1
1
mirror of https://github.com/systemd/systemd-stable.git synced 2024-12-27 03:21:32 +03:00
systemd-stable/manager.c
2010-01-27 04:36:30 +01:00

1099 lines
32 KiB
C

/*-*- Mode: C; c-basic-offset: 8 -*-*/
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <sys/epoll.h>
#include <signal.h>
#include <sys/signalfd.h>
#include <sys/wait.h>
#include <unistd.h>
#include <sys/poll.h>
#include "manager.h"
#include "hashmap.h"
#include "macro.h"
#include "strv.h"
#include "log.h"
Manager* manager_new(void) {
Manager *m;
sigset_t mask;
struct epoll_event ev;
if (!(m = new0(Manager, 1)))
return NULL;
m->signal_watch.fd = m->epoll_fd = -1;
if (!(m->units = hashmap_new(string_hash_func, string_compare_func)))
goto fail;
if (!(m->jobs = hashmap_new(trivial_hash_func, trivial_compare_func)))
goto fail;
if (!(m->transaction_jobs = hashmap_new(trivial_hash_func, trivial_compare_func)))
goto fail;
if (!(m->watch_pids = hashmap_new(trivial_hash_func, trivial_compare_func)))
goto fail;
if ((m->epoll_fd = epoll_create1(EPOLL_CLOEXEC)) < 0)
goto fail;
assert_se(sigemptyset(&mask) == 0);
assert_se(sigaddset(&mask, SIGCHLD) == 0);
assert_se(sigaddset(&mask, SIGINT) == 0);
assert_se(sigprocmask(SIG_SETMASK, &mask, NULL) == 0);
m->signal_watch.type = WATCH_SIGNAL_FD;
if ((m->signal_watch.fd = signalfd(-1, &mask, SFD_NONBLOCK|SFD_CLOEXEC)) < 0)
goto fail;
zero(ev);
ev.events = EPOLLIN;
ev.data.ptr = &m->signal_watch;
if (epoll_ctl(m->epoll_fd, EPOLL_CTL_ADD, m->signal_watch.fd, &ev) < 0)
goto fail;
return m;
fail:
manager_free(m);
return NULL;
}
void manager_free(Manager *m) {
Unit *u;
Job *j;
assert(m);
while ((j = hashmap_first(m->transaction_jobs)))
job_free(j);
while ((u = hashmap_first(m->units)))
unit_free(u);
hashmap_free(m->units);
hashmap_free(m->jobs);
hashmap_free(m->transaction_jobs);
hashmap_free(m->watch_pids);
if (m->epoll_fd >= 0)
close_nointr(m->epoll_fd);
if (m->signal_watch.fd >= 0)
close_nointr(m->signal_watch.fd);
free(m);
}
static void transaction_delete_job(Manager *m, Job *j) {
assert(m);
assert(j);
/* Deletes one job from the transaction */
manager_transaction_unlink_job(m, j);
if (!j->installed)
job_free(j);
}
static void transaction_delete_unit(Manager *m, Unit *u) {
Job *j;
/* Deletes all jobs associated with a certain unit from the
* transaction */
while ((j = hashmap_get(m->transaction_jobs, u)))
transaction_delete_job(m, j);
}
static void transaction_clean_dependencies(Manager *m) {
Iterator i;
Job *j;
assert(m);
/* Drops all dependencies of all installed jobs */
HASHMAP_FOREACH(j, m->jobs, i) {
while (j->subject_list)
job_dependency_free(j->subject_list);
while (j->object_list)
job_dependency_free(j->object_list);
}
assert(!m->transaction_anchor);
}
static void transaction_abort(Manager *m) {
Job *j;
assert(m);
while ((j = hashmap_first(m->transaction_jobs)))
if (j->installed)
transaction_delete_job(m, j);
else
job_free(j);
assert(hashmap_isempty(m->transaction_jobs));
transaction_clean_dependencies(m);
}
static void transaction_find_jobs_that_matter_to_anchor(Manager *m, Job *j, unsigned generation) {
JobDependency *l;
assert(m);
/* A recursive sweep through the graph that marks all units
* that matter to the anchor job, i.e. are directly or
* indirectly a dependency of the anchor job via paths that
* are fully marked as mattering. */
if (j)
l = j->subject_list;
else
l = m->transaction_anchor;
LIST_FOREACH(subject, l, l) {
/* This link does not matter */
if (!l->matters)
continue;
/* This unit has already been marked */
if (l->object->generation == generation)
continue;
l->object->matters_to_anchor = true;
l->object->generation = generation;
