1
0
mirror of https://github.com/systemd/systemd.git synced 2025-01-06 17:18:12 +03:00
systemd/man/repart.d.xml

1170 lines
63 KiB
XML
Raw Normal View History

2019-12-17 15:47:21 +03:00
<?xml version='1.0'?>
<!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
"http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd">
<!-- SPDX-License-Identifier: LGPL-2.1-or-later -->
<refentry id="repart.d" conditional='ENABLE_REPART'
xmlns:xi="http://www.w3.org/2001/XInclude">
2019-12-17 15:47:21 +03:00
<refentryinfo>
<title>repart.d</title>
<productname>systemd</productname>
</refentryinfo>
<refmeta>
<refentrytitle>repart.d</refentrytitle>
<manvolnum>5</manvolnum>
</refmeta>
<refnamediv>
<refname>repart.d</refname>
<refpurpose>Partition Definition Files for Automatic Boot-Time Repartitioning</refpurpose>
</refnamediv>
<refsynopsisdiv>
<para><simplelist>
<member><filename>/etc/repart.d/*.conf</filename></member>
<member><filename>/run/repart.d/*.conf</filename></member>
<member><filename>/usr/local/lib/repart.d/*.conf</filename></member>
<member><filename>/usr/lib/repart.d/*.conf</filename></member>
</simplelist></para>
2019-12-17 15:47:21 +03:00
</refsynopsisdiv>
<refsect1>
<title>Description</title>
<para><filename>repart.d/*.conf</filename> files describe basic properties of partitions of block
devices of the local system. They may be used to declare types, names and sizes of partitions that shall
exist. The
<citerefentry><refentrytitle>systemd-repart</refentrytitle><manvolnum>8</manvolnum></citerefentry>
service reads these files and attempts to add new partitions currently missing and enlarge existing
partitions according to these definitions. Operation is generally incremental, i.e. when applied, what
exists already is left intact, and partitions are never shrunk, moved or deleted.</para>
<para>These definition files are useful for implementing operating system images that are prepared and
delivered with minimally sized images (for example lacking any state or swap partitions), and which on
first boot automatically take possession of any remaining disk space following a few basic rules.</para>
<para>Currently, support for partition definition files is only implemented for GPT partition
2019-12-17 15:47:21 +03:00
tables.</para>
<para>Partition files are generally matched against any partitions already existing on disk in a simple
algorithm: the partition files are sorted by their filename (ignoring the directory prefix), and then
compared in order against existing partitions matching the same partition type UUID. Specifically, the
first existing partition with a specific partition type UUID is assigned the first definition file with
the same partition type UUID, and the second existing partition with a specific type UUID the second
partition file with the same type UUID, and so on. Any left-over partition files that have no matching
existing partition are assumed to define new partition that shall be created. Such partitions are
appended to the end of the partition table, in the order defined by their names utilizing the first
partition slot greater than the highest slot number currently in use. Any existing partitions that have
no matching partition file are left as they are.</para>
<para>Note that these definitions may only be used to create and initialize new partitions or to grow
2020-08-05 18:53:39 +03:00
existing ones. In the latter case it will not grow the contained files systems however; separate
mechanisms, such as
<citerefentry><refentrytitle>systemd-growfs</refentrytitle><manvolnum>8</manvolnum></citerefentry> may be
used to grow the file systems inside of these partitions. Partitions may also be marked for automatic
growing via the <varname>GrowFileSystem=</varname> setting, in which case the file system is grown on
first mount by tools that respect this flag. See below for details.</para>
2019-12-17 15:47:21 +03:00
</refsect1>
<refsect1>
<title>[Partition] Section Options</title>
<variablelist>
<varlistentry>
<term><varname>Type=</varname></term>
<listitem><para>The GPT partition type UUID to match. This may be a GPT partition type UUID such as
<constant>4f68bce3-e8cd-4db1-96e7-fbcaf984b709</constant>, or an identifier.</para>
<para>The supported identifiers are:</para>
2019-12-17 15:47:21 +03:00
<table>
<title>GPT partition type identifiers</title>
<tgroup cols='2' align='left' colsep='1' rowsep='1'>
<colspec colname="name" />
<colspec colname="explanation" />
<thead>
<row>
<entry>Identifier</entry>
<entry>Explanation</entry>
</row>
</thead>
<tbody>
<row>
<entry><constant>esp</constant></entry>
<entry>EFI System Partition</entry>
</row>
<row>
<entry><constant>xbootldr</constant></entry>
<entry>Extended Boot Loader Partition</entry>
</row>
<row>
<entry><constant>swap</constant></entry>
<entry>Swap partition</entry>
</row>
<row>
<entry><constant>home</constant></entry>
<entry>Home (<filename>/home/</filename>) partition</entry>
</row>
<row>
<entry><constant>srv</constant></entry>
<entry>Server data (<filename>/srv/</filename>) partition</entry>
</row>
<row>
<entry><constant>var</constant></entry>
<entry>Variable data (<filename>/var/</filename>) partition</entry>
</row>
<row>
<entry><constant>tmp</constant></entry>
<entry>Temporary data (<filename>/var/tmp/</filename>) partition</entry>
</row>
<row>
<entry><constant>linux-generic</constant></entry>
<entry>Generic Linux file system partition</entry>
</row>
<row>
<entry><constant>root</constant></entry>
<entry>Root file system partition type appropriate for the local architecture (an alias for an architecture root file system partition type listed below, e.g. <constant>root-x86-64</constant>)</entry>
</row>
<row>
<entry><constant>root-verity</constant></entry>
<entry>Verity data for the root file system partition for the local architecture</entry>
</row>
<row>
<entry><constant>root-verity-sig</constant></entry>
<entry>Verity signature data for the root file system partition for the local architecture</entry>
</row>
2019-12-17 15:47:21 +03:00
<row>
<entry><constant>root-secondary</constant></entry>
<entry>Root file system partition of the secondary architecture of the local architecture (usually the matching 32-bit architecture for the local 64-bit architecture)</entry>
2019-12-17 15:47:21 +03:00
</row>
<row>
<entry><constant>root-secondary-verity</constant></entry>
<entry>Verity data for the root file system partition of the secondary architecture</entry>
</row>
<row>
<entry><constant>root-secondary-verity-sig</constant></entry>
<entry>Verity signature data for the root file system partition of the secondary architecture</entry>
</row>
<row>
<entry><constant>root-{arch}</constant></entry>
<entry>Root file system partition of the given architecture (such as <constant>root-x86-64</constant> or <constant>root-riscv64</constant>)</entry>
</row>
<row>
<entry><constant>root-{arch}-verity</constant></entry>
<entry>Verity data for the root file system partition of the given architecture</entry>
</row>
<row>
<entry><constant>root-{arch}-verity-sig</constant></entry>
<entry>Verity signature data for the root file system partition of the given architecture</entry>
</row>
<row>
<entry><constant>usr</constant></entry>
<entry><filename>/usr/</filename> file system partition type appropriate for the local architecture (an alias for an architecture <filename>/usr/</filename> file system partition type listed below, e.g. <constant>usr-x86-64</constant>)</entry>
</row>
<row>
<entry><constant>usr-verity</constant></entry>
<entry>Verity data for the <filename>/usr/</filename> file system partition for the local architecture</entry>
</row>
<row>
<entry><constant>usr-verity-sig</constant></entry>
<entry>Verity signature data for the <filename>/usr/</filename> file system partition for the local architecture</entry>
</row>
<row>
<entry><constant>usr-secondary</constant></entry>
<entry><filename>/usr/</filename> file system partition of the secondary architecture of the local architecture (usually the matching 32-bit architecture for the local 64-bit architecture)</entry>
</row>
<row>
<entry><constant>usr-secondary-verity</constant></entry>
<entry>Verity data for the <filename>/usr/</filename> file system partition of the secondary architecture</entry>
</row>
<row>
<entry><constant>usr-secondary-verity-sig</constant></entry>
<entry>Verity signature data for the <filename>/usr/</filename> file system partition of the secondary architecture</entry>
</row>
<row>
<entry><constant>usr-{arch}</constant></entry>
<entry><filename>/usr/</filename> file system partition of the given architecture</entry>
</row>
<row>
<entry><constant>usr-{arch}-verity</constant></entry>
<entry>Verity data for the <filename>/usr/</filename> file system partition of the given architecture</entry>
</row>
<row>
<entry><constant>usr-{arch}-verity-sig</constant></entry>
<entry>Verity signature data for the <filename>/usr/</filename> file system partition of the given architecture</entry>
</row>
2019-12-17 15:47:21 +03:00
</tbody>
</tgroup>
</table>
<para>Architecture specific partition types can use one of these architecture identifiers:
<constant>alpha</constant>, <constant>arc</constant>, <constant>arm</constant> (32-bit),
<constant>arm64</constant> (64-bit, aka aarch64), <constant>ia64</constant>,
<constant>loongarch64</constant>, <constant>mips-le</constant>, <constant>mips64-le</constant>,
<constant>parisc</constant>, <constant>ppc</constant>, <constant>ppc64</constant>,
<constant>ppc64-le</constant>, <constant>riscv32</constant>, <constant>riscv64</constant>,
<constant>s390</constant>, <constant>s390x</constant>, <constant>tilegx</constant>,
<constant>x86</constant> (32-bit, aka i386) and <constant>x86-64</constant> (64-bit, aka amd64).</para>
2019-12-17 15:47:21 +03:00
<para>Most of the partition type UUIDs listed above are defined in the <ulink
url="https://uapi-group.org/specifications/specs/discoverable_partitions_specification">Discoverable Partitions
Specification</ulink>.</para>
<xi:include href="version-info.xml" xpointer="v245"/></listitem>
2019-12-17 15:47:21 +03:00
</varlistentry>
<varlistentry>
<term><varname>Label=</varname></term>
<listitem><para>The textual label to assign to the partition if none is assigned yet. Note that this
setting is not used for matching. It is also not used when a label is already set for an existing
partition. It is thus only used when a partition is newly created or when an existing one had a no
label set (that is: an empty label). If not specified a label derived from the partition type is
automatically used. Simple specifier expansion is supported, see below.</para>
<xi:include href="version-info.xml" xpointer="v245"/></listitem>
2019-12-17 15:47:21 +03:00
</varlistentry>
<varlistentry>
<term><varname>UUID=</varname></term>
<listitem><para>The UUID to assign to the partition if none is assigned yet. Note that this
setting is not used for matching. It is also not used when a UUID is already set for an existing
partition. It is thus only used when a partition is newly created or when an existing one had a
all-zero UUID set. If set to <literal>null</literal>, the UUID is set to all zeroes. If not specified
a UUID derived from the partition type is automatically used.</para>
<xi:include href="version-info.xml" xpointer="v246"/></listitem>
</varlistentry>
2019-12-17 15:47:21 +03:00
<varlistentry>
<term><varname>Priority=</varname></term>
<listitem><para>A numeric priority to assign to this partition, in the range -2147483648…2147483647,
with smaller values indicating higher priority, and higher values indicating smaller priority. This
