1
0
mirror of https://github.com/systemd/systemd.git synced 2025-02-28 05:57:33 +03:00

man/sd_notify: split out variable descriptions to a separate section

This just moves the text around with miminal text added to refer to the new
section.
This commit is contained in:
Zbigniew Jędrzejewski-Szmek 2023-09-15 08:10:13 +02:00
parent 4454ca1057
commit ef86486acf

View File

@ -109,8 +109,69 @@
<para>The <parameter>state</parameter> parameter should contain a newline-separated list of variable
assignments, similar in style to an environment block. A trailing newline is implied if none is
specified. The string may contain any kind of variable assignments, but the following shall be considered
well-known:</para>
specified. The string may contain any kind of variable assignments, but see the next section
for a list of assignments understood by the service manager.</para>
<para>Note that systemd will accept status data sent from a service only if the
<varname>NotifyAccess=</varname> option is correctly set in the service definition file. See
<citerefentry><refentrytitle>systemd.service</refentrytitle><manvolnum>5</manvolnum></citerefentry> for
details.</para>
<para>Note that <function>sd_notify()</function> notifications may be attributed to units correctly only
if either the sending process is still around at the time PID 1 processes the message, or if the sending
process is explicitly runtime-tracked by the service manager. The latter is the case if the service
manager originally forked off the process, i.e. on all processes that match
<varname>NotifyAccess=</varname><option>main</option> or
<varname>NotifyAccess=</varname><option>exec</option>. Conversely, if an auxiliary process of the unit
sends an <function>sd_notify()</function> message and immediately exits, the service manager might not be
able to properly attribute the message to the unit, and thus will ignore it, even if
<varname>NotifyAccess=</varname><option>all</option> is set for it.</para>
<para>Hence, to eliminate all race conditions involving lookup of the client's unit and attribution of
notifications to units correctly, <function>sd_notify_barrier()</function> may be used. This call acts as
a synchronization point and ensures all notifications sent before this call have been picked up by the
service manager when it returns successfully. Use of <function>sd_notify_barrier()</function> is needed
for clients which are not invoked by the service manager, otherwise this synchronization mechanism is
unnecessary for attribution of notifications to the unit.</para>
<para><function>sd_notifyf()</function> is similar to <function>sd_notify()</function> but takes a
<function>printf()</function>-like format string plus arguments.</para>
<para><function>sd_pid_notify()</function> and <function>sd_pid_notifyf()</function> are similar to
<function>sd_notify()</function> and <function>sd_notifyf()</function> but take a process ID (PID) to use
as originating PID for the message as first argument. This is useful to send notification messages on
behalf of other processes, provided the appropriate privileges are available. If the PID argument is
specified as 0, the process ID of the calling process is used, in which case the calls are fully
equivalent to <function>sd_notify()</function> and <function>sd_notifyf()</function>.</para>
<para><function>sd_pid_notify_with_fds()</function> is similar to <function>sd_pid_notify()</function>
but takes an additional array of file descriptors. These file descriptors are sent along the notification
message to the service manager. This is particularly useful for sending <literal>FDSTORE=1</literal>
messages, as described above. The additional arguments are a pointer to the file descriptor array plus
the number of file descriptors in the array. If the number of file descriptors is passed as 0, the call
is fully equivalent to <function>sd_pid_notify()</function>, i.e. no file descriptors are passed. Note
that file descriptors sent to the service manager on a message without <literal>FDSTORE=1</literal> are
immediately closed on reception.</para>
<para><function>sd_pid_notifyf_with_fds()</function> is a combination of
<function>sd_pid_notify_with_fds()</function> and <function>sd_notifyf()</function>, i.e. it accepts both
a PID and a set of file descriptors as input, and processes a format string to generate the state
string.</para>
<para><function>sd_notify_barrier()</function> allows the caller to synchronize against reception of
previously sent notification messages and uses the <varname>BARRIER=1</varname> command. It takes a
relative <varname>timeout</varname> value in microseconds which is passed to
<citerefentry><refentrytitle>ppoll</refentrytitle><manvolnum>2</manvolnum>
</citerefentry>. A value of UINT64_MAX is interpreted as infinite timeout.</para>
<para><function>sd_pid_notify_barrier()</function> is just like <function>sd_notify_barrier()</function>,
but allows specifying the originating PID for the notification message.</para>
</refsect1>
<refsect1>
<title>Well-known assignments</title>
<para>The following assignments have a defined meaning:</para>
<variablelist>
<varlistentry>
@ -126,9 +187,9 @@
<varlistentry>
<term>RELOADING=1</term>
<listitem><para>Tells the service manager that the service is beginning to reload its
configuration. This is useful to allow the service manager to track the service's internal state, and
present it to the user. Note that a service that sends this notification must also send a
<listitem><para>Tells the service manager that the service is beginning to reload its configuration.
This is useful to allow the service manager to track the service's internal state, and present it to
the user. Note that a service that sends this notification must also send a
<literal>READY=1</literal> notification when it completed reloading its configuration. Reloads the
service manager is notified about with this mechanisms are propagated in the same way as they are
when originally initiated through the service manager. This message is particularly relevant for
@ -138,6 +199,16 @@
<xi:include href="version-info.xml" xpointer="v217"/></listitem>
</varlistentry>
<varlistentry>
<term>STOPPING=1</term>
<listitem><para>Tells the service manager that the service is beginning its shutdown. This is useful
to allow the service manager to track the service's internal state, and present it to the user.
</para>
<xi:include href="version-info.xml" xpointer="v217"/></listitem>