transaction_find_jobs_that_matter_to_anchor(m, l->object, generation);
}
}
static void transaction_merge_and_delete_job(Manager *m, Job *j, Job *other, JobType t) {
JobDependency *l, *last;
assert(j);
assert(other);
assert(j->unit == other->unit);
assert(!j->installed);
/* Merges 'other' into 'j' and then deletes j. */
j->type = t;
j->state = JOB_WAITING;
j->forced = j->forced || other->forced;
j->matters_to_anchor = j->matters_to_anchor || other->matters_to_anchor;
/* Patch us in as new owner of the JobDependency objects */
last = NULL;
LIST_FOREACH(subject, l, other->subject_list) {
assert(l->subject == other);
l->subject = j;
last = l;
}
/* Merge both lists */
if (last) {
last->subject_next = j->subject_list;
if (j->subject_list)
j->subject_list->subject_prev = last;
j->subject_list = other->subject_list;
}
/* Patch us in as new owner of the JobDependency objects */
last = NULL;
LIST_FOREACH(object, l, other->object_list) {
assert(l->object == other);
l->object = j;
last = l;
}
/* Merge both lists */
if (last) {
last->object_next = j->object_list;
if (j->object_list)
j->object_list->object_prev = last;
j->object_list = other->object_list;
}
/* Kill the other job */
other->subject_list = NULL;
other->object_list = NULL;
transaction_delete_job(m, other);
}
static int delete_one_unmergeable_job(Manager *m, Job *j) {
Job *k;
assert(j);
/* Tries to delete one item in the linked list
* j->transaction_next->transaction_next->... that conflicts
* whith another one, in an attempt to make an inconsistent
* transaction work. */
/* We rely here on the fact that if a merged with b does not
* merge with c, either a or b merge with c neither */
LIST_FOREACH(transaction, j, j)
LIST_FOREACH(transaction, k, j->transaction_next) {
Job *d;
/* Is this one mergeable? Then skip it */
if (job_type_is_mergeable(j->type, k->type))
continue;
/* Ok, we found two that conflict, let's see if we can
* drop one of them */
if (!j->matters_to_anchor)
d = j;
else if (!k->matters_to_anchor)
d = k;
else
return -ENOEXEC;
/* Ok, we can drop one, so let's do so. */
log_debug("Try to fix job merging by deleting job %s/%s", unit_id(d->unit), job_type_to_string(d->type));
transaction_delete_job(m, d);
return 0;
}
return -EINVAL;
}
static int transaction_merge_jobs(Manager *m) {
Job *j;
Iterator i;
int r;
assert(m);
/* First step, check whether any of the jobs for one specific
* task conflict. If so, try to drop one of them. */
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
JobType t;
Job *k;
t = j->type;
LIST_FOREACH(transaction, k, j->transaction_next) {
if ((r = job_type_merge(&t, k->type)) >= 0)
continue;
/* OK, we could not merge all jobs for this
* action. Let's see if we can get rid of one
* of them */
if ((r = delete_one_unmergeable_job(m, j)) >= 0)
/* Ok, we managed to drop one, now
* let's ask our callers to call us
* again after garbage collecting */
return -EAGAIN;
/* We couldn't merge anything. Failure */
return r;
}
}
/* Second step, merge the jobs. */
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
JobType t = j->type;
Job *k;
/* Merge all transactions */
LIST_FOREACH(transaction, k, j->transaction_next)
assert_se(job_type_merge(&t, k->type) == 0);
/* If an active job is mergeable, merge it too */
if (j->unit->meta.job)
job_type_merge(&t, j->unit->meta.job->type); /* Might fail. Which is OK */
while ((k = j->transaction_next)) {
if (j->installed) {
transaction_merge_and_delete_job(m, k, j, t);
j = k;
} else
transaction_merge_and_delete_job(m, j, k, t);
}
assert(!j->transaction_next);
assert(!j->transaction_prev);
}
return 0;
}
static bool unit_matters_to_anchor(Unit *u, Job *j) {
