1
1
mirror of https://github.com/systemd/systemd-stable.git synced 2025-01-05 09:17:44 +03:00
systemd-stable/man/systemd-repart.xml
Lennart Poettering 252d626711 repart: add --image= switch
This is similar to the --image= switch in the other tools, like
systemd-sysusers or systemd-tmpfiles, i.e. it apply the configuration
from the image to the image.

This is particularly useful for downloading minimized GPT image, and
then extending it to the desired size via:

   # systemd-repart --image=foo.image --size=5G
2021-04-19 23:16:02 +02:00

347 lines
21 KiB
XML

<?xml version='1.0'?> <!--*-nxml-*-->
<!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
<!-- SPDX-License-Identifier: LGPL-2.1-or-later -->
<refentry id="systemd-repart" conditional='ENABLE_REPART'
xmlns:xi="http://www.w3.org/2001/XInclude">
<refentryinfo>
<title>systemd-repart</title>
<productname>systemd</productname>
</refentryinfo>
<refmeta>
<refentrytitle>systemd-repart</refentrytitle>
<manvolnum>8</manvolnum>
</refmeta>
<refnamediv>
<refname>systemd-repart</refname>
<refname>systemd-repart.service</refname>
<refpurpose>Automatically grow and add partitions</refpurpose>
</refnamediv>
<refsynopsisdiv>
<cmdsynopsis>
<command>systemd-repart</command>
<arg choice="opt" rep="repeat">OPTIONS</arg>
<arg choice="opt" rep="repeat"><replaceable><optional>BLOCKDEVICE</optional></replaceable></arg>
</cmdsynopsis>
<para><filename>systemd-repart.service</filename></para>
</refsynopsisdiv>
<refsect1>
<title>Description</title>
<para><command>systemd-repart</command> grows and adds partitions to a partition table, based on the
configuration files described in
<citerefentry><refentrytitle>repart.d</refentrytitle><manvolnum>5</manvolnum></citerefentry>.
</para>
<para>If invoked with no arguments, it operates on the block device backing the root file system
partition of the running OS, thus growing and adding partitions of the booted OS image itself. If
<varname>--image=</varname> is used it will operate on the specified image file. When called in the
<literal>initrd</literal> it operates on the block device backing <filename>/sysroot/</filename> instead,
i.e. on the block device the system will soon transition into. The
<filename>systemd-repart.service</filename> service is generally run at boot in the initial RAM disk, in
order to augment the partition table of the OS before its partitions are
mounted. <command>systemd-repart</command> (mostly) operates in a purely incremental mode: it only grows
existing and adds new partitions; it does not shrink, delete or move existing partitions. The service is
intended to be run on every boot, but when it detects that the partition table already matches the
installed <filename>repart.d/*.conf</filename> configuration files, it executes no operation.</para>
<para><command>systemd-repart</command> is intended to be used when deploying OS images, to automatically
adjust them to the system they are running on, during first boot. This way the deployed image can be
minimal in size and may be augmented automatically at boot when needed, taking possession of disk space
available but not yet used. Specifically the following use cases are among those covered:</para>
<itemizedlist>
<listitem><para>The root partition may be grown to cover the whole available disk space.</para></listitem>
<listitem><para>A <filename>/home/</filename>, swap or <filename>/srv/</filename> partition can be
added.</para></listitem>
<listitem><para>A second (or third, …) root partition may be added, to cover A/B style setups
where a second version of the root file system is alternatingly used for implementing update
schemes. The deployed image would carry only a single partition ("A") but on first boot a second
partition ("B") for this purpose is automatically created.</para></listitem>
</itemizedlist>
<para>The algorithm executed by <command>systemd-repart</command> is roughly as follows:</para>
<orderedlist>
<listitem><para>The <filename>repart.d/*.conf</filename> configuration files are loaded and parsed,
and ordered by filename (without the directory prefix).</para></listitem>
<listitem><para>The partition table already existing on the block device is loaded and
parsed.</para></listitem>
<listitem><para>The existing partitions in the partition table are matched up with the
<filename>repart.d/*.conf</filename> files by GPT partition type UUID. The first existing partition
of a specific type is assigned the first configuration file declaring the same type. The second
existing partition of a specific type is then assigned the second configuration file declaring the same
type, and so on. After this iterative assigning is complete any left-over existing partitions that have
no matching configuration file are considered "foreign" and left as they are. And any configuration
files for which no partition currently exists are understood as a request to create such a
partition.</para></listitem>