priority is used in case the configured size constraints on the defined partitions do not permit
fitting all partitions onto the available disk space. If the partitions do not fit, the highest
numeric partition priority of all defined partitions is determined, and all defined partitions with
this priority are removed from the list of new partitions to create (which may be multiple, if the
same priority is used for multiple partitions). The fitting algorithm is then tried again. If the
partitions still do not fit, the now highest numeric partition priority is determined, and the
matching partitions removed too, and so on. Partitions of a priority of 0 or lower are never
removed. If all partitions with a priority above 0 are removed and the partitions still do not fit on
the device the operation fails. Note that this priority has no effect on ordering partitions, for
that use the alphabetical order of the filenames of the partition definition files. Defaults to
0.</para>
<xi:include href="version-info.xml" xpointer="v245"/></listitem>
2019-12-17 15:47:21 +03:00
</varlistentry>
<varlistentry>
<term><varname>Weight=</varname></term>
<listitem><para>A numeric weight to assign to this partition in the range 0…1000000. Available disk
space is assigned the defined partitions according to their relative weights (subject to the size
constraints configured with <varname>SizeMinBytes=</varname>, <varname>SizeMaxBytes=</varname>), so
that a partition with weight 2000 gets double the space as one with weight 1000, and a partition with
weight 333 a third of that. Defaults to 1000.</para>
<para>The <varname>Weight=</varname> setting is used to distribute available disk space in an
"elastic" fashion, based on the disk size and existing partitions. If a partition shall have a fixed
size use both <varname>SizeMinBytes=</varname> and <varname>SizeMaxBytes=</varname> with the same
value in order to fixate the size to one value, in which case the weight has no
effect.</para>
<xi:include href="version-info.xml" xpointer="v245"/></listitem>
2019-12-17 15:47:21 +03:00
</varlistentry>
<varlistentry>
<term><varname>PaddingWeight=</varname></term>
<listitem><para>Similar to <varname>Weight=</varname>, but sets a weight for the free space after the
2019-12-17 15:47:21 +03:00
partition (the "padding"). When distributing available space the weights of all partitions and all
defined padding is summed, and then each partition and padding gets the fraction defined by its
weight. Defaults to 0, i.e. by default no padding is applied.</para>
<para>Padding is useful if empty space shall be left for later additions or a safety margin at the
end of the device or between partitions.</para>
<xi:include href="version-info.xml" xpointer="v245"/></listitem>
2019-12-17 15:47:21 +03:00
</varlistentry>
<varlistentry>
<term><varname>SizeMinBytes=</varname></term>
<term><varname>SizeMaxBytes=</varname></term>
<listitem><para>Specifies minimum and maximum size constraints in bytes. Takes the usual K, M, G, T,
… suffixes (to the base of 1024). If <varname>SizeMinBytes=</varname> is specified the partition is
created at or grown to at least the specified size. If <varname>SizeMaxBytes=</varname> is specified
the partition is created at or grown to at most the specified size. The precise size is determined
through the weight value configured with <varname>Weight=</varname>, see above. When
2019-12-17 15:47:21 +03:00
<varname>SizeMinBytes=</varname> is set equal to <varname>SizeMaxBytes=</varname> the configured
weight has no effect as the partition is explicitly sized to the specified fixed value. Note that
partitions are never created smaller than 4096 bytes, and since partitions are never shrunk the
previous size of the partition (in case the partition already exists) is also enforced as lower bound
for the new size. The values should be specified as multiples of 4096 bytes, and are rounded upwards
(in case of <varname>SizeMinBytes=</varname>) or downwards (in case of
<varname>SizeMaxBytes=</varname>) otherwise. If the backing device does not provide enough space to
fulfill the constraints placing the partition will fail. For partitions that shall be created,
depending on the setting of <varname>Priority=</varname> (see above) the partition might be dropped
and the placing algorithm restarted. By default a minimum size constraint of 10M and no maximum size
constraint is set.</para>
<xi:include href="version-info.xml" xpointer="v245"/></listitem>
2019-12-17 15:47:21 +03:00
</varlistentry>
<varlistentry>
<term><varname>PaddingMinBytes=</varname></term>
<term><varname>PaddingMaxBytes=</varname></term>
<listitem><para>Specifies minimum and maximum size constraints in bytes for the free space after the
2019-12-17 15:47:21 +03:00
partition (the "padding"). Semantics are similar to <varname>SizeMinBytes=</varname> and
<varname>SizeMaxBytes=</varname>, except that unlike partition sizes free space can be shrunk and can
be as small as zero. By default no size constraints on padding are set, so that only
<varname>PaddingWeight=</varname> determines the size of the padding applied.</para>
<xi:include href="version-info.xml" xpointer="v245"/></listitem>
2019-12-17 15:47:21 +03:00
</varlistentry>
<varlistentry>
<term><varname>CopyBlocks=</varname></term>
<listitem><para>Takes a path to a regular file, block device node, char device node or directory, or
the special value <literal>auto</literal>. If specified and the partition is newly created, the data
from the specified path is written to the newly created partition, on the block level. If a directory
is specified, the backing block device of the file system the directory is on is determined, and the
data read directly from that. This option is useful to efficiently replicate existing file systems
onto new partitions on the block level — for example to build a simple OS installer or an OS image
builder. Specify <filename>/dev/urandom</filename> as value to initialize a partition with random
data.</para>
repart: add CopyBlocks=auto support When using systemd-repart as an installer that replicates the install medium on another medium it is useful to reference the root partition/usr partition or verity data that is currently booted, in particular in A/B scenarios where we have two copies and want to reference the one we currently use. Let's add a CopyBlocks=auto for this case: for a partition that uses that we'll copy a suitable partition from the host. CopyBlocks=auto finds the partition to copy like this: based on the configured partition type uuid we determine the usual mount point (i.e. for the /usr partition type we determine /usr/, and so on). We then figure out the block device behind that path, through dm-verity and dm-crypt if necessary. Finally, we compare the partition type uuid of the partition found that way with the one we are supposed to fill and only use it if it matches (the latter is primarily important on dm-verity setups where a volume is likely backed by two partitions and we need to find the right one). This is particularly fun to use in conjunction with --image= (where we'll restrict the device search onto the specify device, for security reasons), as this allows "duplicating" an image like this: # systemd-repart --image=source.raw --empty=create --size=auto target.raw If the right repart data is embedded into "source.raw" this will be able to create and initialize a partition table on target.raw that carrries all needed partitions, and will stream the source's file systems onto it as configured.
2021-03-23 16:12:38 +03:00
<para>If the special value <literal>auto</literal> is specified, the source to copy from is
automatically picked up from the running system (or the image specified with
<option>--image=</option> — if used). A partition that matches both the configured partition type (as
declared with <varname>Type=</varname> described above), and the currently mounted directory
appropriate for that partition type is determined. For example, if the partition type is set to
repart: add CopyBlocks=auto support When using systemd-repart as an installer that replicates the install medium on another medium it is useful to reference the root partition/usr partition or verity data that is currently booted, in particular in A/B scenarios where we have two copies and want to reference the one we currently use. Let's add a CopyBlocks=auto for this case: for a partition that uses that we'll copy a suitable partition from the host. CopyBlocks=auto finds the partition to copy like this: based on the configured partition type uuid we determine the usual mount point (i.e. for the /usr partition type we determine /usr/, and so on). We then figure out the block device behind that path, through dm-verity and dm-crypt if necessary. Finally, we compare the partition type uuid of the partition found that way with the one we are supposed to fill and only use it if it matches (the latter is primarily important on dm-verity setups where a volume is likely backed by two partitions and we need to find the right one). This is particularly fun to use in conjunction with --image= (where we'll restrict the device search onto the specify device, for security reasons), as this allows "duplicating" an image like this: # systemd-repart --image=source.raw --empty=create --size=auto target.raw If the right repart data is embedded into "source.raw" this will be able to create and initialize a partition table on target.raw that carrries all needed partitions, and will stream the source's file systems onto it as configured.
2021-03-23 16:12:38 +03:00
<literal>root</literal> the partition backing the root directory (<filename>/</filename>) is used as
source to copy from — if its partition type is set to <literal>root</literal> as well. If the
declared type is <literal>usr</literal> the partition backing <filename>/usr/</filename> is used as
source to copy blocks from — if its partition type is set to <literal>usr</literal> too. The logic is
2021-06-30 14:53:14 +03:00
capable of automatically tracking down the backing partitions for encrypted and Verity-enabled
repart: add CopyBlocks=auto support When using systemd-repart as an installer that replicates the install medium on another medium it is useful to reference the root partition/usr partition or verity data that is currently booted, in particular in A/B scenarios where we have two copies and want to reference the one we currently use. Let's add a CopyBlocks=auto for this case: for a partition that uses that we'll copy a suitable partition from the host. CopyBlocks=auto finds the partition to copy like this: based on the configured partition type uuid we determine the usual mount point (i.e. for the /usr partition type we determine /usr/, and so on). We then figure out the block device behind that path, through dm-verity and dm-crypt if necessary. Finally, we compare the partition type uuid of the partition found that way with the one we are supposed to fill and only use it if it matches (the latter is primarily important on dm-verity setups where a volume is likely backed by two partitions and we need to find the right one). This is particularly fun to use in conjunction with --image= (where we'll restrict the device search onto the specify device, for security reasons), as this allows "duplicating" an image like this: # systemd-repart --image=source.raw --empty=create --size=auto target.raw If the right repart data is embedded into "source.raw" this will be able to create and initialize a partition table on target.raw that carrries all needed partitions, and will stream the source's file systems onto it as configured.