assert(u);
assert(!j->transaction_prev);
/* Checks whether at least one of the jobs for this unit
* matters to the anchor. */
LIST_FOREACH(transaction, j, j)
if (j->matters_to_anchor)
return true;
return false;
}
static int transaction_verify_order_one(Manager *m, Job *j, Job *from, unsigned generation) {
Iterator i;
Unit *u;
int r;
assert(m);
assert(j);
assert(!j->transaction_prev);
/* Does a recursive sweep through the ordering graph, looking
* for a cycle. If we find cycle we try to break it. */
/* Did we find a cycle? */
if (j->marker && j->generation == generation) {
Job *k;
/* So, we already have been here. We have a
* cycle. Let's try to break it. We go backwards in
* our path and try to find a suitable job to
* remove. We use the marker to find our way back,
* since smart how we are we stored our way back in
* there. */
for (k = from; k; k = (k->generation == generation ? k->marker : NULL)) {
if (!k->installed &&
!unit_matters_to_anchor(k->unit, k)) {
/* Ok, we can drop this one, so let's
* do so. */
log_debug("Breaking order cycle by deleting job %s/%s", unit_id(k->unit), job_type_to_string(k->type));
transaction_delete_unit(m, k->unit);
return -EAGAIN;
}
/* Check if this in fact was the beginning of
* the cycle */
if (k == j)
break;
}
return -ENOEXEC;
}
/* Make the marker point to where we come from, so that we can
* find our way backwards if we want to break a cycle */
j->marker = from;
j->generation = generation;
/* We assume that the the dependencies are bidirectional, and
* hence can ignore UNIT_AFTER */
SET_FOREACH(u, j->unit->meta.dependencies[UNIT_BEFORE], i) {
Job *o;
/* Is there a job for this unit? */
if (!(o = hashmap_get(m->transaction_jobs, u)))
/* Ok, there is no job for this in the
* transaction, but maybe there is already one
* running? */
if (!(o = u->meta.job))
continue;
if ((r = transaction_verify_order_one(m, o, j, generation)) < 0)
return r;
}
return 0;
}
static int transaction_verify_order(Manager *m, unsigned *generation) {
Job *j;
int r;
Iterator i;
assert(m);
assert(generation);
/* Check if the ordering graph is cyclic. If it is, try to fix
* that up by dropping one of the jobs. */
HASHMAP_FOREACH(j, m->transaction_jobs, i)
if ((r = transaction_verify_order_one(m, j, NULL, (*generation)++)) < 0)
return r;
return 0;
}
static void transaction_collect_garbage(Manager *m) {
bool again;
assert(m);
/* Drop jobs that are not required by any other job */
do {
Iterator i;
Job *j;
again = false;
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
if (j->object_list)
continue;
log_debug("Garbage collecting job %s/%s", unit_id(j->unit), job_type_to_string(j->type));
transaction_delete_job(m, j);
again = true;
break;
}
} while (again);
}
static int transaction_is_destructive(Manager *m, JobMode mode) {
Iterator i;
Job *j;
assert(m);
/* Checks whether applying this transaction means that
* existing jobs would be replaced */
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
/* Assume merged */
assert(!j->transaction_prev);
assert(!j->transaction_next);
if (j->unit->meta.job &&
j->unit->meta.job != j &&
!job_type_is_superset(j->type, j->unit->meta.job->type))
return -EEXIST;
}
return 0;
}
static void transaction_minimize_impact(Manager *m) {
bool again;
assert(m);
/* Drops all unnecessary jobs that reverse already active jobs
* or that stop a running service. */
do {
Job *j;
Iterator i;
again = false;
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
LIST_FOREACH(transaction, j, j) {
/* If it matters, we shouldn't drop it */
if (j->matters_to_anchor)
continue;
/* Would this stop a running service?
* Would this change an existing job?
