IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
As of kmod v14, it is possible to export the static node information from
/lib/modules/`uname -r`/modules.devname in tmpfiles.d(5) format.
Use this functionality to let systemd-tmpfilesd create the static device nodes
at boot, and drop the functionality from systemd-udevd.
As an effect of this we can move from systemd-udevd to systemd-tmpfiles-setup-dev:
* the conditional CAP_MKNOD (replaced by checking if /sys is mounted rw)
* ordering before local-fs-pre.target (see 89d09e1b5c)
In order to prepare things for the single-writer cgroup scheme, let's
make logind use systemd's own primitives for cgroup management.
Every login user now gets his own private slice unit, in which his sessions
live in a scope unit each. Also, add user@$UID.service to the same
slice, and implicitly start it on first login.
"Scope" units are very much like service units, however with the
difference that they are created from pre-existing processes, rather
than processes that systemd itself forks off. This means they are
generated programmatically via the bus API as transient units rather
than from static configuration read from disk. Also, they do not provide
execution-time parameters, as at the time systemd adds the processes to
the scope unit they already exist and the parameters cannot be applied
anymore.
The primary benefit of this new unit type is to create arbitrary cgroups
for worker-processes forked off an existing service.
This commit also adds a a new mode to "systemd-run" to run the specified
processes in a scope rather then a transient service.
Transient units can be created via the bus API. They are configured via
the method call parameters rather than on-disk files. They are subject
to normal GC. Transient units currently may only be created for
services (however, we will extend this), and currently only ExecStart=
and the cgroup parameters can be configured (also to be extended).
Transient units require a unique name, that previously had no
configuration file on disk.
A tool systemd-run is added that makes use of this functionality to run
arbitrary command lines as transient services:
$ systemd-run /bin/ping www.heise.de
Will cause systemd to create a new transient service and run ping in it.
This introduces two bus calls to make runtime changes to selected bus
properties, optionally with persistence.
This currently hooks this up only for three cgroup atributes, but this
brings the infrastructure to add more changable attributes.
This allows setting multiple attributes at once, and takes an array
rather than a dictionary of properties, in order to implement simple
resetting of lists using the same approach as when they are sourced from
unit files. This means, that list properties are appended to by this
call, unless they are first reset via assigning the empty list.
Replace the very generic cgroup hookup with a much simpler one. With
this change only the high-level cgroup settings remain, the ability to
set arbitrary cgroup attributes is removed, so is support for adding
units to arbitrary cgroup controllers or setting arbitrary paths for
them (especially paths that are different for the various controllers).
This also introduces a new -.slice root slice, that is the parent of
system.slice and friends. This enables easy admin configuration of
root-level cgrouo properties.
This replaces DeviceDeny= by DevicePolicy=, and implicitly adds in
/dev/null, /dev/zero and friends if DeviceAllow= is used (unless this is
turned off by DevicePolicy=).
- This changes all logind cgroup objects to use slice objects rather
than fixed croup locations.
- logind can now collect minimal information about running
VMs/containers. As fixed cgroup locations can no longer be used we
need an entity that keeps track of machine cgroups in whatever slice
they might be located. Since logind already keeps track of users,
sessions and seats this is a trivial addition.
- nspawn will now register with logind and pass various bits of metadata
along. A new option "--slice=" has been added to place the container
in a specific slice.
- loginctl gained commands to list, introspect and terminate machines.
- user.slice and machine.slice will now be pulled in by logind.service,
since only logind.service requires this slice.
In order to prepare for the kernel cgroup rework, let's introduce a new
unit type to systemd, the "slice". Slices can be arranged in a tree and
are useful to partition resources freely and hierarchally by the user.
Each service unit can now be assigned to one of these slices, and later
on login users and machines may too.
Slices translate pretty directly to the cgroup hierarchy, and the
various objects can be assigned to any of the slices in the tree.
Also reworded a few debug messages for brevity, and added a log
statement which prints out the filter at debug level:
Journal filter: (((UNIT=sys-module-configfs.device AND _PID=1) OR (COREDUMP_UNIT=sys-module-configfs.device AND MESSAGE_ID=fc2e22bc6ee647b6b90729ab34a250b1) OR _SYSTEMD_UNIT=sys-module-configfs.device) AND _BOOT_ID=4e3c518ab0474c12ac8de7896fe6b154)
We want to allow clients to process an sd_bus_message on a different
thread than it was received on. Since unreffing a bus message might
readd some of its memfds to the memfd cache add some minimal locking
around the cache.
Just as with SMACK, we don't really know if a policy has been
loaded or not, as the policy interface is write-only. Assume
therefore that if ima is present in securityfs that it is
enabled.
Update the man page to reflect that "ima" is a valid option
now as well.
A new config file /etc/systemd/sleep.conf is added.
It is parsed by systemd-sleep and logind. The strings written
to /sys/power/disk and /sys/power/state can be configured.