<listitem><para>Taking the size constraints and weights declared in the configuration files into
account, all partitions that shall be created are now allocated to the disk, taking up all free space,
always respecting the size and padding requests. Similar, existing partitions that are determined to
grow are grown. New partitions are always appended to the end of the existing partition table, taking
the first partition table slot whose index is greater than the indexes of all existing
partitions. Partition table slots are never reordered and thus partition numbers are ensured to remain
stable. Note that this allocation happens in RAM only, the partition table on disk is not updated
yet.</para></listitem>
<listitem><para>All existing partitions for which configuration files exist and which currently have no
GPT partition label set will be assigned a label, either explicitly configured in the configuration or
(if that's missing) derived automatically from the partition type. The same is done for all partitions
that are newly created. These assignments are done in RAM only, too, the disk is not updated
yet.</para></listitem>
<listitem><para>Similarly, all existing partitions for which configuration files exist and which
currently have an all-zero identifying UUID will be assigned a new UUID. This UUID is cryptographically
hashed from a common seed value together with the partition type UUID (and a counter in case multiple
partitions of the same type are defined), see below. The same is done for all partitions that are
created anew. These assignments are done in RAM only, too, the disk is not updated
yet.</para></listitem>
<listitem><para>Similarly, if the disk's volume UUID is all zeroes it is also initialized, also
cryptographically hashed from the same common seed value. Also, in RAM only, too.</para></listitem>
<listitem><para>The disk space assigned to new partitions (i.e. what was previously considered free
space but is no longer) is now erased. Specifically, all file system signatures are removed, and if the
device supports it the <constant>BLKDISCARD</constant> I/O control command is issued to inform the
hardware that the space is empty now. In addition any "padding" between partitions and at the end of
the device is similarly erased.</para></listitem>
<listitem><para>The new partition table is finally written to disk. The kernel is asked to reread the
partition table.</para></listitem>
</orderedlist>
<para>As exception to the normally strictly incremental operation, when called in a special "factory
reset" mode, <command>systemd-repart</command> may also be used to erase existing partitions to
reset an installation back to vendor defaults. This mode of operation is used when either the
<option>--factory-reset=yes</option> switch is passed on the tool's command line, or the
<option>systemd.factory_reset=yes</option> option specified on the kernel command line, or the
<varname>FactoryReset</varname> EFI variable (vendor UUID
<constant>8cf2644b-4b0b-428f-9387-6d876050dc67</constant>) is set to "yes". It alters the algorithm above
slightly: between the 3rd and the 4th step above any partition marked explicitly via the
<varname>FactoryReset=</varname> boolean is deleted, and the algorithm restarted, thus immediately
re-creating these partitions anew empty.</para>
<para>Note that <command>systemd-repart</command> only changes partition tables, it does not create or
resize any file systems within these partitions. A separate mechanism should be used for that, for
example
<citerefentry><refentrytitle>systemd-growfs</refentrytitle><manvolnum>8</manvolnum></citerefentry> and
<command>systemd-makefs</command>.</para>
<para>The UUIDs identifying the new partitions created (or assigned to existing partitions that have no
UUID yet), as well as the disk as a whole are hashed cryptographically from a common seed value. This
seed value is usually the
<citerefentry><refentrytitle>machine-id</refentrytitle><manvolnum>5</manvolnum></citerefentry> of the
system, so that the machine ID reproducibly determines the UUIDs assigned to all partitions. If the
machine ID cannot be read (or the user passes <option>--seed=random</option>, see below) the seed is
generated randomly instead, so that the partition UUIDs are also effectively random. The seed value may
also be set explicitly, formatted as UUID via the <option>--seed=</option> option. By hashing these UUIDs
from a common seed images prepared with this tool become reproducible and the result of the algorithm
above deterministic.</para>
<para>The positional argument should specify the block device to operate on. Instead of a block device
node path a regular file may be specified too, in which case the command operates on it like it would if
a loopback block device node was specified with the file attached. If <option>--empty=create</option> is
specified the specified path is created as regular file, which is useful for generating disk images from
scratch.</para>
</refsect1>
<refsect1>