* If so, let's drop this entry */
if ((j->type != JOB_STOP || UNIT_IS_INACTIVE_OR_DEACTIVATING(unit_active_state(j->unit))) &&
(!j->unit->meta.job || job_type_is_conflicting(j->type, j->unit->meta.job->state)))
continue;
/* Ok, let's get rid of this */
log_debug("Deleting %s/%s to minimize impact", unit_id(j->unit), job_type_to_string(j->type));
transaction_delete_job(m, j);
again = true;
break;
}
if (again)
break;
}
} while (again);
}
static int transaction_apply(Manager *m, JobMode mode) {
Iterator i;
Job *j;
int r;
/* Moves the transaction jobs to the set of active jobs */
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
/* Assume merged */
assert(!j->transaction_prev);
assert(!j->transaction_next);
if (j->installed)
continue;
if ((r = hashmap_put(m->jobs, UINT32_TO_PTR(j->id), j)) < 0)
goto rollback;
}
while ((j = hashmap_steal_first(m->transaction_jobs))) {
if (j->installed)
continue;
if (j->unit->meta.job)
job_free(j->unit->meta.job);
j->unit->meta.job = j;
j->installed = true;
/* We're fully installed. Now let's free data we don't
* need anymore. */
assert(!j->transaction_next);
assert(!j->transaction_prev);
job_schedule_run(j);
}
/* As last step, kill all remaining job dependencies. */
transaction_clean_dependencies(m);
return 0;
rollback:
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
if (j->installed)
continue;
hashmap_remove(m->jobs, UINT32_TO_PTR(j->id));
}
return r;
}
static int transaction_activate(Manager *m, JobMode mode) {
int r;
unsigned generation = 1;
assert(m);
/* This applies the changes recorded in transaction_jobs to
* the actual list of jobs, if possible. */
/* First step: figure out which jobs matter */
transaction_find_jobs_that_matter_to_anchor(m, NULL, generation++);
/* Second step: Try not to stop any running services if
* we don't have to. Don't try to reverse running
* jobs if we don't have to. */
transaction_minimize_impact(m);
for (;;) {
/* Third step: Let's remove unneeded jobs that might
* be lurking. */
transaction_collect_garbage(m);
/* Fourth step: verify order makes sense and correct
* cycles if necessary and possible */
if ((r = transaction_verify_order(m, &generation)) >= 0)
break;
if (r != -EAGAIN)
goto rollback;
/* Let's see if the resulting transaction ordering
* graph is still cyclic... */
}
for (;;) {
/* Fifth step: let's drop unmergeable entries if
* necessary and possible, merge entries we can
* merge */
if ((r = transaction_merge_jobs(m)) >= 0)
break;
if (r != -EAGAIN)
goto rollback;
/* Sixth step: an entry got dropped, let's garbage
* collect its dependencies. */
transaction_collect_garbage(m);
/* Let's see if the resulting transaction still has
* unmergeable entries ... */
}
/* Seventh step: check whether we can actually apply this */
if (mode == JOB_FAIL)
if ((r = transaction_is_destructive(m, mode)) < 0)
goto rollback;
/* Eights step: apply changes */
if ((r = transaction_apply(m, mode)) < 0)
goto rollback;
assert(hashmap_isempty(m->transaction_jobs));
assert(!m->transaction_anchor);
return 0;
rollback:
transaction_abort(m);
return r;
}
static Job* transaction_add_one_job(Manager *m, JobType type, Unit *unit, bool force, bool *is_new) {
Job *j, *f;
int r;
assert(m);
assert(unit);
/* Looks for an axisting prospective job and returns that. If
* it doesn't exist it is created and added to the prospective
* jobs list. */
f = hashmap_get(m->transaction_jobs, unit);
LIST_FOREACH(transaction, j, f) {
assert(j->unit == unit);
if (j->type == type) {
if (is_new)
*is_new = false;
return j;
}
}
if (unit->meta.job && unit->meta.job->type == type)
j = unit->meta.job;
else if (!(j = job_new(m, type, unit)))
return NULL;
j->generation = 0;
j->marker = NULL;
j->matters_to_anchor = false;
j->forced = force;
LIST_PREPEND(Job, transaction, f, j);
if ((r = hashmap_replace(m->transaction_jobs, unit, f)) < 0) {
job_free(j);
return NULL;
}
if (is_new)
*is_new = true;
return j;
}
void manager_transaction_unlink_job(Manager *m, Job *j) {