2021-03-23 16:12:38 +03:00
volumes. <literal>CopyBlocks=auto</literal> is useful for implementing "self-replicating" systems,
i.e. systems that are their own installer.</para>
<para>The file specified here must have a size that is a multiple of the basic block size 512 and not
be empty. If this option is used, the size allocation algorithm is slightly altered: the partition is
2024-03-21 04:49:38 +03:00
created at least as big as required to fit the data in, i.e. the data size is an additional minimum
size value taken into consideration for the allocation algorithm, similar to and in addition to the
<varname>SizeMin=</varname> value configured above.</para>
<para>This option has no effect if the partition it is declared for already exists, i.e. existing
data is never overwritten. Note that the data is copied in before the partition table is updated,
i.e. before the partition actually is persistently created. This provides robustness: it is
guaranteed that the partition either doesn't exist or exists fully populated; it is not possible that
the partition exists but is not or only partially populated.</para>
<para>This option cannot be combined with <varname>Format=</varname> or
<varname>CopyFiles=</varname>.</para>
<xi:include href="version-info.xml" xpointer="v246"/></listitem>
2020-08-05 18:53:39 +03:00
</varlistentry>
<varlistentry>
<term><varname>Format=</varname></term>
<listitem><para>Takes a file system name, such as <literal>ext4</literal>, <literal>btrfs</literal>,
<literal>xfs</literal>, <literal>vfat</literal>, <literal>erofs</literal>,
<literal>squashfs</literal> or the special value <literal>swap</literal>. If specified and the partition
is newly created it is formatted with the specified file system (or as swap device). The file system
UUID and label are automatically derived from the partition UUID and label. If this option is used,
2024-03-21 04:49:38 +03:00
the size allocation algorithm is slightly altered: the partition is created at least as big as
required for the minimal file system of the specified type (or 4KiB if the minimal size is not
known).</para>
2020-08-05 18:53:39 +03:00
<para>This option has no effect if the partition already exists.</para>
<para>Similarly to the behaviour of <varname>CopyBlocks=</varname>, the file system is formatted
before the partition is created, ensuring that the partition only ever exists with a fully
initialized file system.</para>
<para>This option cannot be combined with <varname>CopyBlocks=</varname>.</para>
<xi:include href="version-info.xml" xpointer="v247"/></listitem>
2020-08-05 18:53:39 +03:00
</varlistentry>
<varlistentry>
<term><varname>CopyFiles=</varname></term>
<listitem><para>Takes a pair of colon separated absolute file system paths. The first path refers to
a source file or directory on the host, the second path refers to a target in the file system of the
newly created partition and formatted file system. This setting may be used to copy files or
directories from the host into the file system that is created due to the <varname>Format=</varname>
option. If <varname>CopyFiles=</varname> is used without <varname>Format=</varname> specified
explicitly, <literal>Format=</literal> with a suitable default is implied (currently
<literal>vfat</literal> for <literal>ESP</literal> and <literal>XBOOTLDR</literal> partitions, and
<literal>ext4</literal> otherwise, but this may change in the future). This option may be used
multiple times to copy multiple files or directories from host into the newly formatted file system.
The colon and second path may be omitted in which case the source path is also used as the target
path (relative to the root of the newly created file system). If the source path refers to a
directory it is copied recursively.</para>
2020-08-05 18:53:39 +03:00
<para>This option has no effect if the partition already exists: it cannot be used to copy additional
files into an existing partition, it may only be used to populate a file system created anew.</para>
<para>The copy operation is executed before the file system is registered in the partition table,
thus ensuring that a file system populated this way only ever exists fully initialized.</para>
<para>Note that <varname>CopyFiles=</varname> will skip copying files that aren't supported by the
target filesystem (e.g symlinks, fifos, sockets and devices on vfat). When an unsupported file type
is encountered, <command>systemd-repart</command> will skip copying this file and write a log message
about it.</para>
<para>Note that <command>systemd-repart</command> does not change the UIDs/GIDs of any copied files
and directories. When running <command>systemd-repart</command> as an unprivileged user to build an
image of files and directories owned by the same user, you can run <command>systemd-repart</command>
in a user namespace with the current user mapped to the root user to make sure the files and
directories in the image are owned by the root user.</para>
<para>Note that when populating XFS filesystems with <command>systemd-repart</command> and loop
devices are not available, populating XFS filesystems with files containing spaces, tabs or newlines
might fail on old versions of
<citerefentry project='man-pages'><refentrytitle>mkfs.xfs</refentrytitle><manvolnum>8</manvolnum></citerefentry>
due to limitations of its protofile format.</para>
<para>Note that when populating XFS filesystems with <command>systemd-repart</command> and loop
devices are not available, extended attributes will not be copied into generated XFS filesystems
due to limitations <citerefentry project='man-pages'><refentrytitle>mkfs.xfs</refentrytitle><manvolnum>8</manvolnum></citerefentry>'s
protofile format.</para>
<para>This option cannot be combined with <varname>CopyBlocks=</varname>.</para>
man: fix issues reported by the manpage-l10n project Fixes #25780. > Man page: crypttab.5 > Issue 1: Missing fullstop > Issue 2: I<cipher=>, I<hash=>, I<size=> → B<cipher=>, B<hash=>, B<size=> > > "Force LUKS mode\\&. When this mode is used, the following options are " > "ignored since they are provided by the LUKS header on the device: " > "I<cipher=>, I<hash=>, I<size=>" Seems OK to me. The full stop is there and has been for at least a few years. And we use <option> for the markup, which is appropriate here. > Man page: crypttab.5 > Issue 1: Missing fullstop > Issue 2: I<cipher=>, I<hash=>, I<keyfile-offset=>, I<keyfile-size=>, I<size=> → B<cipher=>, B<hash=>, B<keyfile-offset=>, B<keyfile-size=>, B<size=> > > "Use TrueCrypt encryption mode\\&. When this mode is used, the following " > "options are ignored since they are provided by the TrueCrypt header on the " > "device or do not apply: I<cipher=>, I<hash=>, I<keyfile-offset=>, I<keyfile-" > "size=>, I<size=>" Same. > Man page: journalctl.1 > Issue 1: make be → may be Fixed. > Issue 2: below\\&. → below: Fixed. > Man page: journalctl.1 > Issue: Colon at the end? > > "The following commands are understood\\&. If none is specified the default " > "is to display journal records\\&." > msgstr "" > "Die folgenden Befehle werden verstanden\\&. Falls keiner festgelegt ist, ist " > "die Anzeige von Journal-Datensätzen die Vorgabe\\&." This is a bit awkward, but I'm not sure how to fix it. > Man page: kernel-install.8 > Issue: methods a fallback → methods fallback It was correct, but I added a comma to make the sense clearer. > Man page: loader.conf.5 > Issue 1: secure boot variables → Secure Boot variables > Issue 2: one → one for (multiple times) > > "Supported secure boot variables are one database for authorized images, one " > "key exchange key (KEK) and one platform key (PK)\\&. For more information, " > "refer to the \\m[blue]B<UEFI specification>\\m[]\\&\\s-2\\u[2]\\d\\s+2, " > "under Secure Boot and Driver Signing\\&. Another resource that describe the " > "interplay of the different variables is the \\m[blue]B<EDK2 " > "documentation>\\m[]\\&\\s-2\\u[3]\\d\\s+2\\&." "one of" would sound strange. "One this and one that" is OK. > Man page: loader.conf.5 > Issue: systemd-boot → B<systemd-boot>(7) Fixed. > Man page: logind.conf.5 > Issue: systemd-logind → B<systemd-logind>(8) We use <filename>systemd-logind</> on subsequent references… I think that's good enough. > Man page: nss-myhostname.8 > Issue: B<getent> → B<getent>(1) Fixed. > Man page: nss-resolve.8 > Issue: B<systemd-resolved> → B<systemd-resolved>(8) The first reference does this, subsequent are shorter. > Man page: os-release.5 > Issue: Portable Services → Portable Services Documentation? Updated. > Man page: pam_systemd_home.8 > Issue: auth and account use "reason", while session and password do not? Reworded. > Man page: portablectl.1 > Issue: In systemd-portabled.service(8): Portable Services Documentation Updated. > Man page: repart.d.5 > Issue: The partition → the partition Fixed. > Man page: repart.d.5 > Issue: B<systemd-repart> → B<systemd-repart>(8) The first reference does this. I also change this one, because it's pretty far down in the text. > Man page: systemd.1 > Issue: kernel command line twice? > > "Takes a boolean argument\\&. If false disables importing credentials from " > "the kernel command line, qemu_fw_cfg subsystem or the kernel command line\\&." Apparently this was fixed already. > Man page: systemd-boot.7 > Issue: enrollement → enrollment Fixed. > Man page: systemd-cryptenroll.1 > Issue: multiple cases: any specified → the specified Reworded. > Man page: systemd-cryptenroll.1 > Issue: If this this → If this Fixed tree-wide. > Man page: systemd-cryptsetup-generator.8 > Issue: and the initrd → and in the initrd "Is honoured by the initrd" is OK, because we often speak about the initrd as a single unit. But in the same paragraph we also used "in the initrd", which makes the other use look sloppy. I changed it to "in the initrd" everywhere in that file. > Man page: systemd.directives.7 > Issue: Why are these two quoted (but not others)? > > "B<\\*(Aqh\\*(Aq>" > > B<\\*(Aqs\\*(Aq>" > > "B<\\*(Aqy\\*(Aq>" This is autogenerated from files… We use slightly different markup in different files, and it's just too hard to make it consistent. We gave up on this. > Man page: systemd.exec.5 > Issue 1: B<at>(1p) → B<at>(1) > Issue 2: B<crontab>(1p) → B<crontab>(1) Fixed. > Man page: systemd.exec.5 > Issue: B<select()> → B<select>(2) Fixed. > Man page: systemd.exec.5 > Issue: qemu → B<qemu>(1) The man page doesn't seem to be in any of the canonical places on the web. I added a link to online docs. > Man page: systemd.exec.5 > Issue: variable → variables Seems to be fixed already. > Man page: systemd-integritysetup-generator.8 > Issue: systemd-integritysetup-generator → B<systemd-integritysetup-generator> I changed <filename> to <command>. > Man page: systemd-integritysetup-generator.8 > Issue: superfluous comma at the end Already fixed. > Man page: systemd-measure.1 > Issue: (see B<--pcr-bank=>) below → (see B<--pcr-bank=> below) Reworded. > Man page: systemd-measure.1 > Issue: =PATH> → =>I<PATH> Fixed. > Man page: systemd-measure.1.po > Issue: B<--bank=DIGEST> → B<--bank=>I<DIGEST> Fixed. > Man page: systemd.netdev.5 > Issue: os the → on the Appears to have been fixed already. > Man page: systemd.netdev.5 > Issue: Onboard → On-board (as in previous string) Updated. > Man page: systemd.network.5 > Issue: B<systemd-networkd> -> B<systemd-networkd>(8) First reference does this, subsequent do not. > Man page: systemd.network.5 > Issue: B<netlabelctl> → B<netlabelctl>(8) First reference does this, subsequent do not. > Man page: systemd.network.5 > Issue: Missing verb (aquired? configured?) in the half sentence starting with "or by a " I dropped the comma. > Man page: systemd-nspawn.1 > Issue: All host users outside of that range → All other host users Reworded. > # FIXME no effect → no effect\\&. > #. type: Plain text > #: archlinux debian-unstable fedora-rawhide mageia-cauldron opensuse-tumbleweed > msgid "" > "Whichever ID mapping option is used, the same mapping will be used for users " > "and groups IDs\\&. If B<rootidmap> is used, the group owning the bind " > "mounted directory will have no effect" A period is added. Not sure if there's some other issue. > Man page: systemd-oomd.service.8 > Issue: B<systemd> → B<systemd>(1) Done. > Man page: systemd.path.5 > Issue 1: B<systemd.exec>(1) → B<systemd.exec>(5) > Issue 2: This section does not (yet?) exist Fixed. > Man page: systemd-pcrphase.service.8 > Issue 1: indicate phases into TPM2 PCR 11 ?? > Issue 2: Colon at the end of the paragraph? Fixed. > Man page: systemd-pcrphase.service.8 > Issue: final boot phase → final shutdown phase? Updated. > Man page: systemd-pcrphase.service.8 > Issue: for the the → for the Fixed tree-wide. > Man page: systemd-portabled.service.8 > Issue: In systemd-portabled.service(8): Portable Services Documentation Updated. > Man page: systemd-pstore.service.8 > Issue: Here and the following paragraphs: . → \\&. // Upstream: What does this comment mean? // You normally write \\&. for a full dot (full stop etc.); here you write only "." (i.e. a plain dot). > > "and we look up \"localhost\", nss-dns will send the following queries to " > "systemd-resolved listening on 127.0.0.53:53: first \"localhost.foobar.com\", " > "then \"localhost.barbar.com\", and finally \"localhost\". If (hopefully) the " > "first two queries fail, systemd-resolved will synthesize an answer for the " > "third query." Looks all OK to me. > Man page: systemd.resource-control.5 > Issue: Missing closing bracket after link to Control Groups version 1 Fixed. > Man page: systemd-sysext.8 > Issue: In systemd-portabled.service(8): Portable Services Documentation Updated. > Man page: systemd.timer.5 > Issue 1: B<systemd.exec>(1) → B<systemd.exec>(5) > Issue 2: This section does not (yet?) exist Fixed. > Man page: systemd.unit.5 > Issue: that is → that are Fixed. > Man page: systemd-veritysetup-generator.8 > Issue: systemd-veritysetup-generator → B<systemd-veritysetup-generator> > > "systemd-veritysetup-generator implements B<systemd.generator>(7)\\&." > > "systemd-veritysetup-generator understands the following kernel command line " > "parameters:" Updated. > Man page: systemd-volatile-root.service.8 > Issue: initrdyes → Initrd Fixed. > Man page: sysupdate.d.5 > Issue: : → \\&. (As above in TRANSFER) Updated. > Man page: sysupdate.d.5 > Issue: some → certain Updated. > Man page: sysupdate.d.5 > Issue 1: i\\&.e\\& → I\\&.e\\& Fixed. > Issue 2: the image → the system "image" seems correct. > Man page: tmpfiles.d.5 > Issue: systemd-tmpfiles → B<systemd-tmpfiles>(8) Updated.
2023-01-11 18:45:59 +03:00
<para>When
<citerefentry><refentrytitle>systemd-repart</refentrytitle><manvolnum>8</manvolnum></citerefentry> is
invoked with the <option>--copy-source=</option> command line switch the file paths are taken
relative to the specified directory. If <option>--copy-source=</option> is not used, but the
<option>--image=</option> or <option>--root=</option> switches are used, the source paths are taken
relative to the specified root directory or disk image root.</para>
<xi:include href="version-info.xml" xpointer="v247"/></listitem>
2020-08-05 18:53:39 +03:00
</varlistentry>
2023-02-16 15:23:47 +03:00
<varlistentry>
<term><varname>ExcludeFiles=</varname></term>
<term><varname>ExcludeFilesTarget=</varname></term>
2023-02-16 15:23:47 +03:00
<listitem><para>Takes one or more absolute paths, separated by whitespace, each referring to a
source file or directory on the host. This setting may be used to exclude files or directories from
the host from being copied into the file system when <varname>CopyFiles=</varname> is used. This
option may be used multiple times to exclude multiple files or directories from host from being
copied into the newly formatted file system.</para>
2023-02-16 15:23:47 +03:00
<para>If the path is a directory and ends with <literal>/</literal>, only the directory's
contents are excluded but not the directory itself. If the path is a directory and does not end with
<literal>/</literal>, both the directory and its contents are excluded.</para>
<para><varname>ExcludeFilesTarget=</varname> is like <varname>ExcludeFiles=</varname> except that
instead of excluding the path on the host from being copied into the partition, it exclude any files
and directories from being copied into the given path in the partition.</para>
2023-02-16 15:23:47 +03:00
<para>When
<citerefentry><refentrytitle>systemd-repart</refentrytitle><manvolnum>8</manvolnum></citerefentry>
is invoked with the <option>--image=</option> or <option>--root=</option> command line switches the
paths specified are taken relative to the specified root directory or disk image root.
</para>
<xi:include href="version-info.xml" xpointer="v254"/></listitem>
2023-02-16 15:23:47 +03:00
</varlistentry>
repart: add high-level setting for creating dirs in formatted file systems So far we already had the CopyFiles= option in systemd-repart drop-in files, as a mechanism for populating freshly formatted file systems with files and directories. This adds MakeDirectories= in similar style, and creates simple directories as listed. The option is of course entirely redundant, since the same can be done with CopyFiles= simply by copying in a directory. It's kinda nice to encode the dirs to create directly in the drop-in files however, instead of providing a directory subtree to copy in somehere, to make the files more self-contained — since often just creating dirs is entirely sufficient. The main usecase for this are GPT OS images that carry only a /usr/ tree, and for which a root file system is only formatted on first boot via repart. Without any additional CopyFiles=/MakeDirectories= configuration these root file systems are entirely empty of course initially. To mount in the /usr/ tree, a directory inode for /usr/ to mount over needs to be created. systemd-nspawn will do so automatically when booting up the image, as will the initrd during boot. However, this requires the image to be writable – which is OK for npawn and initrd-based boots, but there are plenty tools where read-only operation is desirable after repart ran, before the image was booted for the first time. Specifically, "systemd-dissect" opens the image in read-only to inspect its contents, and this will only work of /usr/ can be properly mounted. Moreover systemd-dissect --mount --read-only won't succeed either if the fs is read-only. Via MakeDirectories= we now provide a way that ensures that the image can be mounted/inspected in a fully read-only way immediately after systemd-repart completed. Specifically, let's consider a GPT disk image shipping with a file usr/lib/repart.d/50-root.conf: [Partition] Type=root Format=btrfs MakeDirectories=/usr MakeDirectories=/efi With this in place systemd-repart will create a root partition when run, and add /usr and /efi into it as directory inods. This ensures that the whole image can then be mounted truly read-only anf /usr and /efi can be overmounted by the /usr partition and the ESP.
2021-03-20 16:05:28 +03:00
<varlistentry>
<term><varname>MakeDirectories=</varname></term>
<listitem><para>Takes one or more absolute paths, separated by whitespace, each declaring a directory
repart: add high-level setting for creating dirs in formatted file systems So far we already had the CopyFiles= option in systemd-repart drop-in files, as a mechanism for populating freshly formatted file systems with files and directories. This adds MakeDirectories= in similar style, and creates simple directories as listed. The option is of course entirely redundant, since the same can be done with CopyFiles= simply by copying in a directory. It's kinda nice to encode the dirs to create directly in the drop-in files however, instead of providing a directory subtree to copy in somehere, to make the files more self-contained — since often just creating dirs is entirely sufficient. The main usecase for this are GPT OS images that carry only a /usr/ tree, and for which a root file system is only formatted on first boot via repart. Without any additional CopyFiles=/MakeDirectories= configuration these root file systems are entirely empty of course initially. To mount in the /usr/ tree, a directory inode for /usr/ to mount over needs to be created. systemd-nspawn will do so automatically when booting up the image, as will the initrd during boot. However, this requires the image to be writable – which is OK for npawn and initrd-based boots, but there are plenty tools where read-only operation is desirable after repart ran, before the image was booted for the first time. Specifically, "systemd-dissect" opens the image in read-only to inspect its contents, and this will only work of /usr/ can be properly mounted. Moreover systemd-dissect --mount --read-only won't succeed either if the fs is read-only. Via MakeDirectories= we now provide a way that ensures that the image can be mounted/inspected in a fully read-only way immediately after systemd-repart completed. Specifically, let's consider a GPT disk image shipping with a file usr/lib/repart.d/50-root.conf: [Partition] Type=root Format=btrfs MakeDirectories=/usr MakeDirectories=/efi With this in place systemd-repart will create a root partition when run, and add /usr and /efi into it as directory inods. This ensures that the whole image can then be mounted truly read-only anf /usr and /efi can be overmounted by the /usr partition and the ESP.