This allows people to use different modes of suspend on
systems with broken or special hardware.
Configuration is shared between systemd-sleep and logind
to enable logind to answer the question "can the system be
put to sleep" as correctly as possible without actually
invoking the action. If the user configured systemd-sleep
to only use 'freeze', but current kernel does not support it,
logind will properly report that the system cannot be put
to sleep.
https://bugs.freedesktop.org/show_bug.cgi?id=57793https://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=commit;h=7e73c5ae6e7991a6c01f6d096ff8afaef4458c36http://lists.freedesktop.org/archives/systemd-devel/2013-February/009238.html
SYSTEM_CONFIG_FILE and USER_CONFIG_FILE defines were removed
since they were used in only a few places and with the
addition of /etc/systemd/sleep.conf it becomes easier to just
append the name of each file to the dir name.
Bootchart has a help option. For the sake of consistency, this patch
adds it to the man page.
Also, the TODO is updated. Bootcharts were added to the journal in
commit c4d58b0.
This makes sure nss-myhostname not only resolves the local host name to
127.0.0.2/::1 but also the host name 'localhost: to 127.0.0.1/::1. This
makes installation of /etc/passwd optional, as it usually only includes
a mapping for 'localhost'.
This change also resolves ::1 to the local hostname (as before), but
also lists 'localhost' as an alias. This means look-ups are now fully
reversible, even though they are 1:n mappings.
Finally, the module will no longer erroneously claim that local IP
addresses which aren't on the loopback device were.
Session objects will now get the .session suffix, user objects the .user
suffix, nspawn containers the .nspawn suffix.
This also changes the user cgroups to be named after the numeric UID
rather than the username, since this allows us the parse these paths
standalone without requiring access to the cgroup file system.
This also changes the mapping of instanced units to cgroups. Instead of
mapping foo@bar.service to the cgroup path /user/foo@.service/bar we
will now map it to /user/foo@.service/foo@bar.service, in order to
ensure that all our objects are properly suffixed in the tree.
All attributes are stored as text, since root_directory is already
text, and it seems easier to have all of them in text format.
Attributes are written in the trusted. namespace, because the kernel
currently does not allow user. attributes on cgroups. This is a PITA,
and CAP_SYS_ADMIN is required to *read* the attributes. Alas.
A second pipe is opened for the child to signal the parent that the
cgroup hierarchy has been set up.
This changes the fstab mount option x-initrd-rootfs.mount to
x-initrd.rootfs, in order to only use a single namespace "x-initrd." for
all mount options of the initrd.
Setting MaxRetentionSec= caused the kernel log to overflow and the
journal daemon to enter an endless loop.
Logging from the journald main loop gets directed to /dev/kmsg,
which wakes up journald again. We skip the import of this message
by checking for our own PID, but this still causes the main loop
to never go to sleep again because we never stopped logging from
there.
Getting the cursor is split out from .get_next() into
.get_cursor(). This mirrors the C API more closely, and
also makes things a bit faster if the cursor is not needed.
The properties will still be set in the udev database, but they will not be used
for setting the interface names. As for the other kernel commandline switches,
we allow it to be prefixed by 'rd.' to only apply in the initrd.
Please see the documentation (e.g. pydoc3 systemd.daemon) for full
description. As usual, systemd._daemon wraps the raw interface, while
systemd.daemon provides the more pythonic API. sd_listen_fds,
sd_booted, sd_is_fifo, sd_is_socket, sd_is_socket_unix,
sd_is_socket_inet, sd_is_mq, and SD_LISTEN_FDS_START are currently
wrapped.
The userspace firmware loader is deprecated now, and will be entirely
removed when we depend on a kernel version with the built-in firmware
loader available.
I originally added this to stay as compatible as possible with the kernel, but
as Lennart argued it is not really useful in the initramfs, so let's drop it (we
already don't support 'rootdealy').
We currently enforce that seats are to be named in the form of
"seatXXX", i.e. need to begin with the 4 characters "seat". Thus,
"seat-master" would qualify as a seat name. As seat names are frequently
used as tags on devices, the "seat-master" tag might hence confuse
logind if the user decides to name a seat "seat-master".
Hence, avoid any ambuigity: let's rename the "seat-master" tag to
"master-of-seat".
- fix typo
- use compiled systemd-nspawn
- drop --capability=... from systemd-nspawn invocation, is is the default now
- simplify sudo make invocations
- Don't allow any locks to be taken while we are in the process of
executing the specific operation, so that apps are not surprised if a
suspend/shutdown happens while they rely on their inhibitor.
- Get rid of the Resumed signal, it was a bad idea, and redundant due to
PrepareForSleep(false), see below.
- Always send out PrepareFor{Shutdown,Sleep} signals, instead of only if
a delay lock is taken.
- Move PrepareForSleep(false) after we come back from the suspend, so
that apps can use this as "Resumed" notification. This also has the
benefit that apps know when to take a new lock.