assert(m);
assert(j);
if (j->transaction_prev)
j->transaction_prev->transaction_next = j->transaction_next;
else if (j->transaction_next)
hashmap_replace(m->transaction_jobs, j->unit, j->transaction_next);
else
hashmap_remove_value(m->transaction_jobs, j->unit, j);
if (j->transaction_next)
j->transaction_next->transaction_prev = j->transaction_prev;
j->transaction_prev = j->transaction_next = NULL;
while (j->subject_list)
job_dependency_free(j->subject_list);
while (j->object_list) {
Job *other = j->object_list->matters ? j->object_list->subject : NULL;
job_dependency_free(j->object_list);
if (other) {
log_debug("Deleting job %s/%s as dependency of job %s/%s",
unit_id(other->unit), job_type_to_string(other->type),
unit_id(j->unit), job_type_to_string(j->type));
transaction_delete_job(m, other);
}
}
}
static int transaction_add_job_and_dependencies(Manager *m, JobType type, Unit *unit, Job *by, bool matters, bool force, Job **_ret) {
Job *ret;
Iterator i;
Unit *dep;
int r;
bool is_new;
assert(m);
assert(type < _JOB_TYPE_MAX);
assert(unit);
if (unit->meta.load_state != UNIT_LOADED)
return -EINVAL;
if (!unit_job_is_applicable(unit, type))
return -EBADR;
/* First add the job. */
if (!(ret = transaction_add_one_job(m, type, unit, force, &is_new)))
return -ENOMEM;
/* Then, add a link to the job. */
if (!job_dependency_new(by, ret, matters))
return -ENOMEM;
if (is_new) {
/* Finally, recursively add in all dependencies. */
if (type == JOB_START || type == JOB_RELOAD_OR_START) {
SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_REQUIRES], i)
if ((r = transaction_add_job_and_dependencies(m, JOB_START, dep, ret, true, force, NULL)) < 0 && r != -EBADR)
goto fail;
SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_SOFT_REQUIRES], i)
if ((r = transaction_add_job_and_dependencies(m, JOB_START, dep, ret, !force, force, NULL)) < 0 && r != -EBADR)
goto fail;
SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_WANTS], i)
if ((r = transaction_add_job_and_dependencies(m, JOB_START, dep, ret, false, force, NULL)) < 0 && r != -EBADR)
goto fail;
SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_REQUISITE], i)
if ((r = transaction_add_job_and_dependencies(m, JOB_VERIFY_ACTIVE, dep, ret, true, force, NULL)) < 0 && r != -EBADR)
goto fail;
SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_SOFT_REQUISITE], i)
if ((r = transaction_add_job_and_dependencies(m, JOB_VERIFY_ACTIVE, dep, ret, !force, force, NULL)) < 0 && r != -EBADR)
goto fail;
SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_CONFLICTS], i)
if ((r = transaction_add_job_and_dependencies(m, JOB_STOP, dep, ret, true, force, NULL)) < 0 && r != -EBADR)
goto fail;
} else if (type == JOB_STOP || type == JOB_RESTART || type == JOB_TRY_RESTART) {
SET_FOREACH(dep, ret->unit->meta.dependencies[UNIT_REQUIRED_BY], i)
if ((r = transaction_add_job_and_dependencies(m, type, dep, ret, true, force, NULL)) < 0 && r != -EBADR)
goto fail;
}
/* JOB_VERIFY_STARTED, JOB_RELOAD require no dependency handling */
}
return 0;
fail:
return r;
}
int manager_add_job(Manager *m, JobType type, Unit *unit, JobMode mode, bool force, Job **_ret) {
int r;
Job *ret;
assert(m);
assert(type < _JOB_TYPE_MAX);
assert(unit);
assert(mode < _JOB_MODE_MAX);
if ((r = transaction_add_job_and_dependencies(m, type, unit, NULL, true, force, &ret))) {
transaction_abort(m);
return r;
}
if ((r = transaction_activate(m, mode)) < 0)
return r;
if (_ret)
*_ret = ret;
return 0;
}
Job *manager_get_job(Manager *m, uint32_t id) {
assert(m);
return hashmap_get(m->jobs, UINT32_TO_PTR(id));
}
Unit *manager_get_unit(Manager *m, const char *name) {
assert(m);
assert(name);
return hashmap_get(m->units, name);
}
static void dispatch_load_queue(Manager *m) {
Meta *meta;
assert(m);
/* Make sure we are not run recursively */
if (m->dispatching_load_queue)
return;
m->dispatching_load_queue = true;
/* Dispatches the load queue. Takes a unit from the queue and