2021-03-20 16:05:28 +03:00
to create within the new file system. Behaviour is similar to <varname>CopyFiles=</varname>, but
instead of copying in a set of files this just creates the specified directories with the default
mode of 0755 owned by the root user and group, plus all their parent directories (with the same
ownership and access mode). To configure directories with different ownership or access mode, use
<varname>CopyFiles=</varname> and specify a source tree to copy containing appropriately
owned/configured directories. This option may be used more than once to create multiple
directories. When <varname>CopyFiles=</varname> and <varname>MakeDirectories=</varname> are used
together the former is applied first. If a directory listed already exists no operation is executed
(in particular, the ownership/access mode of the directories is left as is).</para>
<para>The primary use case for this option is to create a minimal set of directories that may be
repart: add high-level setting for creating dirs in formatted file systems So far we already had the CopyFiles= option in systemd-repart drop-in files, as a mechanism for populating freshly formatted file systems with files and directories. This adds MakeDirectories= in similar style, and creates simple directories as listed. The option is of course entirely redundant, since the same can be done with CopyFiles= simply by copying in a directory. It's kinda nice to encode the dirs to create directly in the drop-in files however, instead of providing a directory subtree to copy in somehere, to make the files more self-contained — since often just creating dirs is entirely sufficient. The main usecase for this are GPT OS images that carry only a /usr/ tree, and for which a root file system is only formatted on first boot via repart. Without any additional CopyFiles=/MakeDirectories= configuration these root file systems are entirely empty of course initially. To mount in the /usr/ tree, a directory inode for /usr/ to mount over needs to be created. systemd-nspawn will do so automatically when booting up the image, as will the initrd during boot. However, this requires the image to be writable – which is OK for npawn and initrd-based boots, but there are plenty tools where read-only operation is desirable after repart ran, before the image was booted for the first time. Specifically, "systemd-dissect" opens the image in read-only to inspect its contents, and this will only work of /usr/ can be properly mounted. Moreover systemd-dissect --mount --read-only won't succeed either if the fs is read-only. Via MakeDirectories= we now provide a way that ensures that the image can be mounted/inspected in a fully read-only way immediately after systemd-repart completed. Specifically, let's consider a GPT disk image shipping with a file usr/lib/repart.d/50-root.conf: [Partition] Type=root Format=btrfs MakeDirectories=/usr MakeDirectories=/efi With this in place systemd-repart will create a root partition when run, and add /usr and /efi into it as directory inods. This ensures that the whole image can then be mounted truly read-only anf /usr and /efi can be overmounted by the /usr partition and the ESP.
2021-03-20 16:05:28 +03:00
mounted over by other partitions contained in the same disk image. For example, a disk image where
the root file system is formatted at first boot might want to automatically pre-create
<filename>/usr/</filename> in it this way, so that the <literal>usr</literal> partition may
over-mount it.</para>
<para>Consider using
<citerefentry><refentrytitle>systemd-tmpfiles</refentrytitle><manvolnum>8</manvolnum></citerefentry>
with its <option>--image=</option> option to pre-create other, more complex directory hierarchies (as
well as other inodes) with fine-grained control of ownership, access modes and other file
attributes.</para>
<xi:include href="version-info.xml" xpointer="v249"/></listitem>
repart: add high-level setting for creating dirs in formatted file systems So far we already had the CopyFiles= option in systemd-repart drop-in files, as a mechanism for populating freshly formatted file systems with files and directories. This adds MakeDirectories= in similar style, and creates simple directories as listed. The option is of course entirely redundant, since the same can be done with CopyFiles= simply by copying in a directory. It's kinda nice to encode the dirs to create directly in the drop-in files however, instead of providing a directory subtree to copy in somehere, to make the files more self-contained — since often just creating dirs is entirely sufficient. The main usecase for this are GPT OS images that carry only a /usr/ tree, and for which a root file system is only formatted on first boot via repart. Without any additional CopyFiles=/MakeDirectories= configuration these root file systems are entirely empty of course initially. To mount in the /usr/ tree, a directory inode for /usr/ to mount over needs to be created. systemd-nspawn will do so automatically when booting up the image, as will the initrd during boot. However, this requires the image to be writable – which is OK for npawn and initrd-based boots, but there are plenty tools where read-only operation is desirable after repart ran, before the image was booted for the first time. Specifically, "systemd-dissect" opens the image in read-only to inspect its contents, and this will only work of /usr/ can be properly mounted. Moreover systemd-dissect --mount --read-only won't succeed either if the fs is read-only. Via MakeDirectories= we now provide a way that ensures that the image can be mounted/inspected in a fully read-only way immediately after systemd-repart completed. Specifically, let's consider a GPT disk image shipping with a file usr/lib/repart.d/50-root.conf: [Partition] Type=root Format=btrfs MakeDirectories=/usr MakeDirectories=/efi With this in place systemd-repart will create a root partition when run, and add /usr and /efi into it as directory inods. This ensures that the whole image can then be mounted truly read-only anf /usr and /efi can be overmounted by the /usr partition and the ESP.
2021-03-20 16:05:28 +03:00
</varlistentry>
<varlistentry>
<term><varname>MakeSymlinks=</varname></term>
<listitem><para>Takes one or more arguments, separated by whitespace, each declaring a symlink to
create within the new file system. Each argument is a pair of symlink source and target paths,
separated by a colon. This option may be used more than once to create multiple symlinks. When
<varname>CopyFiles=</varname> and <varname>MakeSymlinks=</varname> are used together the former is
applied first.</para>
<para>The primary use case for this option is to create symlinks that need to exist before
<citerefentry><refentrytitle>systemd-tmpfiles</refentrytitle><manvolnum>8</manvolnum></citerefentry>
is executed. For example, when using
<citerefentry><refentrytitle>systemd-confext</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
this setting can be used to create symlinks in <filename>/var/lib/extensions.mutable</filename> to
redirect writes to mutable confexts to a custom location.</para>
<para>Consider using
<citerefentry><refentrytitle>systemd-tmpfiles</refentrytitle><manvolnum>8</manvolnum></citerefentry>
with its <option>--image=</option> option to pre-create other symlinks (as well as other inodes) with
fine-grained control of ownership, access modes and other file attributes.</para>
<xi:include href="version-info.xml" xpointer="v257"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>Subvolumes=</varname></term>
<listitem><para>Takes one or more absolute paths, separated by whitespace, each declaring a directory
that should be a subvolume within the new file system. Each path may optionally be followed by a
colon and a list of comma-separated subvolume flags. The following flags are understood:</para>
<table class='flags'>
<title>Subvolume Flags</title>
<tgroup cols='2' align='left' colsep='1' rowsep='1'>
<colspec colname="spec" />
<colspec colname="purpose" />
<thead>
<row>
<entry>Flag</entry>
<entry>Purpose</entry>
</row>
</thead>
<tbody>
<row id='R'>
<entry><literal>ro</literal></entry>
<entry>Make this subvolume read-only.</entry>
</row>
</tbody>
</tgroup>
</table>
<para>Note that this option does not create the directories themselves, that can be configured with
<varname>MakeDirectories=</varname> and <varname>CopyFiles=</varname>.</para>
<para>Note that this option only takes effect if the target filesystem supports subvolumes, such as
<literal>btrfs</literal>.</para>
<para>Note that this option is only supported in combination with <option>--offline=yes</option>
since btrfs-progs 6.11 or newer.</para>
<xi:include href="version-info.xml" xpointer="v255"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>DefaultSubvolume=</varname></term>
<listitem><para>Takes an absolute path specifying the default subvolume within the new filesystem.
Note that this setting does not create the subvolume itself, that can be configured with
<varname>Subvolumes=</varname>.</para>
<para>Note that this option only takes effect if the target filesystem supports subvolumes, such as
2024-11-23 16:07:56 +03:00
<citerefentry project="url"><refentrytitle url="https://btrfs.readthedocs.io/en/latest/btrfs.html">btrfs</refentrytitle><manvolnum>8</manvolnum></citerefentry>.
</para>
<para>Note that this option is only supported in combination with <option>--offline=yes</option>
since btrfs-progs 6.11 or newer.</para>
<xi:include href="version-info.xml" xpointer="v256"/></listitem>
</varlistentry>
2020-08-05 18:53:39 +03:00
<varlistentry>
<term><varname>Encrypt=</varname></term>
2020-12-07 19:18:52 +03:00
<listitem><para>Takes one of <literal>off</literal>, <literal>key-file</literal>,
<literal>tpm2</literal> and <literal>key-file+tpm2</literal> (alternatively, also accepts a boolean
value, which is mapped to <literal>off</literal> when false, and <literal>key-file</literal> when
true). Defaults to <literal>off</literal>. If not <literal>off</literal> the partition will be
2020-08-05 18:53:39 +03:00
formatted with a LUKS2 superblock, before the blocks configured with <varname>CopyBlocks=</varname>
are copied in or the file system configured with <varname>Format=</varname> is created.</para>
2020-12-07 19:18:52 +03:00
<para>The LUKS2 UUID is automatically derived from the partition UUID in a stable fashion. If
<literal>key-file</literal> or <literal>key-file+tpm2</literal> is used, a key is added to the LUKS2
superblock, configurable with the <option>--key-file=</option> option to
2020-12-07 19:18:52 +03:00
<command>systemd-repart</command>. If <literal>tpm2</literal> or <literal>key-file+tpm2</literal> is
used, a key is added to the LUKS2 superblock that is enrolled to the local TPM2 chip, as configured
2020-12-07 19:18:52 +03:00
with the <option>--tpm2-device=</option> and <option>--tpm2-pcrs=</option> options to
2020-08-05 18:53:39 +03:00
<command>systemd-repart</command>.</para>
<para>When used this slightly alters the size allocation logic as the implicit, minimal size limits
of <varname>Format=</varname> and <varname>CopyBlocks=</varname> are increased by the space necessary
for the LUKS2 superblock (see above).</para>
<para>This option has no effect if the partition already exists.</para>
<xi:include href="version-info.xml" xpointer="v247"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>Verity=</varname></term>
<listitem><para>Takes one of <literal>off</literal>, <literal>data</literal>,
<literal>hash</literal> or <literal>signature</literal>. Defaults to <literal>off</literal>. If set