<title>Options</title>
<para>The following options are understood:</para>
<variablelist>
<varlistentry>
<term><option>--dry-run=</option></term>
<listitem><para>Takes a boolean. If this switch is not specified <option>--dry-run=yes</option> is
the implied default. Controls whether <filename>systemd-repart</filename> executes the requested
re-partition operations or whether it should only show what it would do. Unless
<option>--dry-run=no</option> is specified <filename>systemd-repart</filename> will not actually
touch the device's partition table.</para></listitem>
</varlistentry>
<varlistentry>
<term><option>--empty=</option></term>
<listitem><para>Takes one of <literal>refuse</literal>, <literal>allow</literal>,
<literal>require</literal>, <literal>force</literal> or <literal>create</literal>. Controls how to
operate on block devices that are entirely empty, i.e. carry no partition table/disk label yet. If
this switch is not specified the implied default is <literal>refuse</literal>.</para>
<para>If <literal>refuse</literal> <command>systemd-repart</command> requires that the block device
it shall operate on already carries a partition table and refuses operation if none is found. If
<literal>allow</literal> the command will extend an existing partition table or create a new one if
none exists. If <literal>require</literal> the command will create a new partition table if none
exists so far, and refuse operation if one already exists. If <literal>force</literal> it will create
a fresh partition table unconditionally, erasing the disk fully in effect. If
<literal>force</literal> no existing partitions will be taken into account or survive the
operation. Hence: use with care, this is a great way to lose all your data. If
<literal>create</literal> a new loopback file is create under the path passed via the device node
parameter, of the size indicated with <option>--size=</option>, see below.</para></listitem>
</varlistentry>
<varlistentry>
<term><option>--discard=</option></term>
<listitem><para>Takes a boolean. If this switch is not specified <option>--discard=yes</option> is
the implied default. Controls whether to issue the <constant>BLKDISCARD</constant> I/O control
command on the space taken up by any added partitions or on the space in between them. Usually, it's
a good idea to issue this request since it tells the underlying hardware that the covered blocks
shall be considered empty, improving performance. If operating on a regular file instead of a block
device node, a sparse file is generated.</para></listitem>
</varlistentry>
<varlistentry>
<term><option>--size=</option></term>
<listitem><para>Takes a size in bytes, using the usual K, M, G, T suffixes, or the special value
<literal>auto</literal>. If used the specified device node path must refer to a regular file, which
is then grown to the specified size if smaller, before any change is made to the partition table. If
specified as <literal>auto</literal> the minimal size for the disk image is automatically determined
(i.e. the minimal sizes of all partitions are summed up, taking space for additional metadata into
account). This switch is not supported if the specified node is a block device. This switch has no
effect if the file is already as large as the specified size or larger. The specified size is
implicitly rounded up to multiples of 4096. When used with <option>--empty=create</option> this
specifies the initial size of the loopback file to create.</para>
<para>The <option>--size=auto</option> option takes the sizes of pre-existing partitions into
account. However, it does not accommodate for partition tables that are not tightly packed: the
configured partitions might still not fit into the backing device if empty space exists between
pre-existing partitions (or before the first partition) that cannot be fully filled by partitions to
grow or create.</para>
<para>Also note that the automatic size determination does not take files or directories specified
with <option>CopyFiles=</option> into account: operation might fail if the specified files or
directories require more disk space then the configured per-partition minimal size
limit.</para></listitem>
</varlistentry>
<varlistentry>
<term><option>--factory-reset=</option></term>
<listitem><para>Takes boolean. If this switch is not specified <option>--factory=reset=no</option> is
the implied default. Controls whether to operate in "factory reset" mode, see above. If set to true
this will remove all existing partitions marked with <varname>FactoryReset=</varname> set to yes
early while executing the re-partitioning algorithm. Use with care, this is a great way to lose all
your data. Note that partition files need to explicitly turn <varname>FactoryReset=</varname> on, as
the option defaults to off. If no partitions are marked for factory reset this switch has no
effect. Note that there are two other methods to request factory reset operation: via the kernel
