedesktop/network1/link/8
└─/org/freedesktop/network1/link/9
$ busctl introspect org.freedesktop.network1 /org/freedesktop/network1
NAME TYPE SIGNATURE RESULT/VALUE FLAGS
org.freedesktop.network1.Manager interface - - -
.OperationalState property s "carrier" emits-change
$ busctl introspect org.freedesktop.network1 /org/freedesktop/network1/link/1
NAME TYPE SIGNATURE RESULT/VALUE FLAGS
org.freedesktop.network1.Link interface - - -
.AdministrativeState property s "unmanaged" emits-change
.OperationalState property s "carrier" emits-change
Services which are not crucial to system bootup, and have Type=oneshot
can effectively "hang" the system if they fail to complete for whatever
reason. To allow the boot to continue, kill them after a timeout.
In case of systemd-journal-flush the flush will continue in the background,
and in the other two cases the job will be aborted, but this should not
result in any permanent problem.
The old "systemd-import" binary is now an internal tool. We still use it
as asynchronous backend for systemd-importd. Since the import tool might
require some IO and CPU resources (due to qcow2 explosion, and
decompression), and because we might want to run it with more minimal
priviliges we still keep it around as the worker binary to execute as
child process of importd.
machinectl now has verbs for pulling down images, cancelling them and
listing them.
Instead of using Accept=true and running one proxy for each connection, we
now run one proxy-daemon with a thread per connection. This will enable us
to share resources like policies in the future.
When there are a lot of split out journal files, we might run out of fds
quicker then we want. Hence: bump RLIMIT_NOFILE to 16K if possible.
Do these even for journalctl. On Fedora the soft RLIMIT_NOFILE is at 1K,
the hard at 4K by default for normal user processes, this code hence
bumps this up for users to 4K.
https://bugzilla.redhat.com/show_bug.cgi?id=1179980
Making use of the fd storage capability of the previous commit, allow
restarting journald by serilizing stream state to /run, and pushing open
fds to PID 1.
- Unescape instance name so that we can take almost anything as instance
name.
- Introduce "machines.target" which consists of all enabled nspawns and
can be used to start/stop them altogether
- Look for container directory using -M instead of harcoding the path in
/var/lib/container
This adds a new bus call to machined that enumerates /var/lib/container
and returns all trees stored in it, distuingishing three types:
- GPT disk images, which are files suffixed with ".gpt"
- directory trees
- btrfs subvolumes
This pulls out the hwdb managment from udevadm into an independent tool.
The old code is left in place for backwards compatibility, and easy of
testing, but all documentation is dropped to encourage use of the new
tool instead.
Otherwise this actually remains in the generated unit in /usr/lib.
If you want to keep it commented out, a m4-compatible way would be:
m4_ifdef(`HAVE_SMACK',
dnl Capabilities=cap_mac_admin=i
dnl SecureBits=keep-caps
)
When dbus client connects to systemd-bus-proxyd through
Unix domain socket proxy takes client's smack label and sets for itself.
It is done before and independent of dropping privileges.
The reason of such soluton is fact that tests of access rights
performed by lsm may take place inside kernel, not only
in userspace of recipient of message.
The bus-proxyd needs CAP_MAC_ADMIN to manipulate its label.
In case of systemd running in system mode, CAP_MAC_ADMIN
should be added to CapabilityBoundingSet in service file of bus-proxyd.
In case of systemd running in user mode ('systemd --user')
it can be achieved by addition
Capabilities=cap_mac_admin=i and SecureBits=keep-caps
to user@.service file
and setting cap_mac_admin+ei on bus-proxyd binary.
The unit file only active the machine-id-commit helper if /etc is mounted
writable and /etc/machine-id is an independant mount point (should be a tmpfs).
--link-journal={host,guest} fail if the host does not have persistent
journalling enabled and /var/log/journal/ does not exist. Even worse, as there
is no stdout/err any more, there is no error message to point that out.
Introduce two new modes "try-host" and "try-guest" which don't fail in this
case, and instead just silently skip the guest journal setup.
Change -j to mean "try-guest" instead of "guest", and fix the wrong --help
output for it (it said "host" before).
Change systemd-nspawn@.service.in to use "try-guest" so that this unit works
with both persistent and non-persistent journals on the host without failing.
https://bugs.debian.org/770275
This reverts commit a4962513c555fe3ac4b5bebf97a71701361a45b0.
logind.service is a D-Bus service, hence we should use the dbus name as
indication that we are up. Type=dbus is implied if BusName= is
specified, as it is in this case.
This removes a warning that is printed because a BusName= is specified
for a Type=notify unit.
The code already calls sd_notify("READY=1"), so we may as well take
advantage of the startup behavior in the unit. The same was done for
the journal in a87a38c20.
kdbus has seen a larger update than expected lately, most notably with
kdbusfs, a file system to expose the kdbus control files:
* Each time a file system of this type is mounted, a new kdbus
domain is created.
* The layout inside each mount point is the same as before, except
that domains are not hierarchically nested anymore.
* Domains are therefore also unnamed now.
* Unmounting a kdbusfs will automatically also detroy the
associated domain.
* Hence, the action of creating a kdbus domain is now as
privileged as mounting a filesystem.
* This way, we can get around creating dev nodes for everything,
which is last but not least something that is not limited by
20-bit minor numbers.
The kdbus specific bits in nspawn have all been dropped now, as nspawn
can rely on the container OS to set up its own kdbus domain, simply by
mounting a new instance.
A new set of mounts has been added to mount things *after* the kernel
modules have been loaded. For now, only kdbus is in this set, which is
invoked with mount_setup_late().
It seems that there actually aren't any long running tasks which are
performed at shutdown. If it turns out that there actually are, this
should be revisited.
This reverts most of commit 038193efa6.
For boot, we might kill fsck in the middle, with likely catastrophic
consequences.
On shutdown there might be other jobs, like downloading of updates for
installation, and other custom jobs. It seems better to schedule an
individual timeout on each one separately, when it is known what
timeout is useful.
Disable the timeouts for now, until we have a clearer picture of how
we can deal with long-running jobs.