* tries to load its data until the queue is empty */
while ((meta = m->load_queue)) {
assert(meta->in_load_queue);
unit_load(UNIT(meta));
}
m->dispatching_load_queue = false;
}
int manager_load_unit(Manager *m, const char *path, Unit **_ret) {
Unit *ret;
int r;
const char *name;
assert(m);
assert(path);
assert(_ret);
/* This will load the service information files, but not actually
* start any services or anything. */
name = file_name_from_path(path);
if ((ret = manager_get_unit(m, name))) {
*_ret = ret;
return 0;
}
if (!(ret = unit_new(m)))
return -ENOMEM;
if (is_path(path)) {
if (!(ret->meta.load_path = strdup(path))) {
unit_free(ret);
return -ENOMEM;
}
}
if ((r = unit_add_name(ret, name)) < 0) {
unit_free(ret);
return r;
}
unit_add_to_load_queue(ret);
dispatch_load_queue(m);
*_ret = ret;
return 0;
}
void manager_dump_jobs(Manager *s, FILE *f, const char *prefix) {
Iterator i;
Job *j;
assert(s);
assert(f);
HASHMAP_FOREACH(j, s->jobs, i)
job_dump(j, f, prefix);
}
void manager_dump_units(Manager *s, FILE *f, const char *prefix) {
Iterator i;
Unit *u;
const char *t;
assert(s);
assert(f);
HASHMAP_FOREACH_KEY(u, t, s->units, i)
if (unit_id(u) == t)
unit_dump(u, f, prefix);
}
void manager_clear_jobs(Manager *m) {
Job *j;
assert(m);
transaction_abort(m);
while ((j = hashmap_first(m->jobs)))
job_free(j);
}
void manager_dispatch_run_queue(Manager *m) {
Job *j;
if (m->dispatching_run_queue)
return;
m->dispatching_run_queue = true;
while ((j = m->run_queue)) {
assert(j->installed);
assert(j->in_run_queue);
job_run_and_invalidate(j);
}
m->dispatching_run_queue = false;
}
static int manager_dispatch_sigchld(Manager *m) {
assert(m);
log_debug("dispatching SIGCHLD");
for (;;) {
siginfo_t si;
Unit *u;
zero(si);
if (waitid(P_ALL, 0, &si, WEXITED|WNOHANG) < 0) {
if (errno == ECHILD)
break;
return -errno;
}
if (si.si_pid == 0)
break;
if (si.si_code != CLD_EXITED && si.si_code != CLD_KILLED && si.si_code != CLD_DUMPED)
continue;
log_debug("child %llu died (code=%s, status=%i)", (long long unsigned) si.si_pid, sigchld_code(si.si_code), si.si_status);
if (!(u = hashmap_remove(m->watch_pids, UINT32_TO_PTR(si.si_pid))))
continue;
UNIT_VTABLE(u)->sigchld_event(u, si.si_pid, si.si_code, si.si_status);
}
return 0;
}
static int manager_process_signal_fd(Manager *m, bool *quit) {
ssize_t n;
struct signalfd_siginfo sfsi;
bool sigchld = false;
assert(m);
for (;;) {
if ((n = read(m->signal_watch.fd, &sfsi, sizeof(sfsi))) != sizeof(sfsi)) {
if (n >= 0)
return -EIO;
if (errno == EAGAIN)
break;
return -errno;
}
switch (sfsi.ssi_signo) {
case SIGCHLD:
sigchld = true;
break;
case SIGINT:
*quit = true;
return 0;
}
}
if (sigchld)
return manager_dispatch_sigchld(m);
return 0;
}
static int process_event(Manager *m, struct epoll_event *ev, bool *quit) {
int r;
Watch *w;
assert(m);
assert(ev);
assert(w = ev->data.ptr);
switch (w->type) {
case WATCH_SIGNAL_FD:
/* An incoming signal? */
if (ev->events != POLLIN)
return -EINVAL;
if ((r = manager_process_signal_fd(m, quit)) < 0)
return r;
break;
case WATCH_FD:
/* Some fd event, to be dispatched to the units */
UNIT_VTABLE(w->unit)->fd_event(w->unit, w->fd, ev->events, w);
break;
case WATCH_TIMER: {
uint64_t v;
ssize_t k;
/* Some timer event, to be dispatched to the units */
if ((k = read(ev->data.fd, &v, sizeof(v))) != sizeof(v)) {
if (k < 0 && (errno == EINTR || errno == EAGAIN))
break;
return k < 0 ? -errno : -EIO;
}
UNIT_VTABLE(w->unit)->timer_event(w->unit, v, w);
break;
}
default:
assert_not_reached("Unknown epoll event type.");
}
return 0;
}
int manager_loop(Manager *m) {
int r;
bool quit = false;
assert(m);
for (;;) {
struct epoll_event events[32];
int n, i;
manager_dispatch_run_queue(m);
if ((n = epoll_wait(m->epoll_fd, events, ELEMENTSOF(events), -1)) < 0) {
if (errno == -EINTR)
continue;
return -errno;
}
for (i = 0; i < n; i++) {
if ((r = process_event(m, events + i, &quit)) < 0)
return r;
if (quit)
return 0;
}
}
}