command line and via an EFI variable, see above.</para></listitem>
</varlistentry>
<varlistentry>
<term><option>--can-factory-reset</option></term>
<listitem><para>If this switch is specified the disk is not re-partitioned. Instead it is determined
if any existing partitions are marked with <varname>FactoryReset=</varname>. If there are the tool
will exit with exit status zero, otherwise non-zero. This switch may be used to quickly determine
whether the running system supports a factory reset mechanism built on
<command>systemd-repart</command>.</para></listitem>
</varlistentry>
<varlistentry>
<term><option>--root=</option></term>
<listitem><para>Takes a path to a directory to use as root file system when searching for
<filename>repart.d/*.conf</filename> files, for the machine ID file to use as seed and for the
<varname>CopyFiles=</varname> and <varname>CopyBlocks=</varname> source files and directories. By
default when invoked on the regular system this defaults to the host's root file system
<filename>/</filename>. If invoked from the initial RAM disk this defaults to
<filename>/sysroot/</filename>, so that the tool operates on the configuration and machine ID stored
in the root file system later transitioned into itself.</para></listitem>
</varlistentry>
<varlistentry>
<term><option>--image=</option></term>
<listitem><para>Takes a path to a disk image file or device to mount and use in a similar fashion to
<option>--root=</option>, see above.</para></listitem>
</varlistentry>
<varlistentry>
<term><option>--seed=</option></term>
<listitem><para>Takes a UUID as argument or the special value <constant>random</constant>. If a UUID
is specified the UUIDs to assign to partitions and the partition table itself are derived via
cryptographic hashing from it. If not specified it is attempted to read the machine ID from the host
(or more precisely, the root directory configured via <option>--root=</option>) and use it as seed
instead, falling back to a randomized seed otherwise. Use <option>--seed=random</option> to force a
randomized seed. Explicitly specifying the seed may be used to generated strictly reproducible
partition tables.</para></listitem>
</varlistentry>
<varlistentry>
<term><option>--pretty=</option></term>
<listitem><para>Takes a boolean argument. If this switch is not specified, it defaults to on when
called from an interactive terminal and off otherwise. Controls whether to show a user friendly table
and graphic illustrating the changes applied.</para></listitem>
</varlistentry>
<varlistentry>
<term><option>--definitions=</option></term>
<listitem><para>Takes a file system path. If specified the <filename>*.conf</filename> files are read
from the specified directory instead of searching in <filename>/usr/lib/repart.d/*.conf</filename>,
<filename>/etc/repart.d/*.conf</filename>,
<filename>/run/repart.d/*.conf</filename>.</para></listitem>
</varlistentry>
<varlistentry>
<term><option>--key-file=</option></term>
<listitem><para>Takes a file system path. Configures the encryption key to use when setting up LUKS2
volumes configured with the <varname>Encrypt=key-file</varname> setting in partition files. Should
refer to a regular file containing the key, or an <constant>AF_UNIX</constant> stream socket in the
file system. In the latter case a connection is made to it and the key read from it. If this switch
is not specified the empty key (i.e. zero length key) is used. This behaviour is useful for setting
up encrypted partitions during early first boot that receive their user-supplied password only in a
later setup step.</para></listitem>
</varlistentry>
<varlistentry>
<term><option>--tpm2-device=</option></term>
<term><option>--tpm2-pcrs=</option></term>
<listitem><para>Configures the TPM2 device and list of PCRs to use for LUKS2 volumes configured with
the <varname>Encrypt=tpm2</varname> option. These options take the same parameters as the identically
named options to
<citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
and have the same effect on partitions where TPM2 enrollment is requested.</para></listitem>
</varlistentry>
<xi:include href="standard-options.xml" xpointer="help" />
<xi:include href="standard-options.xml" xpointer="version" />
<xi:include href="standard-options.xml" xpointer="no-pager" />
<xi:include href="standard-options.xml" xpointer="no-legend" />
<xi:include href="standard-options.xml" xpointer="json" />
</variablelist>
</refsect1>
<refsect1>
<title>Exit status</title>
<para>On success, 0 is returned, a non-zero failure code otherwise.</para>
</refsect1>
<refsect1>
<title>See Also</title>
<para>
<citerefentry><refentrytitle>systemd</refentrytitle><manvolnum>1</manvolnum></citerefentry>,
<citerefentry><refentrytitle>repart.d</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
<citerefentry><refentrytitle>machine-id</refentrytitle><manvolnum>5</manvolnum></citerefentry>,
<citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry>
</para>
</refsect1>
</refentry>