to <literal>off</literal> or <literal>data</literal>, the partition is populated with content as
specified by <varname>CopyBlocks=</varname> or <varname>CopyFiles=</varname>. If set to
<literal>hash</literal>, the partition will be populated with verity hashes from the matching verity
man: fix issues reported by the manpage-l10n project Fixes #25780. > Man page: crypttab.5 > Issue 1: Missing fullstop > Issue 2: I<cipher=>, I<hash=>, I<size=> → B<cipher=>, B<hash=>, B<size=> > > "Force LUKS mode\\&. When this mode is used, the following options are " > "ignored since they are provided by the LUKS header on the device: " > "I<cipher=>, I<hash=>, I<size=>" Seems OK to me. The full stop is there and has been for at least a few years. And we use <option> for the markup, which is appropriate here. > Man page: crypttab.5 > Issue 1: Missing fullstop > Issue 2: I<cipher=>, I<hash=>, I<keyfile-offset=>, I<keyfile-size=>, I<size=> → B<cipher=>, B<hash=>, B<keyfile-offset=>, B<keyfile-size=>, B<size=> > > "Use TrueCrypt encryption mode\\&. When this mode is used, the following " > "options are ignored since they are provided by the TrueCrypt header on the " > "device or do not apply: I<cipher=>, I<hash=>, I<keyfile-offset=>, I<keyfile-" > "size=>, I<size=>" Same. > Man page: journalctl.1 > Issue 1: make be → may be Fixed. > Issue 2: below\\&. → below: Fixed. > Man page: journalctl.1 > Issue: Colon at the end? > > "The following commands are understood\\&. If none is specified the default " > "is to display journal records\\&." > msgstr "" > "Die folgenden Befehle werden verstanden\\&. Falls keiner festgelegt ist, ist " > "die Anzeige von Journal-Datensätzen die Vorgabe\\&." This is a bit awkward, but I'm not sure how to fix it. > Man page: kernel-install.8 > Issue: methods a fallback → methods fallback It was correct, but I added a comma to make the sense clearer. > Man page: loader.conf.5 > Issue 1: secure boot variables → Secure Boot variables > Issue 2: one → one for (multiple times) > > "Supported secure boot variables are one database for authorized images, one " > "key exchange key (KEK) and one platform key (PK)\\&. For more information, " > "refer to the \\m[blue]B<UEFI specification>\\m[]\\&\\s-2\\u[2]\\d\\s+2, " > "under Secure Boot and Driver Signing\\&. Another resource that describe the " > "interplay of the different variables is the \\m[blue]B<EDK2 " > "documentation>\\m[]\\&\\s-2\\u[3]\\d\\s+2\\&." "one of" would sound strange. "One this and one that" is OK. > Man page: loader.conf.5 > Issue: systemd-boot → B<systemd-boot>(7) Fixed. > Man page: logind.conf.5 > Issue: systemd-logind → B<systemd-logind>(8) We use <filename>systemd-logind</> on subsequent references… I think that's good enough. > Man page: nss-myhostname.8 > Issue: B<getent> → B<getent>(1) Fixed. > Man page: nss-resolve.8 > Issue: B<systemd-resolved> → B<systemd-resolved>(8) The first reference does this, subsequent are shorter. > Man page: os-release.5 > Issue: Portable Services → Portable Services Documentation? Updated. > Man page: pam_systemd_home.8 > Issue: auth and account use "reason", while session and password do not? Reworded. > Man page: portablectl.1 > Issue: In systemd-portabled.service(8): Portable Services Documentation Updated. > Man page: repart.d.5 > Issue: The partition → the partition Fixed. > Man page: repart.d.5 > Issue: B<systemd-repart> → B<systemd-repart>(8) The first reference does this. I also change this one, because it's pretty far down in the text. > Man page: systemd.1 > Issue: kernel command line twice? > > "Takes a boolean argument\\&. If false disables importing credentials from " > "the kernel command line, qemu_fw_cfg subsystem or the kernel command line\\&." Apparently this was fixed already. > Man page: systemd-boot.7 > Issue: enrollement → enrollment Fixed. > Man page: systemd-cryptenroll.1 > Issue: multiple cases: any specified → the specified Reworded. > Man page: systemd-cryptenroll.1 > Issue: If this this → If this Fixed tree-wide. > Man page: systemd-cryptsetup-generator.8 > Issue: and the initrd → and in the initrd "Is honoured by the initrd" is OK, because we often speak about the initrd as a single unit. But in the same paragraph we also used "in the initrd", which makes the other use look sloppy. I changed it to "in the initrd" everywhere in that file. > Man page: systemd.directives.7 > Issue: Why are these two quoted (but not others)? > > "B<\\*(Aqh\\*(Aq>" > > B<\\*(Aqs\\*(Aq>" > > "B<\\*(Aqy\\*(Aq>" This is autogenerated from files… We use slightly different markup in different files, and it's just too hard to make it consistent. We gave up on this. > Man page: systemd.exec.5 > Issue 1: B<at>(1p) → B<at>(1) > Issue 2: B<crontab>(1p) → B<crontab>(1) Fixed. > Man page: systemd.exec.5 > Issue: B<select()> → B<select>(2) Fixed. > Man page: systemd.exec.5 > Issue: qemu → B<qemu>(1) The man page doesn't seem to be in any of the canonical places on the web. I added a link to online docs. > Man page: systemd.exec.5 > Issue: variable → variables Seems to be fixed already. > Man page: systemd-integritysetup-generator.8 > Issue: systemd-integritysetup-generator → B<systemd-integritysetup-generator> I changed <filename> to <command>. > Man page: systemd-integritysetup-generator.8 > Issue: superfluous comma at the end Already fixed. > Man page: systemd-measure.1 > Issue: (see B<--pcr-bank=>) below → (see B<--pcr-bank=> below) Reworded. > Man page: systemd-measure.1 > Issue: =PATH> → =>I<PATH> Fixed. > Man page: systemd-measure.1.po > Issue: B<--bank=DIGEST> → B<--bank=>I<DIGEST> Fixed. > Man page: systemd.netdev.5 > Issue: os the → on the Appears to have been fixed already. > Man page: systemd.netdev.5 > Issue: Onboard → On-board (as in previous string) Updated. > Man page: systemd.network.5 > Issue: B<systemd-networkd> -> B<systemd-networkd>(8) First reference does this, subsequent do not. > Man page: systemd.network.5 > Issue: B<netlabelctl> → B<netlabelctl>(8) First reference does this, subsequent do not. > Man page: systemd.network.5 > Issue: Missing verb (aquired? configured?) in the half sentence starting with "or by a " I dropped the comma. > Man page: systemd-nspawn.1 > Issue: All host users outside of that range → All other host users Reworded. > # FIXME no effect → no effect\\&. > #. type: Plain text > #: archlinux debian-unstable fedora-rawhide mageia-cauldron opensuse-tumbleweed > msgid "" > "Whichever ID mapping option is used, the same mapping will be used for users " > "and groups IDs\\&. If B<rootidmap> is used, the group owning the bind " > "mounted directory will have no effect" A period is added. Not sure if there's some other issue. > Man page: systemd-oomd.service.8 > Issue: B<systemd> → B<systemd>(1) Done. > Man page: systemd.path.5 > Issue 1: B<systemd.exec>(1) → B<systemd.exec>(5) > Issue 2: This section does not (yet?) exist Fixed. > Man page: systemd-pcrphase.service.8 > Issue 1: indicate phases into TPM2 PCR 11 ?? > Issue 2: Colon at the end of the paragraph? Fixed. > Man page: systemd-pcrphase.service.8 > Issue: final boot phase → final shutdown phase? Updated. > Man page: systemd-pcrphase.service.8 > Issue: for the the → for the Fixed tree-wide. > Man page: systemd-portabled.service.8 > Issue: In systemd-portabled.service(8): Portable Services Documentation Updated. > Man page: systemd-pstore.service.8 > Issue: Here and the following paragraphs: . → \\&. // Upstream: What does this comment mean? // You normally write \\&. for a full dot (full stop etc.); here you write only "." (i.e. a plain dot). > > "and we look up \"localhost\", nss-dns will send the following queries to " > "systemd-resolved listening on 127.0.0.53:53: first \"localhost.foobar.com\", " > "then \"localhost.barbar.com\", and finally \"localhost\". If (hopefully) the " > "first two queries fail, systemd-resolved will synthesize an answer for the " > "third query." Looks all OK to me. > Man page: systemd.resource-control.5 > Issue: Missing closing bracket after link to Control Groups version 1 Fixed. > Man page: systemd-sysext.8 > Issue: In systemd-portabled.service(8): Portable Services Documentation Updated. > Man page: systemd.timer.5 > Issue 1: B<systemd.exec>(1) → B<systemd.exec>(5) > Issue 2: This section does not (yet?) exist Fixed. > Man page: systemd.unit.5 > Issue: that is → that are Fixed. > Man page: systemd-veritysetup-generator.8 > Issue: systemd-veritysetup-generator → B<systemd-veritysetup-generator> > > "systemd-veritysetup-generator implements B<systemd.generator>(7)\\&." > > "systemd-veritysetup-generator understands the following kernel command line " > "parameters:" Updated. > Man page: systemd-volatile-root.service.8 > Issue: initrdyes → Initrd Fixed. > Man page: sysupdate.d.5 > Issue: : → \\&. (As above in TRANSFER) Updated. > Man page: sysupdate.d.5 > Issue: some → certain Updated. > Man page: sysupdate.d.5 > Issue 1: i\\&.e\\& → I\\&.e\\& Fixed. > Issue 2: the image → the system "image" seems correct. > Man page: tmpfiles.d.5 > Issue: systemd-tmpfiles → B<systemd-tmpfiles>(8) Updated.
2023-01-11 18:45:59 +03:00
data partition. If set to <literal>signature</literal>, the partition will be populated with a JSON
object containing a signature of the verity root hash of the matching verity hash partition.</para>
<para>A matching verity partition is a partition with the same verity match key (as configured with
<varname>VerityMatchKey=</varname>).</para>
<para>If not explicitly configured, the data partition's UUID will be set to the first 128
bits of the verity root hash. Similarly, if not configured, the hash partition's UUID will be set to
the final 128 bits of the verity root hash. The verity root hash itself will be included in the
output of <command>systemd-repart</command>.</para>
<para>This option has no effect if the partition already exists.</para>
<para>Usage of this option in combination with <varname>Encrypt=</varname> is not supported.</para>
<para>For each unique <varname>VerityMatchKey=</varname> value, a single verity data partition
(<literal>Verity=data</literal>) and a single verity hash partition (<literal>Verity=hash</literal>)
must be defined.</para>
<xi:include href="version-info.xml" xpointer="v252"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>VerityMatchKey=</varname></term>
<listitem><para>Takes a short, user-chosen identifier string. This setting is used to find sibling
verity partitions for the current verity partition. See the description for
<varname>Verity=</varname>.</para>
<xi:include href="version-info.xml" xpointer="v252"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>VerityDataBlockSizeBytes=</varname></term>
<listitem><para>Configures the data block size of the generated verity hash partition. Must be between 512 and
4096 bytes and must be a power of 2. Defaults to the sector size if configured explicitly, or the underlying
2024-11-23 16:07:56 +03:00
block device sector size, or 4K if <command>systemd-repart</command> is not operating on a block device.
</para>
<xi:include href="version-info.xml" xpointer="v255"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>VerityHashBlockSizeBytes=</varname></term>
<listitem><para>Configures the hash block size of the generated verity hash partition. Must be between 512 and
4096 bytes and must be a power of 2. Defaults to the sector size if configured explicitly, or the underlying
2024-11-23 16:07:56 +03:00
block device sector size, or 4K if <command>systemd-repart</command> is not operating on a block device.