</varlistentry>
<varlistentry>
<term>MONOTONIC_USEC=…</term>
@ -151,24 +222,13 @@
<xi:include href="version-info.xml" xpointer="v253"/></listitem>
</varlistentry>
<varlistentry>
<term>STOPPING=1</term>
<listitem><para>Tells the service manager that the service is beginning its shutdown. This is useful
to allow the service manager to track the service's internal state, and present it to the
user.</para>
<xi:include href="version-info.xml" xpointer="v217"/></listitem>
</varlistentry>
<varlistentry>
<term>STATUS=…</term>
<listitem><para>Passes a single-line UTF-8 status string back to the service manager that describes
the service state. This is free-form and can be used for various purposes: general state feedback,
fsck-like programs could pass completion percentages and failing programs could pass a human-readable
error message. Example: <literal>STATUS=Completed 66% of file system
check…</literal></para>
error message. Example: <literal>STATUS=Completed 66% of file system check…</literal></para>
<xi:include href="version-info.xml" xpointer="v233"/></listitem>
</varlistentry>
@ -179,8 +239,8 @@
<listitem><para>Reset the access to the service status notification socket during runtime, overriding
<varname>NotifyAccess=</varname> setting in the service unit file. See
<citerefentry><refentrytitle>systemd.service</refentrytitle><manvolnum>5</manvolnum></citerefentry>
for details, specifically <literal>NotifyAccess=</literal> for a list of accepted
values.</para>
for details, specifically <literal>NotifyAccess=</literal> for a list of accepted values.
</para>
<xi:include href="version-info.xml" xpointer="v254"/></listitem>
</varlistentry>
@ -216,7 +276,7 @@
<term>MAINPID=…</term>
<listitem><para>The main process ID (PID) of the service, in case the service manager did not fork
off the process itself. Example: <literal>MAINPID=4711</literal></para>
off the process itself. Example: <literal>MAINPID=4711</literal>.</para>
<xi:include href="version-info.xml" xpointer="v233"/></listitem>
</varlistentry>
@ -361,63 +421,8 @@
</varlistentry>
</variablelist>
<para>It is recommended to prefix variable names that are not listed above with <varname>X_</varname> to
<para>It is recommended to prefix variable names that are not listed above with <literal>X_</literal> to
avoid namespace clashes.</para>
<para>Note that systemd will accept status data sent from a service only if the
<varname>NotifyAccess=</varname> option is correctly set in the service definition file. See
<citerefentry><refentrytitle>systemd.service</refentrytitle><manvolnum>5</manvolnum></citerefentry> for
details.</para>
<para>Note that <function>sd_notify()</function> notifications may be attributed to units correctly only
if either the sending process is still around at the time PID 1 processes the message, or if the sending
process is explicitly runtime-tracked by the service manager. The latter is the case if the service
manager originally forked off the process, i.e. on all processes that match
<varname>NotifyAccess=</varname><option>main</option> or
<varname>NotifyAccess=</varname><option>exec</option>. Conversely, if an auxiliary process of the unit
sends an <function>sd_notify()</function> message and immediately exits, the service manager might not be
able to properly attribute the message to the unit, and thus will ignore it, even if
<varname>NotifyAccess=</varname><option>all</option> is set for it.</para>
<para>Hence, to eliminate all race conditions involving lookup of the client's unit and attribution of
notifications to units correctly, <function>sd_notify_barrier()</function> may be used. This call acts as
a synchronization point and ensures all notifications sent before this call have been picked up by the
service manager when it returns successfully. Use of <function>sd_notify_barrier()</function> is needed
for clients which are not invoked by the service manager, otherwise this synchronization mechanism is
unnecessary for attribution of notifications to the unit.</para>
<para><function>sd_notifyf()</function> is similar to <function>sd_notify()</function> but takes a
<function>printf()</function>-like format string plus arguments.</para>
<para><function>sd_pid_notify()</function> and <function>sd_pid_notifyf()</function> are similar to
<function>sd_notify()</function> and <function>sd_notifyf()</function> but take a process ID (PID) to use
as originating PID for the message as first argument. This is useful to send notification messages on
behalf of other processes, provided the appropriate privileges are available. If the PID argument is
specified as 0, the process ID of the calling process is used, in which case the calls are fully
equivalent to <function>sd_notify()</function> and <function>sd_notifyf()</function>.</para>
<para><function>sd_pid_notify_with_fds()</function> is similar to <function>sd_pid_notify()</function>
but takes an additional array of file descriptors. These file descriptors are sent along the notification
message to the service manager. This is particularly useful for sending <literal>FDSTORE=1</literal>
messages, as described above. The additional arguments are a pointer to the file descriptor array plus
the number of file descriptors in the array. If the number of file descriptors is passed as 0, the call
is fully equivalent to <function>sd_pid_notify()</function>, i.e. no file descriptors are passed. Note
that file descriptors sent to the service manager on a message without <literal>FDSTORE=1</literal> are
immediately closed on reception.</para>
<para><function>sd_pid_notifyf_with_fds()</function> is a combination of
<function>sd_pid_notify_with_fds()</function> and <function>sd_notifyf()</function>, i.e. it accepts both
a PID and a set of file descriptors as input, and processes a format string to generate the state
string.</para>
<para><function>sd_notify_barrier()</function> allows the caller to synchronize against reception of
previously sent notification messages and uses the <varname>BARRIER=1</varname> command. It takes a
relative <varname>timeout</varname> value in microseconds which is passed to
<citerefentry><refentrytitle>ppoll</refentrytitle><manvolnum>2</manvolnum>
</citerefentry>. A value of UINT64_MAX is interpreted as infinite timeout.</para>
<para><function>sd_pid_notify_barrier()</function> is just like <function>sd_notify_barrier()</function>,
but allows specifying the originating PID for the notification message.</para>
</refsect1>
<refsect1>