</para>
<xi:include href="version-info.xml" xpointer="v255"/></listitem>
</varlistentry>
2019-12-17 15:47:21 +03:00
<varlistentry>
<term><varname>FactoryReset=</varname></term>
<listitem><para>Takes a boolean argument. If specified the partition is marked for removal during a
factory reset operation. This functionality is useful to implement schemes where images can be reset
into their original state by removing partitions and creating them anew. Defaults to off.</para>
<xi:include href="version-info.xml" xpointer="v245"/></listitem>
2019-12-17 15:47:21 +03:00
</varlistentry>
<varlistentry>
<term><varname>Flags=</varname></term>
<listitem><para>Configures the 64-bit GPT partition flags field to set for the partition when creating
it. This option has no effect if the partition already exists. If not specified the flags values is
set to all zeroes, except for the three bits that can also be configured via
<varname>NoAuto=</varname>, <varname>ReadOnly=</varname> and <varname>GrowFileSystem=</varname>; see
below for details on the defaults for these three flags. Specify the flags value in hexadecimal (by
prefixing it with <literal>0x</literal>), binary (prefix <literal>0b</literal>) or decimal (no
prefix).</para>
<xi:include href="version-info.xml" xpointer="v249"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>NoAuto=</varname></term>
<term><varname>ReadOnly=</varname></term>
<term><varname>GrowFileSystem=</varname></term>
<listitem><para>Configures the No-Auto, Read-Only and Grow-File-System partition flags (bit 63, 60
and 59) of the partition table entry, as defined by the <ulink
url="https://uapi-group.org/specifications/specs/discoverable_partitions_specification">Discoverable Partitions Specification</ulink>. Only
available for partition types supported by the specification. This option is a friendly way to set
bits 63, 60 and 59 of the partition flags value without setting any of the other bits, and may be set
via <varname>Flags=</varname> too, see above.</para>
<para>If <varname>Flags=</varname> is used in conjunction with one or more of
<varname>NoAuto=</varname>/<varname>ReadOnly=</varname>/<varname>GrowFileSystem=</varname> the latter
control the value of the relevant flags, i.e. the high-level settings
<varname>NoAuto=</varname>/<varname>ReadOnly=</varname>/<varname>GrowFileSystem=</varname> override
the relevant bits of the low-level setting <varname>Flags=</varname>.</para>
<para>Note that the three flags affect only automatic partition mounting, as implemented by
<citerefentry><refentrytitle>systemd-gpt-auto-generator</refentrytitle><manvolnum>8</manvolnum></citerefentry>
or the <option>--image=</option> option of various commands (such as
<citerefentry><refentrytitle>systemd-nspawn</refentrytitle><manvolnum>1</manvolnum></citerefentry>). It
has no effect on explicit mounts, such as those done via <citerefentry
project='man-pages'><refentrytitle>mount</refentrytitle><manvolnum>8</manvolnum></citerefentry> or
<citerefentry
project='man-pages'><refentrytitle>fstab</refentrytitle><manvolnum>5</manvolnum></citerefentry>.</para>
<para>If both bit 60 and 59 are set for a partition (i.e. the partition is marked both read-only and
marked for file system growing) the latter is typically without effect: the read-only flag takes
precedence in most tools reading these flags, and since growing the file system involves writing to
the partition it is consequently ignored.</para>
<para><varname>NoAuto=</varname> defaults to off. <varname>ReadOnly=</varname> defaults to on for
Verity partition types, and off for all others. <varname>GrowFileSystem=</varname> defaults to on for
all partition types that support it, except if the partition is marked read-only (and thus
effectively, defaults to off for Verity partitions).</para>
<xi:include href="version-info.xml" xpointer="v249"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>SplitName=</varname></term>
<listitem><para>Configures the suffix to append to split artifacts when the <option>--split</option>
option of
<citerefentry><refentrytitle>systemd-repart</refentrytitle><manvolnum>8</manvolnum></citerefentry> is
used. Simple specifier expansion is supported, see below. Defaults to <literal>%t</literal>. To
disable split artifact generation for a partition, set <varname>SplitName=</varname> to
<literal>-</literal>.</para>
<xi:include href="version-info.xml" xpointer="v252"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>Minimize=</varname></term>
<listitem><para>Takes one of <literal>off</literal>, <literal>best</literal>, and
<literal>guess</literal> (alternatively, also accepts a boolean value, which is mapped to
<literal>off</literal> when false, and <literal>best</literal> when true). Defaults to
<literal>off</literal>. If set to <literal>best</literal>, the partition will have the minimal size
required to store the sources configured with <varname>CopyFiles=</varname>. <literal>best</literal>
is currently only supported for read-only filesystems. If set to <literal>guess</literal>, the
partition is created at least as big as required to store the sources configured with
<varname>CopyFiles=</varname>. Note that unless the filesystem is a read-only filesystem,
<command>systemd-repart</command> will have to populate the filesystem twice to guess the minimal
required size, so enabling this option might slow down repart when populating large partitions.
</para>
<xi:include href="version-info.xml" xpointer="v253"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>MountPoint=</varname></term>
<listitem><para>Specifies where and how the partition should be mounted. Takes at least one and at
most two fields separated with a colon (<literal>:</literal>). The first field specifies where the
partition should be mounted. The second field specifies extra mount options to append to the default
mount options. These fields correspond to the second and fourth column of the
<citerefentry project='man-pages'><refentrytitle>fstab</refentrytitle><manvolnum>5</manvolnum></citerefentry>
format. This setting may be specified multiple times to mount the partition multiple times. This can
2024-11-23 16:07:56 +03:00
be used to add mounts for different
<citerefentry project="url"><refentrytitle url="https://btrfs.readthedocs.io/en/latest/btrfs.html">btrfs</refentrytitle><manvolnum>8</manvolnum></citerefentry>
subvolumes located on the same btrfs partition.</para>
<para>Note that this setting is only taken into account when <option>--generate-fstab=</option> is
specified on the <command>systemd-repart</command> command line.</para>
<xi:include href="version-info.xml" xpointer="v256"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>EncryptedVolume=</varname></term>
2024-11-23 16:07:56 +03:00
<listitem><para>Specifies how the encrypted partition should be set up. Takes at least one and at most
three fields separated with a colon (<literal>:</literal>). The first field specifies the encrypted
volume name under <filename>/dev/mapper/</filename>. If not specified, <literal>luks-UUID</literal>
will be used where <literal>UUID</literal> is the LUKS UUID. The second field specifies the keyfile
to use following the same format as specified in crypttab. The third field specifies a
comma-delimited list of crypttab options. These fields correspond to the first, third and fourth
column of the
<citerefentry><refentrytitle>crypttab</refentrytitle><manvolnum>5</manvolnum></citerefentry> format.
</para>
<para>Note that this setting is only taken into account when <option>--generate-crypttab=</option>
is specified on the <command>systemd-repart</command> command line.</para>
<xi:include href="version-info.xml" xpointer="v256"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>Compression=</varname></term>
2024-11-23 16:07:56 +03:00
<listitem><para>Specifies the compression algorithm to use for the filesystem configured with
<varname>Format=</varname>. Takes a single argument specifying the compression algorithm.</para>
<para>Note that this setting is only taken into account when the filesystem configured with
2024-11-23 16:07:56 +03:00
<varname>Format=</varname> supports compression (
<citerefentry project="url"><refentrytitle url="https://btrfs.readthedocs.io/en/latest/btrfs.html">btrfs</refentrytitle><manvolnum>8</manvolnum></citerefentry>,
squashfs, erofs). Here's an incomplete list of compression algorithms supported by the filesystems
known to <command>systemd-repart</command>:</para>
<table>
<title>File System Compression Algorithms</title>
<tgroup cols='3' align='left' colsep='1' rowsep='1'>
<colspec colname="filesystem" />
<colspec colname="algorithms" />
<colspec colname="manpage" />
<thead>
<row>
<entry>File System</entry>
<entry>Compression Algorithms</entry>
<entry>Documentation</entry>
</row>
</thead>
<tbody>
<row>
<entry><constant>squashfs</constant></entry>
<entry>gzip, lzo, lz4, xz, zstd, lzma</entry>
<entry><member><citerefentry project='man-pages'><refentrytitle>mksquashfs</refentrytitle><manvolnum>1</manvolnum></citerefentry></member></entry>
</row>
<row>
<entry><constant>erofs</constant></entry>
<entry>lz4, lz4hc, lzma, deflate, libdeflate, zstd</entry>
<entry><member><citerefentry project='man-pages'><refentrytitle>mkfs.erofs</refentrytitle><manvolnum>1</manvolnum></citerefentry></member></entry>
</row>
</tbody>
</tgroup>
</table>
<xi:include href="version-info.xml" xpointer="v257"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>CompressionLevel=</varname></term>
2024-11-23 16:07:56 +03:00
<listitem><para>Specifies the compression level to use for the filesystem configured with
<varname>Format=</varname>. Takes a single argument specifying the compression level to use for the
configured compression algorithm. The possible compression levels and their meaning are filesystem
specific (refer to the filesystem's documentation for the exact meaning of a particular compression
level).</para>
<para>Note that this setting is only taken into account when the filesystem configured with
<varname>Format=</varname> supports compression and the <varname>Compression=</varname> setting is
configured explicitly.</para>
<xi:include href="version-info.xml" xpointer="v257"/></listitem>
</varlistentry>
<varlistentry>
<term><varname>SupplementFor=</varname></term>
<listitem><para>Takes a partition definition name, such as <literal>10-esp</literal>. If specified,
<command>systemd-repart</command> will avoid creating this partition and instead prefer to partially
merge the two definitions. However, depending on the existing layout of partitions on disk,
<command>systemd-repart</command> may be forced to fall back onto un-merging the definitions and
using them as originally written, potentially creating this partition. Specifically,
<command>systemd-repart</command> will fall back if this partition is found to already exist on disk,
or if the target partition already exists on disk but is too small, or if it cannot allocate space
for the merged partition for some other reason.</para>
<para>The following fields are merged into the target definition in the specified ways:
<varname>Weight=</varname> and <varname>PaddingWeight=</varname> are simply overwritten;
<varname>SizeMinBytes=</varname> and <varname>PaddingMinBytes=</varname> use the larger of the two
values; <varname>SizeMaxBytes=</varname> and <varname>PaddingMaxBytes=</varname> use the smaller
value; and <varname>CopyFiles=</varname>, <varname>ExcludeFiles=</varname>,
<varname>ExcludeFilesTarget=</varname>, <varname>MakeDirectories=</varname>, and
<varname>Subvolumes=</varname> are concatenated.</para>
<para>Usage of this option in combination with <varname>CopyBlocks=</varname>,
<varname>Encrypt=</varname>, or <varname>Verity=</varname> is not supported. The target definition
cannot set these settings either. A definition cannot simultaneously be a supplement and act as a
target for some other supplement definition. A target cannot have more than one supplement partition
associated with it.</para>
<para>For example, distributions can use this to implement <varname>$BOOT</varname> as defined in
the <ulink url="https://uapi-group.org/specifications/specs/boot_loader_specification/">Boot Loader
Specification</ulink>. Distributions may prefer to use the ESP as <varname>$BOOT</varname> whenever
possible, but to adhere to the spec XBOOTLDR must sometimes be used instead. So, they should create
two definitions: the first defining an ESP big enough to hold just the bootloader, and a second for
the XBOOTLDR that's sufficiently large to hold kernels and configured as a supplement for the ESP.
Whenever possible, <command>systemd-repart</command> will try to merge the two definitions to create
one large ESP, but if that's not allowable due to the existing conditions on disk a small ESP and a
large XBOOTLDR will be created instead.</para>
<para>As another example, distributions can also use this to seamlessly share a single
<filename>/home</filename> partition in a multi-boot scenario, while preferring to keep
<filename>/home</filename> on the root partition by default. Having a <filename>/home</filename>
partition separated from the root partition entails some extra complexity: someone has to decide how
to split the space between the two partitions. On the other hand, it allows a user to share their
home area between multiple installed OSs (i.e. via <citerefentry><refentrytitle>systemd-homed.service
</refentrytitle><manvolnum>8</manvolnum></citerefentry>). Distributions should create two definitions:
the first for a root partition that takes up some relatively small percentage of the disk, and the
second as a supplement for the first to create a <filename>/home</filename> partition that takes up
all the remaining free space. On first boot, if <command>systemd-repart</command> finds an existing
<filename>/home</filename> partition on disk, it'll un-merge the definitions and create just a small
root partition. Otherwise, the definitions will be merged and a single large root partition will be
created.</para>
<xi:include href="version-info.xml" xpointer="v257"/></listitem>
</varlistentry>
2019-12-17 15:47:21 +03:00
</variablelist>
</refsect1>
<refsect1>
<title>Specifiers</title>
<para>Specifiers may be used in the <varname>Label=</varname>, <varname>CopyBlocks=</varname>,
<varname>CopyFiles=</varname>, <varname>MakeDirectories=</varname>, <varname>SplitName=</varname>
settings. The following expansions are understood:</para>
<table class='specifiers'>
<title>Specifiers available</title>
<tgroup cols='3' align='left' colsep='1' rowsep='1'>
<colspec colname="spec" />
<colspec colname="mean" />
<colspec colname="detail" />
<thead>
<row>
<entry>Specifier</entry>
<entry>Meaning</entry>
<entry>Details</entry>
</row>
</thead>
<tbody>
<xi:include href="standard-specifiers.xml" xpointer="a"/>
<xi:include href="standard-specifiers.xml" xpointer="A"/>
<xi:include href="standard-specifiers.xml" xpointer="b"/>
<xi:include href="standard-specifiers.xml" xpointer="B"/>
<xi:include href="standard-specifiers.xml" xpointer="H"/>
<xi:include href="standard-specifiers.xml" xpointer="l"/>
<xi:include href="standard-specifiers.xml" xpointer="m"/>
<xi:include href="standard-specifiers.xml" xpointer="M"/>
<xi:include href="standard-specifiers.xml" xpointer="o"/>
<xi:include href="standard-specifiers.xml" xpointer="q"/>
<xi:include href="standard-specifiers.xml" xpointer="v"/>
<xi:include href="standard-specifiers.xml" xpointer="w"/>
<xi:include href="standard-specifiers.xml" xpointer="W"/>
<xi:include href="standard-specifiers.xml" xpointer="T"/>
<xi:include href="standard-specifiers.xml" xpointer="V"/>
<xi:include href="standard-specifiers.xml" xpointer="percent"/>
</tbody>
</tgroup>
</table>
<para>Additionally, for the <varname>SplitName=</varname> setting, the following specifiers are also
understood:</para>
<table class='specifiers'>
<title>Specifiers available</title>
<tgroup cols='3' align='left' colsep='1' rowsep='1'>
<colspec colname="spec" />
<colspec colname="mean" />
<colspec colname="detail" />
<thead>
<row>
<entry>Specifier</entry>
<entry>Meaning</entry>
<entry>Details</entry>
</row>
</thead>
<tbody>
<row id='T'>
<entry><literal>%T</literal></entry>
<entry>Partition Type UUID</entry>
<entry>The partition type UUID, as configured with <varname>Type=</varname></entry>
</row>
<row id='t'>
<entry><literal>%t</literal></entry>
<entry>Partition Type Identifier</entry>
<entry>The partition type identifier corresponding to the partition type UUID</entry>
</row>
<row id='U'>
<entry><literal>%U</literal></entry>
<entry>Partition UUID</entry>
<entry>The partition UUID, as configured with <varname>UUID=</varname></entry>
</row>
<row id='n'>
<entry><literal>%n</literal></entry>
<entry>Partition Number</entry>
<entry>The partition number assigned to the partition</entry>
</row>
</tbody>
</tgroup>
</table>
</refsect1>
<refsect1>
<title>Environment</title>
<para>Extra filesystem formatting options can be provided using filesystem-specific environment variables:
<varname>$SYSTEMD_REPART_MKFS_OPTIONS_BTRFS</varname>, <varname>$SYSTEMD_REPART_MKFS_OPTIONS_XFS</varname>,
<varname>$SYSTEMD_REPART_MKFS_OPTIONS_VFAT</varname>, <varname>$SYSTEMD_REPART_MKFS_OPTIONS_EROFS</varname>,
and <varname>$SYSTEMD_REPART_MKFS_OPTIONS_SQUASHFS</varname>. Each variable accepts valid
<command>mkfs.<replaceable>filesystem</replaceable></command> command-line arguments.
The content of those variables is passed as-is to the command, without any verification.
</para>
</refsect1>
2019-12-17 15:47:21 +03:00
<refsect1>
<title>Examples</title>
<example>
<title>Grow the root partition to the full disk size at first boot</title>
<para>With the following file the root partition is automatically grown to the full disk if possible
during boot.</para>
2019-12-17 15:47:21 +03:00
<para><programlisting># /usr/lib/repart.d/50-root.conf
[Partition]
Type=root
</programlisting></para>
</example>
<example>
<title>Create a swap and home partition automatically on boot, if missing</title>
<para>The home partition gets all available disk space while the swap partition gets 1G at most and 64M
at least. We set a priority > 0 on the swap partition to ensure the swap partition is not used if not
enough space is available. For every three bytes assigned to the home partition the swap partition gets
assigned one.</para>
<para><programlisting># /usr/lib/repart.d/60-home.conf
[Partition]
Type=home
</programlisting></para>
<para><programlisting># /usr/lib/repart.d/70-swap.conf
[Partition]
Type=swap
SizeMinBytes=64M
SizeMaxBytes=1G
Priority=1
Weight=333
</programlisting></para>
</example>
<example>
<title>Create B partitions in an A/B Verity setup, if missing</title>
<para>Let's say the vendor intends to update OS images in an A/B setup, i.e. with two root partitions
(and two matching Verity partitions) that shall be used alternatingly during upgrades. To minimize
image sizes the original image is shipped only with one root and one Verity partition (the "A" set),
and the second root and Verity partitions (the "B" set) shall be created on first boot on the free
space on the medium.</para>
<para><programlisting># /usr/lib/repart.d/50-root.conf
[Partition]
Type=root
SizeMinBytes=512M
SizeMaxBytes=512M
</programlisting></para>
<para><programlisting># /usr/lib/repart.d/60-root-verity.conf
[Partition]
Type=root-verity
SizeMinBytes=64M
SizeMaxBytes=64M
</programlisting></para>
<para>The definitions above cover the "A" set of root partition (of a fixed 512M size) and Verity
partition for the root partition (of a fixed 64M size). Let's use symlinks to create the "B" set of
partitions, since after all they shall have the same properties and sizes as the "A" set.</para>
<para><programlisting># ln -s 50-root.conf /usr/lib/repart.d/70-root-b.conf
# ln -s 60-root-verity.conf /usr/lib/repart.d/80-root-verity-b.conf
</programlisting></para>
</example>
<example>
<title>Create a data partition and corresponding verity partitions from a OS tree</title>
<para>Assuming we have an OS tree at <filename index='false'>/var/tmp/os-tree</filename> that we want
to package in a root partition together with matching verity partitions, we can do so as follows:
</para>
<para><programlisting># 50-root.conf
[Partition]
Type=root
CopyFiles=/var/tmp/os-tree
Verity=data
VerityMatchKey=root
Minimize=guess
</programlisting></para>
<para><programlisting># 60-root-verity.conf
[Partition]
Type=root-verity
Verity=hash
VerityMatchKey=root
# Explicitly set the hash and data block size to 4K
VerityDataBlockSizeBytes=4096
VerityHashBlockSizeBytes=4096
Minimize=best
</programlisting></para>
<para><programlisting># 70-root-verity-sig.conf
[Partition]
Type=root-verity-sig
Verity=signature
VerityMatchKey=root
2019-12-17 15:47:21 +03:00
</programlisting></para>
</example>
</refsect1>
<refsect1>
<title>See Also</title>
<para><simplelist type="inline">
<member><citerefentry><refentrytitle>systemd</refentrytitle><manvolnum>1</manvolnum></citerefentry></member>
<member><citerefentry><refentrytitle>systemd-repart</refentrytitle><manvolnum>8</manvolnum></citerefentry></member>
<member><citerefentry project='man-pages'><refentrytitle>sfdisk</refentrytitle><manvolnum>8</manvolnum></citerefentry></member>
<member><citerefentry><refentrytitle>systemd-cryptenroll</refentrytitle><manvolnum>1</manvolnum></citerefentry></member>
</simplelist></para>
2019-12-17 15:47:21 +03:00
</refsect1>
</refentry>